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Warm-cool color-based high-speed decolorization: an empirical1

approach for tone mapping applications2

Prasoon Ambalathankandya,b, Yafei Oua,b, Masayuki Ikebea
3

aResearch Center for Integrated Quantum Electronics, Hokkaido University, Sapporo 060-0813, Japan4
bGraduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan5

Abstract. Grayscale images are fundamental to many image processing applications like data compression, feature6

extraction, printing and tone mapping. However, some image information is lost when converting from color to7

grayscale. In this paper, we propose a light-weight and high-speed image decolorization method based on human8

perception of color temperatures. Chromatic aberration results from differential refraction of light depending on its9

wavelength. It causes some rays corresponding to cooler colors (like blue, green) to converge before the warmer colors10

(like red, orange). This phenomena creates a perception of warm colors “advancing” toward the eye, while the cool11

colors to be “receding” away. In this proposed color to gray conversion model, we implement a weighted blending12

function to combine red (perceived warm) and blue (perceived cool) channel. Our main contribution is threefold:13

First, we implement a high-speed color processing method using exact pixel by pixel processing, and we report a 5.7×14

speed up when compared to other new algorithms. Second, our optimal color conversion method produces luminance15

in images that are comparable to other state of the art methods which we quantified using the objective metrics (E-score16

and C2G-SSIM) and subjective user studies (decolorization and tone mapping). Third, we demonstrate that an effective17

luminance distribution can be achieved using our algorithm by using global and local tone mapping applications.18

Keywords: Warm-cool colors, chromatic aberration, decolorization, luminance, pre-processing, RGB, tonemap.19
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1 Introduction21

Grayscale channels, which reflect image luminance, are used for various applications such as print-22

ing, tone mapping, data compression, and feature extraction. Thus, obtaining luminance along with23

human perception has a key role for decolorization, which converts RGB channels to high-quality24

gray ones. For example, High Dynamic Range (HDR) compression is ideally performed by tone25

mapping the luminance channel for the lower computational and memory cost. However, applying26

well-known luminance channels such as Y of YCbCr or V of HSV does not guarantee appropri-27

ate tone mapping, as these channels do not reflect human perceptions. Therefore, decolorization28

has gathered considerable attention and various sophisticated methods to achieve perceptual de-29

colorization have recently been proposed. These methods can be classified into global and local30
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methods. Global methods can define only one conversion function for all pixels, and most of these31

methods use all pixels in the image to determine the function. On the other hand, local ones pro-32

cess the target from neighboring pixels in the same way as a spatial filter, the function is different33

for each pixel. However, both types of methods face the issue of calculation cost, which comes34

from optimization iterations or spatial filter processing.35

We have developed a fast decolorization method that reflects the perception of warm and cool36

colors which is well known in psychophysics studies.1 Colors are arranged according to their37

wavelengths on the color wheel, the ones with longest wavelengths are on the right side of the38

wheel and are known as warm colors, as they evoke warmth. These hues include shades of red,39

yellow, and orange. On the other hand, green, blue and violet which have shorter wavelengths are40

placed on the left side of the color wheel, and are perceived as cool colors. The color of an object41

in a scene affects our perception of its apparent depth and this phenomenon has been exploited42

by many artists. This optical illusion has been studied by psychologists, and early researchers43

explored color-depth relationship. One of the widely accepted theory explains this phenomenon is44

due to fact that shorter wavelengths of visible light are refracted more than longer wavelengths.245

In other words, an equidistant source of different wavelengths cannot be focused simultaneously46

onto our retina. This phenomena is called as chromatic aberration and we discuss it in detail in47

section 2.3. In our decolorization method, we implement a weighted blending of warm and cool48

colors in accordance with the Helmholtz-Kohlrausch (H-K) effect.3 On that account, we make two49

assumptions, which are: (i) warm colors (mainly including R) are lighter than Y of YCbCr and50

(ii) mixed colors are darker than the Y or L of CIE with the same luminance. To satisfy these51

assumptions, we use a weighted blending of RGB channels and remap them to warm/cool colors52

on the luminance channel. Following are our main contributions:53
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Fig 1 Main concept of our decolorization method: Human perception of warm and cool colors. Warm colors “advance”
toward the eye, while cool colors “recede”. In this work we are able to accurately reflect the human perception of
warm-cool colors, whereas this phenomenon is non-existent in conventional YCbCr color space.

