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Abstract. Violence behavior recognition is an important research scenario in behavior recog-
nition and has broad application prospects in the field of network information review and intel-
ligent security. Inspired by the long-short-term memory network, we estimate that temporal shift
module (TSM) may have more room for improvement in the feature extraction ability of long-
term information. In order to verify the above conjecture, we explored based on TSM. After
many attempts, it was finally proposed to connect the two TSMs in a cascaded manner, which
can expand the receptive field of the model. In addition, an efficient channel attention module
was introduced at the front end of the network, which strengthened the model’s spatial feature
extraction capabilities. At the same time due to behavior recognition prone to over-fitting, we
extended and processed on the basis of some open-source datasets to form a larger violence
dataset and solved the problem of over-fitting. The final experimental results show that the algo-
rithm proposed can improve the model’s feature extraction ability of violent behavior in the
space and temporal dimension and realize the recognition of violent behavior, which verified
the above point of view. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
the original publication, including its DOI. [DOI: 10.1117/1.JEI.30.4.043009]

Keywords: violence behavior recognition; convolutional neural network; attention mechanism;
dataset.

Paper 210152 received Mar. 29, 2021; accepted for publication Jul. 9, 2021; published online
Jul. 21, 2021.

1 Introduction

With the rapid popularization of mobile terminals, the Internet is uploading massive amounts of
video data all the time, and these video data are likely to involve violent scenes, which will have
an adverse impact on the health of the network environment. In order to maintain social safety
and stability, functional departments such as police agencies and security companies have broad
application requirements for intelligent video recognition systems in the field of on-duty secu-
rity. The intelligent recognition of scenes involving violence can promptly feedback emergency
security incidents to rear duty personnel, facilitating timely handling of incidents. Therefore, the
recognition of violent behavior plays an important role in maintaining the safety and health of
society and cyberspace.1

According to the recognition process, behavior recognition mainly includes three steps:
video preprocessing, feature extraction, and behavior classification.2 According to the method
of feature extraction, behavior recognition can be divided into traditional behavior recognition3,4

and behavior recognition based on deep learning.5–8

Traditional behavior recognition methods mainly extract features manually, and the types of
features mainly include global features and local features. The global feature extraction mainly
includes two methods: silhouette and human joint points. For example, Bobick and Davis9 estab-
lished a motion energy map to classify behaviors based on background subtraction. Yang10

established the three-dimensional contour of the human body for feature extraction by determin-
ing the coordinates of the joint points. Local feature extraction mainly includes two feature
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extraction methods: spatiotemporal interest points sampling and trajectory tracking. For exam-
ple, the dense trajectory extraction related algorithms dense trajectories and improved dense
trajectories proposed by Wang et al.11 and Wang and Schmid.12

According to the different feature extraction models, the current common methods of behav-
ior recognition based on deep learning can be divided into three categories: two-stream CNN
model, temporal model, and spatiotemporal model. Among them, the two-stream CNN model
mainly extracts spatiotemporal information through two parallel channels and uses appropriate
channel fusion to achieve behavior classification. For example, Simonyan and Zisserman13 first
proposed the two-stream approach for behavior recognition. Wang14 adopted the temporal seg-
ment network to realize the recognition of long-term motion. Inspired by the two-stream CNN
model, Feichtenhofer C15 designed a lightweight two-stream network Slowfast, which reduces
the complexity of the model.

Temporal models mainly rely on recurrent neural networks and their variants to extract tem-
poral information in behavior and convolutional neural networks to extract spatial information.
For example, Donahue et al.16 introduced convLSTM17 to replace the traditional long-short-term
memory (LSTM) to achieve the fusion of spatiotemporal information. Li et al.18 merged
convLSTM with attention LSTM and constructed a new network structure VideoLSTM. The
spatiotemporal model mainly uses 3D convolution to extract the spatiotemporal information
of behaviors at the same time. In recent years, some scholars have adopted appropriate video
preprocessing methods so that the spatiotemporal model can also achieve behavior classification
through simple 2D convolution. Ji et al.19 first applied 3D convolution to video behavior analysis
and realized the extraction of spatial and temporal features from the video. Tran et al.20 integrated
on the basis of 3D convolution and proposed to establish convolutional 3D (C3D). C3D realized
the use of large-scale video dataset training to learn the spatiotemporal characteristics of video,
which improved the generalization ability of related algorithms. The 3D model is implicitly
pretrained on ImageNet, and the 3D convolutional pretrained model is obtained in kinetics.
Lin et al.21 proposed the temporal shift module (TSM). By shifting and splicing adjacent frames
in the temporal dimension, using 2D convolution to extract spatiotemporal information at the
same time, the effect of 3D convolution is realized, and the problems of 3D convolution in
parameters and calculations are solved.

