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Abstract. Convolutional neural networks (CNNs) are effective for image classification, and
deeper CNNs are being used to improve classification performance. Indeed, as needs increase
for searchability of vast printed document image collections, powerful CNNs have been used in
place of conventional image processing. However, better performances of deep CNNs come at
the expense of computational complexity. Are the additional training efforts required by deeper
CNNs worth the improvement in performance? Or could a shallow CNN coupled with con-
ventional image processing (e.g., binarization and consolidation) outperform deeper CNN-
based solutions? We investigate performance gaps among shallow (LeNet-5, -7, and -9), deep
(ResNet-18), and very deep (ResNet-152, MobileNetV2, and EfficientNet) CNNs for noisy
printed document images, e.g., historical newspapers and document images in the RVL-CDIP
repository. Our investigation considers two different classification tasks: (1) identifying poems in
historical newspapers and (2) classifying 16 document types in document images. Empirical
results show that a shallow CNN coupled with computationally inexpensive preprocessing can
have a robust response with significantly reduced training samples; deep CNNs coupled with
preprocessing can outperform very deep CNNs effectively and efficiently; and aggressive pre-
processing is not helpful as it could remove potentially useful information in document images.
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1 Introduction

Convolutional neural networks (CNNs), inspired by biological visual processes, have been pop-
ularly and successfully applied as a type of deep learning network in image-related classification
approaches for generic images (e.g., hyperspectral images,1–3 scenes,4,5 plant images,6,7 and
graphic images8–12) and image-related denoising approaches (e.g., Gaussian noise,13,14 rain
effects,15 snow effects,16 and general frameworks17). Indeed, there have been significantly more
results and findings of CNN-based approaches on generic images (e.g., picture-based or graphic
images) than on document images, facilitated by highly competitive challenges, such as
CIFAR,18 ImageNet,19 and MNIST,20 that comprehensively compared both deep and shallow
CNN solutions focusing on generic images. Meanwhile, there have been relatively fewer com-
parative studies (e.g., RVL-CDIP21) for document image classification, even though document
image classification also has recently seen an increased use of CNN-based approaches in cat-
egory classification,22–24 layout analysis,25–30 binarization,31,32 text line extraction,33–35 and opti-
cal character recognition (OCR).36–38 Findings on the application of CNNs on generic images
do not necessarily generalize to document images39–41 as these two types of images are very
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different.42 Note that document images consist primarily of texts.43 Also many document images
are monochrome. Hence, the role of color-based visual cues, which are used in approaches
for generic images, is diminished. Another property often found in document images is denser
structural layouts, which make document images more susceptible to degradations.

Meanwhile, spurred by the advent of digital libraries, researchers have access to historical
documents at an unprecedented scale and with unprecedented speed.44 The increased level
of accessibility inevitably has led to increased needs for searchability and other information
retrieval tasks. For example, as an important category of printed historical documents, historical
newspapers are a popular format and source used by librarians, social scientists, humanities
researchers, genealogists, and so forth to perform investigative research.45 Digital libraries of
historic newspapers have typically been built to facilitate a limited type of investigation: keyword
search and human browsing. They often do not provide article-level information for newspapers’
articles, such as article types (news, poetry, advertisements, obituaries, and drawings)
or access to particular types of information or content at scale—thereby artificially limiting
the types of research questions that scholars might pursue. This scenario creates a challenge
for collecting certain content types from millions of newspaper pages, for example. This diffi-
culty results in researchers resorting to manual inspection for identification and classification
content, which is hardly scalable across tens of millions of pages. Therefore, document classi-
fication requires accurate and fast tools for diverse documents with wide-ranging properties.
Furthermore, compared with the existing amount of document image collections (e.g.,
Chronicling America), the datasets with labeling information, which can be used for training
deep CNNs, are much less prevalent both in amount and temporal coverage. According to the
study of d’Andecy et al.,46 deep learning models require exhaustive samples to be trained well
compared with incremental classification for document type classification. Deep learning could
be less robust on out-of-domain samples than the incremental classification when the training
sample is reduced.