• We propose a warm-cool color-based decolorization method.54

• We achieve high-speed color mapping by exact pixel-by-pixel processing.55

• We obtain luminance comparable to that of optimization-based methods.56

• We demonstrate effective luminance distribution for pre-processing by performing objective57

and subjective evaluations.58

There are many well defined methods to convert any color image to a grayscale image. An59

effortless procedure is to assign different weights to color channels, in order to have the same60

luminance in the grayscale image as the original color image. For example, in the MATLAB func-61

tion rgb2gray, it converts any RGB values to grayscale (Gray) values by forming a weighted62

sum of the R, G, and B components as Gray = 0.2989 × R + 0.5870 × G + 0.1140 × B. This63

function operates under an assumption that human visual system is more sensitive to green color.64

When operating with CIELab and YUV color spaces, one could directly obtain luminance channel65

as the grayscale version of the color image as they consider the luminance and color channel to66

be independent. But, such crude approaches will fail to preserve image contrast as shown in these67

examples (see Fig. 1 and Fig. 2).68

3



Original Image CIE Lab This workY of YCbCr

Fig 2 Comparison of luminance components obtained using YCbCr, CIELAB and our proposed method. Here, we
can observe that our decolorization can generate warm colors (like R) which are lighter than Y of YCbCr, and mixed
colors which are darker than the Y or L of CIE.

In several real-world image/video processing applications like detail enhancement, image match-69

ing, and segmentation under different illumintion a 1-D grayscale image has to be obtained from70

its corresponding 3-D color image. However, mapping the 3-D color information onto a 1-D71

grayscale image while retaining the original contrast and fine details is a challenging problem.72

Additionally, implementing decolorization algorithms with a reasonable computational efficiency73

is pivotal for realising their real-time applications. Many studies have been carried out to develop74

novel decolorization methods. These mapping methods can be categorized into global4–8 and local75

methods.9–12 In local mapping methods, the same color pixel within an image could be mapped76

into different grayscale values depending on its spatial location. Ideally this undesirable as such77

output images may be perceived as unnatural. On the other hand, in global mapping methods same78

color pixels within an image irrespective of its spatial location are mapped to same grayscale val-79

ues. Thus, global methods are more likely to produce grayscale images that are perceived to appear80

natural.81

In the global methods category, Gooch et al.4 proposed a global decolorization algorithm82

that can be implemented by solving the optimization problem for all image pixels. Then, Kim et83

al.7 aimed at high-speed processing by simplifying Gooch’s method. Smith et al.6 used unsharp84

masking and the H-K effect model of Nayatani et al.3 Nayatani’s model3 is merely an experimental85
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model for the effect of the CIELUV chrominance component for human perception. On the other86

hand, the method of Lu et al.8 is focused on converting a color image into a gray image with high87

contrast. The main advantage of these methods is transformation consistency, i.e., the same color88

is converted to the same grayscale. However, speed remains a problem for these methods. Most of89

the local methods are aimed at speeding up the method of Lu et al.8 To enhance image contrast,90

Ancuti et al.10 adopted the strategy of using a Laplacian filter and Song et al.12 used a Sobel filter.91

Although local methods are effective in terms of contrast emphasis, they are disadvantageous in92

terms of tone mapping because conversion consistency is not maintained and it differs from human93

perception.94

Recently, some machine learning-based techniques have also been proposed for image decol-95

orization.13–18 Cai et al.14 proposed a method, that used the perceptual loss function to pretrain96

VGG-Net.19 However, it is difficult to control and many of their output images are far from hu-97

man perception additionally, the computational cost are high. Processing an image of 256 × 25698

size it requires roughly 30 seconds on a single Nvidia GeForceGTX 1080 GPU. Zhang et al., pro-99

posed a CNN framework that combines local and global image features.17 However, their network100

framework do not account for exposure features.13 Lin et al.’s method16 by utilizing a database101

of 50 images from the Corel dataset produced 50 grayscale images using the Color2Gray algo-102

rithm.4 With these 50 input/output image pairs as training examples for their partial differential103

equations-based (PDE) learning system, they learn Color2Gray mapping. The proposed PDE sys-104

tem generated images of comparable quality to that of Gooch et al.4 However, for an input image105

of size n × n their PDE color mapping algorithm’s computational complexity is O(n2). Liu and106