However, the long-term information acquired by TSM network during behavior recognition
is limited, the network structure is too simple, and over-fitting is prone to occur in the process of
feature learning. In order to solve the problems above and also to further improve the accuracy of
behavior recognition, this paper improves on the basis of the TSM network and conducts exper-
imental exploration. The main contributions of this paper are as follows.

(1) A simple two-cascade TSM is proposed, which expands the receptive field of tem-
poral dimensions and realizes the enhancement of long-term information extraction
capabilities.

(2) Introduce the efficient channel attention (ECA) module at the front end of the TSM net-
work to improve the network’s feature extraction ability of spatial information to a certain
extent and reduce the impact of overfitting on network performance.

(3) Data collection and multimedia processing are performed on the existing open-source
datasets, and an expanded violent behavior recognition dataset is established, which
solves the problem of overfitting and verifies the performance of the algorithm in a larger
sample condition.

2 Related Work

2.1 Temporal Shift Module

Behavior recognition mainly obtains spatial information and temporal information contained in
data during feature extraction. Traditional 3D convolution uses a 3D convolution kernel to
perform convolution operations between adjacent multiple frames at the same time, which can
extract the spatiotemporal feature information in the video, but it will inevitably lead to
an increase in calculation. The TSM uses a simple data preprocessing method to convert the
invisible temporal information in a single frame into extractable spatial feature information.
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As shown in Fig. 1(a), several adjacent frames of images are stacked to form the original tensor,
and the same color in the figure represents the same frame of image. Figure 1(b) shows the TSM.
The TSM moves the channels forward and backward in the temporal dimension to perform
simple feature fusion between adjacent frames. The fusion makes an independent single frame
contain certain temporal information, and simple 2D convolution can be used to achieve
spatiotemporal feature extraction.

The effect of convolution can be achieved through shift and multiply-accumulate operation,
and that 3D CNN can be reduced in dimensionality in this way. For an infinitely one-dimensional
vector X and a convolution kernel W ¼ ðw1 w2 w3 Þ, the convolution operation is

EQ-TARGET;temp:intralink-;e001;116;472yi ¼ w1xi−1 þ w2xi þ w3xiþ1; (1)

The above equation can also be decoupled by shift and multiply-accumulate operation:

EQ-TARGET;temp:intralink-;e002;116;428x−1i ¼ xi−1; x0i ¼ xi; xþ1
i ¼ xiþ1; (2)

EQ-TARGET;temp:intralink-;e003;116;384Y ¼ w1

X
x−1i þ w2

X
x0i þ w3

X
xþ1
i ; (3)

EQ-TARGET;temp:intralink-;e004;116;358Y ¼ w1X−1 þ w2X0 þ w3Xþ1: (4)

Among them, xi represents the element in X, yi represents the result of convolution, X−1, Xþ1

represent the infinite one-dimensional vector shifted back and forth by a unit, and Y represents
the sum of the convolution results.

2.2 Efficient Channel Attention Module

The structure of the TSM behavior recognition network is too simple, and it is susceptible to
interference from background information, causing serious over-fitting. In order to improve
the network’s feature extraction ability of spatial information, this paper introduces an ECA
module.22 As shown in Fig. 2, for the input tensor, the global average pooling is first performed

(a) (b)

C

H × WT
C

H × WT
Blank

Blank

T
em
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Fig. 1 TSM:21 (a) original tensor and (b) shift module.

Fig. 2 ECA module structure diagram.22
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without reducing the dimensionality, and then local cross-channel interaction is realized through
one-dimensional convolution, and it is activated by the nonlinear function sigmoid. The result
of activation is multiplied by the input tensor as the final output. The ECA module realizes
local cross-channel interaction through one-dimensional fast convolution with adaptive size,
which avoids channel dimensionality reduction and can reduce the interference of background
information on feature extraction.