Leung proposed a deep learning method for the multiexposure fusion problem and applied for107

color to gray conversion using convolutional neural network (CNN).18 This paper describes the re-108
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lationship between color-to-gray transformation and multiexposure fusion (MEF) and applied the109

CNN to the MEF. Their method has resulted in improvements in the image fusion effects, how-110

ever, the cost of the processing is high and report that a 750 × 599 color image computation time111

is reported as 27.964 seconds on CPU and 1.632 seconds on GPU.18 Under these circumstances, a112

high-speed method for generating grayscale images that accurately captures human perception has113

not yet been developed. To make tone maps valid, it is necessary to develop such a method.114

2 Proposed Method115

2.1 Problem Definition116

Luminance components such as Y of YCbCr and CIE L have been used in various image pro-117

cessing applications; however, they do not accurately reflect human perception (Fig.1 and Fig. 2).118

Figure 1 shows how the warm colored flower (red) advances towards the eye of the observer, while119

the background mainly green recedes. Using the luminance channel of the conventional YCbCr120

color space this phenomenon is absent. But, in our method we are able to capture the warmth R121

(red) component as perceived in human perception. Figure 2 shows that the R (red) and B (blue)122

components do not come even close to the perception in the luminance component of CIELAB.123

Moreover, mixed color components such as mud yellow tend to appear dark for people. In this124

study, we conceived the idea that RGB weight functions for alpha blending can reproduce this125

phenomenon.126

2.2 Luminance mapping using red and blue weighting function127

We consider the idea of color mapping by performing a weighted blending of warm-colors and128

cool-colors in accordance with the H-K effect.3 And we evaluate it using the COLOR250 dataset.20
129
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Fig 3 Remodeling of luminance space based on our two weighting functions one each for warm and cool colors.
Here, luminance is defined as the Euclidean distance of warm/cool color. The included color panels aid in intuitive
understanding of the proposed method.

Psychophysical studies find that, warm and cool colors impact our visual perception of the objects130

that we see. For example, the red color associated with fire/sun advances toward the eye, creates131

an illusion of heat and therefore perceived as warmth and comforting. On the other hand, cool132

colors have reverse effects of warm colors. Receding from the eye of the observer, cool colors133

reminds of the earthy objects, like meadows and oceans. These hues often are perceived as cool134

and refreshing1.21 In our decolorization method, we developed two weighting functions as shown135

in Fig 3. One function for remapping warm colors and the other for remapping cool colors. In our136

method, actual luminance is defined as the Euclidean distance of weighted warm/cool luminance137

including the W (white) channel. Essential luminance is given by138

LWHITE =

√
R2 +G2 +B2

3
(1)

139

LB = B (2)
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Color chart

Our color to gray

Fig 4 Decolorization of a color chart illustrating our method’s effectiveness in generating brighter shades of gray for
warm colors.

140

LR,G =
√
βRR2 + (1− βR)G2, (0.5 < βR < 1) (3)

141

As we know, LWHITE : W (in Eq. 1) is the Euclidean distance of RGB channels; LB (in Eq.142

2) is theB (blue) channel as it is. The component of warm color function LR,G which includes red,143

orange and yellow is also defined as the Euclidean distance by βR weighted R (red) and G (green)144

vectors (in Eq. 3). When βR = 0.5, the vector length of each color is same. Here, we focus on the145

relationship between red and green as in H-K effect; green has less brightness than red with same146

luminance. Thus, we apply a weight βR > 0.5 as a bias for the R component; when βR increases,147

more R components than G components are rated. In actual H-K effect, color brightness order is148

yellow, green and red (Y,G,R).3 However, since yellow is generated by mixing of red and green, if149

we manually place yellow as darker shade than green, the vector length of yellow color becomes150

similar to the length of green vector. Thus, we keep the color brightness order as green, yellow151

and red (G,Y,R). The remappings made by the blending function using the R and B ratio of RGB152
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values are given by153

LWARM =
R

R+G+B
· LG,R +

(
1− R

R+G+B

)
· LWHITE (4)

154

LCOOL =

(
1− B

R+G+B

)
· LB +

B

R+G+B
· LWHITE (5)

Here, LWARM is obtained by blending red weighted LR,G with white as shown in Fig. 3 and Eq. 4.155

The blending ratio determines the relationship of warm color components and the colors which are156

closer to white. When the color includes large red components (e.g. pure red), this color has large157

brightness approaching white. In inverse B weighting, pure B components are assigned to low158

luminance in the LCOOL. Since both functions are blended with LWHITE , bright orange/yellow159

and sky blue, which include high white components, are mapped to higher luminance. Finally, we160

obtain the luminance channel L, which is given by161

L =
√
βkL2

WARM + (1− βk)L2
COOL (0.5 < βk < 1) (6)

In this study, we mainly used warm-color weighting luminance in experiments and set the βk162
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higher. We set two parameters relating to color component emphasis as follows: (βR = 0.55; βk =163

0.8), and from Fig 5 it can be easily understood how βR and βk can bias the resulting luminance164

values. Figure 4 presents a color reference chart and the corresponding grayscale conversion in-165

tended for visual comparisons and measurements. This chart illustrates our method’s effectiveness166

in generating brighter shades of gray for warm colors.167

2.3 Warm-cool color and chromatic aberration168

From Snell’s law we know that the refraction of light is dependent on its wavelength. As the169

frequency of light increases, its refractive index becomes larger, causing more refraction of the170

shorter wavelengths. Therefore, when an image is captured through a lens, all colors do not focus171

at the same distance, and these imperfections are known as chromatic aberration. In cameras172

this imperfection is removed by using a combination of second achromatic lens which is made of173

different material(glass) than the first lens. This second lens would reverse the color dispersion174

caused by the first lens. The human eye, also employs a lens and does exhibit this phenomena as175

shown in Fig. 6. From this figure we can observe that red light forms the image farthest from the176

lens as it has the smallest refractive index. Colors with higher index of refraction would ideally177

bend more thereby forming images closer to the lens. Therefore, it would be impossible to focus on178

all colors simultaneously, resulting in “somewhat fuzzy” images that are not in focus. Colors that179

are closer to red end of the electromagnetic spectrum are said to be warm colors and are perceived180

as closer to the observer.22, 23 Colors that are around the blue end are said to be cooler colors and181

are perceived to be receding away from the observer. This phenomenon has been exploited by182

traditional artists to add depth information in artwork,24 display devices,25 and 3D imagery.26
183

10



𝑓!

Original Image

𝑓" advance
recede

Luminance
warmcool

HVS based 
color mapping

Fig 6 Chromatic aberration which results from differential refraction of light depending on its wavelength, it causes
some rays (green) to converge before other (red). This results in a perception of red “advancing” toward the eye, while
green to be “receding”.

2.4 Limitation of our method184

In our decolorization method, pure green is likely to be mapped to a dark luminance value. Light185

green will also be mapped to a lesser dark luminance part as shown in Fig. 5. Therefore, certain186

scenes are likely to be perceived as unnatural. For example: (a) Vegetables (e.g. leafy greens like187

cabbage) (b) Green meadows under bright sky. (c) Bright green neon lights. However, in Fig. 7 we188

perceive them as natural. We postulate the following as the possible reasons: (i) There are rarely189

any pure bright green (like G255) scene in nature. (ii) In our color space, green color with white190

components follow Eq.(1) by weighting function. Therefore, the color keeps a balance among191

other color channels. (iii) Vegetation scenery with dark green are well perceived as healthy plants.192

3 Experimental Results193

3.1 Comparison with related decolorization methods194

When evaluating our method, we focused on the following points:195

• Objective and subjective image quality assessment.196

• Compare their processing speeds.197
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Fig 7 Examples to demonstrate limitation of our decolorization method when mapping bright green/neon color.

Original Images Gooch et al. Kim et al. Smith et al. Lu et al.L of CIE LabOurs

Fig 8 Color to gray conversion comparison with other decolorization methods.