3 Module Design

3.1 Intuition

The TSM realizes the effective integration of spatiotemporal information in a single frame by
performing simple channel shift in the temporal dimension. The shift of temporal dimension is
similar to the function of RNN to a certain extent, which can realize the transfer of “memory” at
different moments (Fig. 3).

The unidirectional TSM can be expressed mathematically as

EQ-TARGET;temp:intralink-;e005;116;537Y ¼ w1X−1 þ w2X0: (5)

The RNN can be expressed mathematically as

EQ-TARGET;temp:intralink-;e006;116;492hðtÞ ¼ fðuhðt−1Þ þ wxðtÞ þ bÞ: (6)

Among them, hðtÞ is the state of the RNN at time t, u and w are the weights of the RNN nodes,
and xðtÞ is the input at time t. Judging from the given network structure and mathematical
formulas, there is a certain similarity between TSM and RNN, which is the source of inspiration
for our follow-up work.

RNN cannot obtain long-term information when applied to behavior recognition, so some
scholars have adopted a variant of RNN, LSTM,23 to enhance the ability of the model to extract
long-term information. Similarly, does the TSM have room for further improvement in the fea-
ture extraction capabilities of long-term information? This paper has launched an experimental
analysis.

3.2 Two-Cascade TSM Residual Module

In order to strengthen the network’s feature extraction capability for long-term information,
it is simplest to move more channels forward and backward in the temporal dimension of the
TSM. Based on the above ideas, this paper attempts to make various improvements to TSM.

Fig. 3 TSM behavior recognition network and RNN are similar in structure and function, and both
can realize the shift of information across different moments: (a) uni-directional TSM behavior
recognition network and (b) the structure of RNN.
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For example, introducing two temporal shifts in the channel dimension, changing the proportion
of two temporal shifts in the tensor, and trying to manually add weights to various shifts.
However, a large number of experiments have proved that these changes will not help improve
the network’s feature extraction ability for long-term information.

The above scheme unilaterally emphasizes the channel shift in the temporal dimension and
ignores the overall feature fusion, resulting in the shift of temporal information only limited to
the local area of the tensor, which destroys the integrity of the temporal and spatial information to
a certain extent. Therefore, when strengthening the shift of temporal dimension, we must also
consider the global fusion of spatio-temporal information. The TSM will reshape the data before
and after the shift of the temporal dimension. This design is helpful to the integration of original
data and shifted data, which is conducive to the global fusion of time and space information.
Therefore, on the basis of the TSM behavior recognition network, this paper uses a simple two-
cascade TSM, which strengthens the model’s ability to extract temporal information to a certain
extent and also realizes the effective integration of spatial–temporal information.

Similarly, suppose there are an infinite one-dimensional vector X and a convolution kernelW
with a size of 1 × 3. Assume that the vector after a shift is Z:

EQ-TARGET;temp:intralink-;e007;116;544Z ¼ αX−1 þ βX0 þ γXþ1: (7)

Among them, α, β, and γ are the weighting factors. Then after two cascades, the convolution
result Y is

EQ-TARGET;temp:intralink-;e008;116;487Y ¼ w1Z−1 þ w2Z0 þ w3Zþ1; (8)

EQ-TARGET;temp:intralink-;e009;116;443Y ¼ waX−2 þ wbX−1 þ wcX0 þ wdXþ1 þ weXþ2; (9)

and

EQ-TARGET;temp:intralink-;e010;116;421wa ¼ αw1; (10)

EQ-TARGET;temp:intralink-;e011;116;378wb ¼ βw1 þ αw2; (11)

EQ-TARGET;temp:intralink-;e012;116;356wc ¼ γw1 þ βw2 þ αw3; (12)

EQ-TARGET;temp:intralink-;e013;116;334wd ¼ γw2 þ βw3; (13)

EQ-TARGET;temp:intralink-;e014;116;312we ¼ γw3: (14)

Then through inverse decoupling, the following conclusions can be drawn:

EQ-TARGET;temp:intralink-;e015;116;289yi ¼ waxi−2 þ wbxi−1 þ wcxi þ wdxiþ1 þ wexiþ2: (15)

This realizes the convolution operation between the infinite one-dimensional vector X and
the new convolution kernel W 0 ¼ ðwa wb wc wd we Þ. That is to say, without changing
the original convolution kernel, a 1 × 3 convolution kernel can achieve a 1 × 5 convolution effect
through the simple two cascades.