The evaluations demonstrated that our method does reflect human perception better than or equal198

to other optimized methods (refer sections 3.2 and 4.3). It delivers high-speed processing, and199

is a useful tool for many image processing applications. Figure 8 shows a comparison between200

our proposed method and other decolorization methods, and a detailed subjective evaluation is201
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presented in section 3.3. For this comparison we have used images from Cadik’s dataset.27 In Fig.202

8 first and second columns from the left are original images and images obtained with our method203

respectively. The images in the third column from the left were obtained with the L component of204

the CIELAB color space, which is a reversible model reflecting human visual characteristics. The205

images in columns four, five and six were obtained from global decolorization methods, which206

means only one conversion function is applied to each pixel. For example, in these methods,207

optimization techniques referring to whole pixels are applied to luminance conversion without208

regard to the brightness perceived by human perception. The images in the far right column were209

obtained with a local method that refers to pixel values in the local patch of the image for contrast210

enhancement.211

In the L component of the CIELAB color space, the base luminance is Y in the YCbCr color212

space; the luminance is also mapped along with the color order of Y . In the image (third column,213

fourth row), since the luminance of all colors are the same in Y , output values are also the same214

in the CIELAB color space. However, we can perceive the contrast in this image. Thus, an215

appropriate conversion is required; our method can generate the perceived contrast in this image.216

Gooch et al.4 obtained the highest average C2G-SSIM score but clearly a step artifact occurs in217

the gradation image (fourth column, second row). Kim et al.7 proposed an improved version of218

Gooch’s method that achieves high-speed optimization and reflects the H-K effect.3 In this method,219

since a weighting function is applied for expanding luminance distribution of whole pixel colors220

in the image along with chrominance, its conversion becomes different in each image. Thus, over-221

enhancement is observed in the images (fifth column, first row) and (fifth column, fourth row).222

The output images of our method are similar to those of Smith et al.6 Their method uses the H-K223

effect, but it also requires a lot of processing time for post-unsharp-mask filtering. In Lu et al.,8224
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Table 1 Run-time comparison table with other decolorization algorithms.
Algorithm Processing time Image size W×H CPU Clock Speed Optimization Process Normalized Time?

Gooch et al.4 25.7s 200×200 -GPU- X Global N/A
Kim et al.7 102ms 320×240 2.66GHz X Global 1.30µs
Smith et al.6 6.7s 570×593 3.0GHz × Global+Local 22.02µs
Lu et al.8 800ms 600×600 3.80GHz X Global Contrast 3.12µs
Song et al.12 40ms 320×240 N/A × Local Contrast N/A
Ancuti et al.10 100ms 800×600 2.5GHz × Local Contrast 0.19µs
L of CIE Lab 25.57ms 800×600 2.7GHz × Global 0.053µs
Ours low res 16.71ms 800×600 2.7GHz × Global 0.034µs
Ours high res 202.05ms 3008×2008 2.7GHz × Global 0.033µs

? Normalized time is the processing time normalized by frequency (2.7 GHz) and divided by the number of pixels. It indicates the effective
processing time per pixel.

their method does not reflect human perception; they try generating high contrast images for mask225

images that are input to an edge-preserving filter such as a guided filter.226

Table 1 lists the processing speed of various methods, our proposed implementation and the227

CIELAB were implemented in C++; these codes were executed on an Intel Core i5-5257U (2.70GHz)228

CPU without any multicore, multithread or SIMD operations. The results confirmed that our229

method had the fastest run-time among the methods compared. It is worth noticing that it ex-230

ceeded CIELAB in runtime; this indicates it also has advantages in total calculation cost including231

post-processing. Its computational complexity is only O(1) because it performs exact pixel by232

pixel processing, referring only to the RGB value at each pixel. Among other methods, the one de-233

veloped by Gooch et al. was reported to have O(n4) computational complexity. Using O(1) spatial234

filtering it is possible to develop O(1) local methods,10, 12 but the filter calculations required would235

degrade their run-time in comparison to our decolorization method. The proposed color to gray236

technique has demonstrated faster run-time than local methods by maintaining global coherence,237

which means the conversions were the same in all pixels.238
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Table 2 Comparison of seven color to gray methods based on average objective metrics for 250 images.
Decolorization CCFR CCPR E-score C2G-SSIM

(a) Lu et al.20 0.9922 0.9645 0.9781 0.8900
(b) Nafchi et al.30 0.9880 0.9555 0.9710 0.8900
(c) Grundland et al5 0.9811 0.9584 0.9747 0.8749
(d) Smith et al.6 0.9880 0.9555 0.9710 0.8935
(e) Gooch et al.4 0.9839 0.9545 0.9714 0.9062
(f) Kim et al.7 0.9682 0.9310 0.9047 0.8569
(g) Ours 0.9890 0.9576 0.9728 0.9018

3.2 Objective Image Quality Assessment239

In our experiments, we utilized the color250 dataset which comprises of 250 natural and synthetic240

color images.20 To quantitatively evaluate our decolorization algorithm we choose two objective241

metrics: E-score and C2G-SSIM by Ma et al.28 E-score is a joint measure proposed by Lu et242

al., a harmonic mean which is computed by combining two metrics: Color Contrast Preserving243

Ratio (CCPR), and Color Content Fidelity Ratio (CCFR).20 The CCPR is useful in maintaining244

the color contrast in decolorization images which is perceivable to humans. Specifically, when245

the color difference is smaller than a certain threshold value, it becomes undetectable to humans.246

Furthermore, CCFR estimates if the decolorization image is accurate in terms of structures when247

compared to the original color image. C2G-SSIM is new color to gray objective evaluation metric248

based on the Structural Similarity (SSIM) index quality metric.29 The C2G-SSIM generates quality249

map and has good correlation with HVS subjective preference. Table 2 presents the average E-250

score and C2G-SSIM for the color 250 dataset in comparison with other decolorization methods.251

In our experiment we computed the average CCPR for the 250 images in the dataset by varying252

τ from 1 to 15.20 As can be seen from Fig .9, our algorithm’s performance is reasonable and253

practicable when compared to other color to gray algorithms. Figure 10 shows the average C2G-254

SSIM score for the seven decolorization methods. According to the plot in Fig .9, Lu et al.’s255

method shows best performance based on the E-score, however, our method delivers high average256
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Fig 9 Comparison of seven color to gray methods based on the E-score.
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Fig 10 Comparison of seven color to gray methods based on the C2G-SSIM score.

C2G-SSIM measure which is better correlated to human perception.30
257

16



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Ours L of CIE lab Gooch et al. Kim et al. Smith et al. Lu et al.

Preference Accuracy

Fig 11 Subjective visual test survey and mean opinion score.

3.3 Subjective Image Quality Assessment258

The main objective of our perceptual evaluation is to determine the accuracy and preference20, 27
259

of our decolorization method. Our study group of 15 students (9 males, 6 females, average age =260

23) were shown five sets of images (refer Fig. 8) from Cadik’s dataset.27 The group was asked261

to evaluate the images and assign points to them on a scale of 1 (low) to 5 (high) for accuracy262

and preference. For the first task, that is to measure the accuracy they compared the original263

color images to their decolorized output image. For the preference measurements, the user group264

compared the decolorized images only, i.e., without referring to the corresponding color image.265

4 Tone mapping application266

The color to grayscale conversion is a dimensionality reduction problem whose significance has267

been underestimated. Usually the tone mapping is performed on the grayscale image because of268

the lower computational and memory requirements, when compared to tone mapping on the RGB269

channels. In this section we will discuss global and local tone mapping application using the270

proposed decolorization algorithm and demonstrate its effectiveness.271
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Fig 12 Global tone mapping performed in three different luminance spaces: Ours, Y of YCbCr and V of HSV

4.1 Global tone mapping272

We discuss our decolorization method’s applicability for post-processing tasks such as tone map-273

ping. Conventional methods have not shown such applicability because of their long run-time;274

thus, the use of Y of YCbCr or V of HSV for tone mapping is popular today. We evaluated our275

method’s output of global tone mapping because it has the ability to adequately remap colors to276

1−D luminance. Thus, even using global tone mapping confirms the effectiveness of our method.277