As shown in Fig. 4(a), based on the residual module, this paper adds two cascaded TSMs
before the convolutional layer, forming a two-cascaded TSM residual module. It expands the
receptive field of temporal dimension without changing the size of the convolution kernel. The
experimental results show that the cascaded TSM independently shifts the temporal information,
which improves the fusion of features in the temporal dimension and strengthens the model’s
feature extraction ability for long-term information. At the same time, the cascaded modules will
restructure the shifted tensors and integrate spatiotemporal information before the second shift,
avoiding the one-sided and fragmented temporal shift.

As shown in Figs. 4(b) and 4(c), this paper also tries to make more changes on the basis of the
two-cascaded TSM, such as introducing short-cut in two TSM and expanding the cascade to
three times. However, as shown in Fig. 5, the experimental results on the RWF-2000 dataset
show that using different residual modules as the basic unit to construct a ResNet5024 network
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for violent behavior recognition, subsequent improvements to the two-cascaded TSM residual
module will not help further improve the feature extraction ability of the model. Therefore, this
paper chooses a simple two-cascaded TSM residual module as the basic unit to form a ResNet50
network for behavior recognition.

3.4 Efficient Channel Attention Module

The TSM network introduces the TSM into the residual module of ResNet50 and realizes the
fusion of spatiotemporal information through simple data shift. Behavior recognition can be
realized through the 2D convolutional neural network. This paper also uses the two-cascaded
TSM as the basic unit to construct a two-cascaded TSM behavior recognition network on the
basis of ResNet50. The specific structure is shown in Table 1. If a two-cascaded TSM is used, the
two-cascade TSM is recorded as 1 otherwise it is recorded as 0.

This paper attempts to introduce the ECA module directly into the residual module of
ResNet50 to form ECANet in the model construction, but the results show that this will greatly
increase the amount of model parameters, and it will not help improve the accuracy of
recognition.

As shown in Fig. 6, for the input video image Fi of the i’th frame, first extract the key
information from the data through the attention module to complete the preprocessing of the
information, which can reduce the interference caused by the background information to a cer-
tain extent. Then a 2D CNN network ResNet50 composed of two-cascaded TSM residual mod-
ules is used to realize feature extraction and classification of video frames that incorporate
temporal and spatial information.

Fig. 5 Accuracy of different improvement schemes.

Fig. 4 Improved TSM residual module: (a) two-cascade TSM residual module, (b) shortcut two-
cascade TSM residual module, and (c) three-cascade TSM residual module.
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4 Experimental Design

4.1 Dataset

In order to fully test the performance of the algorithm and verify the proposed conjecture, this
paper has conducted experiments on three open-source violent behavior recognition datasets and
an expanded new dataset.

The crowd violence25 dataset contains 246 video clips with a duration of 1.04 to 6.52 s, with
an average duration of 3.6 s. This dataset mainly depicts scenes of crowd violence, but the scenes
are relatively vague. The hockey dataset contains 1000 violent and non-violent videos collected
from ice hockey game. The training set includes 800 video clips, and the validation set includes

Fig. 6 ECA-two-cascaded TSM behavior recognition network structure diagram.

Table 1 Two-cascaded TSM behavior recognition network structure.

Conv layer Structure Output Two-cascade TSM

conv1 7 × 764 112 × 112 0

conv2_x 3 × 3 maxpool 56 × 56 1
2
4
1 × 1; 64
3 × 3; 64
1 × 1; 256

3
5 × 3

conv3_x

2
4
1 × 1; 128
3 × 3; 128
1 × 1; 512

3
5 × 4 28 × 28 1

conv4_x

2
4
1 × 1; 256
3 × 3; 256
1 × 1; 1024

3
5 × 6 14 × 14 1

conv5_x

2
4
1 × 1; 512
3 × 3; 512
1 × 1; 2048

3
5 × 3 7 × 7 1

Avgpool, fc 1 × 1 0
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200 video clips. The main content of the video is the violent actions in the ice hockey game. Each
video is 2 s and contains 41 frames. Since the hockey dataset has a small number of videos, a
single scene, and limited application value, it is difficult to meet the needs of deep neural network
learning, so this paper introduces the latest RWF-200026 dataset. The dataset contains 2000 sur-
veillance video clips collected from YouTube. The training set includes 1600 video clips, and the
verification set includes 400 video clips. Each video clip is 5 s and contains 150 frames. It mainly
includes violent behaviors such as two persons, multiple persons, and crowds. The scenes are rich
and the recognition is difficult, and the video clips are all obtained by security cameras, without
multimedia technology modification, which fits the actual scene and has high research value.