Figure 12 shows tone mapped results using Y , V , or our luminance channel. In the fish image,278

using Y , the fish color became the same as the background and could not be controlled separately,279

because the weight of R is small in the YCbCr color channel. Our method was able to separate280

fish color from background in the same way as human perception and directly mapped the color281

of the background to dark. In the sky and snow scene, the global tone curve for contrast enhance-282

ment is a centered sigmoid curve, in which highlight/shadow clippings occur naturally. Since HSV283

color space treats primary colors and whites the same way, colors of sky and snow were mapped284

to luminance that was too light. Thus, the sigmoid function degraded the contrast of the outputted285

image. YCbCr treats B as too low luminance; the sky became too dark. We confirmed that our286
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Fig 13 Application: (a) Ideal image processing pipeline (tone mapping) (b) Color boosted by local tone mapping
and corresponding grayscale image. (c) Demonstration example for easy control features using our decolorization
algorithm. TM1: background boost TM2: background suppression

method generates well-balanced images maintaining the contrast and the colors.287

4.2 Local tone mapping288

Local histogram equalization based local tone mapping converts target pixels by using tone curves289

constructed from local cumulative histograms. Smoothed local histogram equalization (LHE) are290

also used as a smoothed LH filter.31 The Apical’s (ARM®) Iridix algorithm,32 which is based on291

smoothed LHE are used by a range of camera makers, including Nikon, Olympus and Sony. For292

our local tonemap application we selected smoothed LHE-based function as they are very suitable293

for practical real-time applications, in Fig. 13(a) we show an ideal pipeline for such a system.294

We implemented the local tonemap application similar to one presented by Ambalathankandy et295

al.,33 as their implementation has a linear O(1) computational complexity and produces output296

images with fine quality as shown in Fig. 13(b, c). The total computational time including our297

proposed decolorization and the local tonemap operation was only 14.7µs per pixel (normalized298

time @2.7GHz CPU). This time utilization is 20× less than Lu et al.’s work.8 Additionally, using299
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our decolorization method has an advantage, which is to individually control the back/foreground300

as shown in Fig. 13(c).301

4.3 HDR tone mapping subjective user study302

In this user study we collected response from an online survey of 50 volunteers (31 males, 19303

females, average age = 29). They evaluated five sets of HDR tone mapped images which are304

shown in Fig. 14. The main objective of this second user study is to judge the overall quality305

of the tone mapped images using different decolorized images which are obtained using simple306

histogram equalization method. Volunteers were asked to evaluate the tone mapped images for307

their overall perceptual quality, they rated 5 for images that were perceived as best with minimal308

artifacts on a scale 1 to 5. The compiled response of the user study group are presented in Fig. 15.309

5 Conclusion310

In this paper, we present warm-cool color-based RGB to gray conversion model by taking in to311

account the chromatic aberration phenomena. This anomaly results from differential refraction312

of light depending on its wavelength, it causes some of the rays (cool colors) to converge before313

others (warm colors). This results in a perception of warmer colors “advancing” towards the eye,314

while the cooler ones to be “receding”. Essentially, since decolorization is expected to have a315

key role in the pre-processing of tone mapping or edge preserving filters, low calculation cost and316

fast operation for the processing are required. To address this requirement, we have developed317

a high-speed O(1) decolorization method that is based on warm-cool color-based perception. It318

refers to RGB values in one pixel and performs weighted blending of the Euclidean distances of319

warm/cool color vectors. This simple conversion outputs a gray channel that is comparable to the320
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(a) (b) (f)(e)(d)(c)

Fig 14 Effect of different decolorization on HDR tone mapping using simple histogram equalization. (a) HDR test
image. (b) CIELab (c) YCbCr (d) Xiong et al.34 (e) Liu et al.35 (f) Ours

conventional optimization methods using iterations. When our method is applied to tone mapping,321

it achieves better results than one could be obtained with YCbCr/HSV color space.322
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Appendix417

The effectiveness of our decolorization algorithm for tone mapping application was evaluated in Sec. 4.3 with a418

subjective user study. Our proposed algorithm is compared with newer decolorization methods, whose color to gray419

performance was not included in Fig. 8 for brevity and clarity which is presented in Fig. 16.420

Input Our’s CIELAB YCbCr Xiong et al Liu et al

Fig 16 Color to gray conversion comparison using five images from Cadik’s dataset.27 Decolorization methods: Ours,
CIELAB, YCbCr, Xiong et al.,34 and Liu et al.35
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