However, in the course of the experiment, this paper found that the TSM network has a
serious over-fitting phenomenon in the RWF-2000 dataset, so this paper expands the dataset
on the basis of the predecessors. Based on the open-source violence recognition dataset UCF-
Crime, we collect hockey dataset, movies dataset, violent-flow dataset, HMDB51 dataset, and
so on as the main scenes of violence in the video, and collect UCF101 and HMDB51 datasets
as the main non-violent scenarios in the expanded dataset. The collected video is edited
and processed by Adobe Premiere Pro, and the video clips that have nothing to do with behav-
ior recognition are removed, and the data are unified into two kinds of video clips with
a length of 1 and 5 s. Finally, this paper constructs a violence recognition dataset containing
5000 video clips, which greatly increases the number of samples, and the scene is richer than
RWF-2000, which can solve the problem of over-fitting. Figure 7 shows the basic situation of
the dataset.

Fig. 7 Basic situation of dataset: (a) crowd violence dataset, (b) hockey dataset, (c) RWF-2000
dataset, and (d) expanded dataset.
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This paper selects 178 video clips from the crowd violence dataset as the training set,
and the remaining 98 video clips as the validation set. 200 videos were randomly selected
from the hockey dataset as the verification set, and each video was extracted into 41 con-
secutive images for experiment. Randomly select 400 videos from RWF-2000 as the verifi-
cation set, and the rest are the training set. Every two frames are intercepted to form
a 75-frame continuous image sequence. While reducing the amount of data, try to keep the
temporal information in the data complete. For the expanded dataset, the video duration is
mainly 1 and 5 s. 1000 video clips from 5000 video clips are randomly selected as verification
sets, and all videos are intercepted as image sequences. After all the datasets are processed into
continuous image sequences, the total size of the crowd violence dataset is 533 MB, the total
size of the hockey dataset is 219 MB, the total size of the RWF-2000 dataset is 10.7 GB, and
the size of the expanded dataset is 25.7 GB. Before loading the data into the model, we carry
out random data preprocessing, such as clipping, scaling, and rotation, to realize the data
transformation.

4.2 Parameter Configuration

The deep learning framework used in this paper throughout the training and testing process is
Pytorch1.5, the operating system is Ubuntu 16.04, and the CPU is Intel I9-10920X. Use
CUDA10.2 to accelerate the GPU and use two NVIDIA RTX2080super GPU with 8 GB of
video memory for parallel computing. SGD is used to optimize the algorithm, and the TSM
model trained on kinetics is used to reduce the risk of over-fitting and reduce the computational
complexity of network training. In the comparative experiment, the experimental environment
and dataset are set according to the introduction in this paper, and other basic configurations such
as learning rate configuration, algorithm optimization method, and pretraining model are con-
figured according to the instructions of the respective open source projects.

The learning rate adjustment method of the TSM algorithm is 100 epochs of training, the
initial learning rate is 0.01, and the learning rate is adjusted to 10% when the training reaches 20
and 40 times. In this paper, when reproducing the original text experiment on the RWF-2000
dataset, it is found that the training loss value of the experiment decreases from the beginning of
the training until it is stable, and the verification loss value of the experiment will drop rapidly
before the training is started 20 epochs and keep increasing. This indicates that over-fitting
occurred during the experiment. In response to the above problems, this paper designs a new
learning rate adjustment method. The initial learning rate is 0.01, and the learning rate is adjusted
to 90% of the original every two epochs. To a certain extent, this not only accelerates the adjust-
ment speed of learning rate but also accelerates the rate of model learning. As shown in Fig. 8,
the adjusted verification loss curve does not show a significant increase after 20 epochs, and the
loss value is lower than the traditional method, indicating that the over-fitting problem in the
experiment has been alleviated.

Fig. 8 The corresponding verification loss curve of different learning rate adjustment methods.
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5 Results

After 100 epochs of training and verification of the model, Fig. 9 shows the accuracy curve of the
experiment. The blue curve, green curve, and red curve in the figure are the verification accuracy
curves of TSM algorithm, two-cascade TSM algorithm, and ECA-two-cascade TSM algorithm
in each dataset, respectively.

As can be seen from Fig. 9, the accuracy of the two algorithms proposed in this paper is
slightly higher than that of the traditional TSM algorithm. The accuracy curve is stable and the
fluctuation is small, which shows that the algorithm can achieve effective feature extraction.
Figure 9(a) shows the accuracy curve of various algorithms in the crowd violence dataset. It
can be seen that the improved algorithm has a higher accuracy. Figure 9(b) shows the accuracy
curve of various algorithms in the hockey dataset. It can be seen that the improved algorithm is
obviously more accurate than the traditional algorithm, and the curve is more stable. Figure 9(c)
shows the accuracy curve of the RWF-2000 dataset. From the graph, we can see that the accuracy
of the improved algorithm is slightly higher than that of the traditional algorithm, but the accu-
racy decreases obviously after 20 epochs, which indicates that the algorithm has some over-
fitting.

In order to solve the problem of over-fitting and to further verify the performance of this
algorithm, as shown in Fig. 9(d), experiments are carried out in a larger dataset. The experimental
results show that the accuracy of the three algorithms in the larger dataset is improved rapidly,
and the accuracy curve is stable, which proves that the larger dataset does solve the problem of
over-fitting, and further verifies the performance of this algorithm. Table 2 shows the specific
situation of violence recognition by different algorithms.

As can be seen from Fig. 10, the algorithm proposed in this paper has a great improvement
over the traditional algorithm. In the crowd violence dataset, the two-cascade TSM is 0.989%
higher than the TSM, and the ECA-two-cascade TSM is 2.009% higher than the TSM. The two-
cascade TSM in the hockey dataset is 0.55% higher than the TSM, and the ECA-two-cascade

Fig. 9 Experimental verification accuracy curve: (a) crowd violence dataset accuracy curve,
(b) hockey dataset accuracy curve, (c) RWF-2000 dataset accuracy curve, and (d) expanded
dataset accuracy curve.
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TSM is 1.495% higher than the TSM. In the RWF-2000 dataset, the two-cascade TSM is 0.997%
higher than TSM. The ECA-two-cascade TSM is 1.247% higher than TSM. In the expanded
dataset, the two-cascade TSM is 0.2% higher than TSM. The ECA-two-cascade TSM is 0.4%
higher than TSM.

The above results show that the two-cascade cascade of TSM modules can expand the
model’s receptive field in the temporal dimension, which also proves that there is still room
for improvement in the feature extraction capabilities of the TSM module for long-term infor-
mation. At the same time, it also suppresses the interference of background information through
the ECA module and finally improves the performance of violence recognition.

6 Discussion

In order to recognize violence behavior in videos, this paper makes improvements on the TSM
behavior recognition network. Inspired by LSTM, in order to strengthen the feature extraction
ability of TSM module for long-term information, this paper proposes a two-cascaded TSM
behavior recognition network, which expands the model’s receptive field in the temporal dimen-
sion. In order to suppress the interference of background information, an ECA module is inserted
at the front end to enhance the sensitivity of the model to spatial information. At the same time, in
order to solve the over-fitting problem of some datasets in the experiment, this paper carries on
the data expansion and multimedia processing on the basis of the existing datasets. Verification
experiments in multiple datasets show that the proposed algorithm can achieve higher accuracy
than the traditional algorithms. This means that the algorithm proposed in this paper can improve
the ability of the network to understand the characteristics of time and space, solve the problem
of over-fitting in the experiment, and realize the effective recognition of violence behavior.

Fig. 10 The improvement of the algorithm in this paper compared with TSM.

Table 2 Comparison of optimal accuracy.

Algorithm Crowd violence Hockey RWF-2000 Expanded dataset

3D-CNN3 94.3 94.4 82.75 91.7

LRCN21 94.57 97.1 77 92.3

I3D14 88.89 97.5 85.75 93.3

AR-Net27 95.918 97.2 87.3 92.8

TSM16 95.95 97.5 88.03 94.6

TEA28 96.939 97.7 88.5 93.8

Two cascade TSM (ours) 96.939 98.05 89.027 94.8

ECA-two cascade TSM (ours) 97.959 98.995 89.277 95
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