This paper focuses on our investigations on the use of preprocessing to improve performance
of deep learning on tasks involving printed document images. These document images may be
born-digital or digitized copies of original documents. For digitized copies (e.g., document
scanning), various noise effects may be present in the images;41 these features may be more
widespread when the document images have been digitized from microphotographic copies—
common in many historical newspaper collections—as compared with digitized from their
physical originals. For example, unevenly distributed luminance (i.e., range effects), low con-
trast, or visible ink from the other side of the paper (i.e., bleed-through) may be present. To deal
with these noisy digitized document images, a preprocessing step (e.g., binarization or text line
consolidation) to clean up the images is often required.

Although layers of CNN can perform some preprocessing or achieve the effects of prepro-
cessing, preprocessing techniques have also been used to prepare data before feeding it into a
CNN.47 In this paper, we investigate coupling conventional preprocessing algorithms with CNNs
for the following two reasons. We recognize that preprocessing has been widely used in pre-
paring data for CNN training. However, the impact of different levels of preprocessing on CNN
performance has not been investigated. For example, note that light-level preprocessing (e.g.,
binarization) cleans images but modifies them only minimally (e.g., removing noise), whereas
aggressive-level preprocessing (e.g., consolidation) cleans and modifies images significantly to
the extent of enhancing cues so that they are visually easier to recognize. First, in terms of effec-
tiveness, which level would be more appropriate for CNN for a classification task? How would
the different levels of preprocessing impact CNN performance differently? Indeed, in document
images, binarization is capable of removing noise from the background pixels but could also
cause disconnected strokes in the object pixels (i.e., text pixels), whereas consolidation is
capable of extracting more connected layout structures but could smear text areas causing loss
of textual information. Thus one investigation is determining what level of preprocessing is
adequate to improve CNN’s performance. Then for preprocessing techniques that can improve
CNN’s performance, how much is the improvement? Can preprocessing techniques make a
shallower CNN effectively outperform a deeper CNN? As reported later, our investigation
(Sec. 4.2) shows that aggressive-level preprocessing could degrade CNN’s performance even
though visual cues of the image are better enhanced because of information loss as a result
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of consolidation. Our investigation in Sec. 4.3 further demonstrates that preprocessing can
improve a shallower CNN to outperform or match a deeper CNN’s effectiveness even though
deeper CNNs are computationally more capable of handling classification tasks. Second, in
terms of efficiency, it is known that, while deeper CNNs are more computationally capable
of handling classification tasks, they are also expensive to train in terms of both computational
cost and the requirement of training samples. Preprocessing could highlight and summarize vis-
ual cues to help CNNs train faster. Thus another investigation is determining whether and how
preprocessing would help CNN to overcome a smaller training set. As reported later, our inves-
tigation in Sec. 4.4 shows that preprocessing improves CNN performance with fewer data sam-
ples. But, contrary to our findings about its impact on effectiveness, we see that preprocessing is
more beneficial in the challenging classification task than in the simpler task.

The remainder of this paper is as follows. Section 2 provides an overview of related work.
Section 3 describes the design of our investigation in detail. Section 4 gives the analysis of two
investigations and reports on the comparative results. Section 5 concludes and presents futurework.

2 Related Works

2.1 Preprocessing

Binarization is an image processing technique to separate the pixels of an image into background
and object pixels. Otsu’s method48 is one well-known histogram-based binarization technique.
It is known to be effective and was used as a baseline to evaluate binarization for document
images in ICDAR’s competition on document image binarization (DIBCO),49–52 which is one
of the most popular competitions in the field and has a collection of state-of-the-art algorithms
for document image binarization. In Otsu’s method, the between-class variance evaluates every
intensity level of the histogram to find the suitable intensity as the threshold to split the back-
ground and the foreground. There have been improvements53,54 that provide better outcomes.
Liu et al.53 proposed taking the mean or median of immediate neighbors of the intensity value
into the computation of the between-class variance to make the method more robust to noise.
Nina et al.54 proposed recursively calling Otsu’s method to binarize the document image.
Yildirim52 proposed smoothing the image using the Wiener filter (a smoothing operator in the
image frequency domain) and enhancing the contrast and brightness quality before applying
Otsu’s method. Otsu’s method is a histogram-based binarization approach, whereas Howe’s
method55 is a state-of-the-art document image binarization in DIBCO. Howe’s method is based
on modeling the image to an energy function. It leverages every pixel to build the energy func-
tion and identifies the best threshold for the document image as where the energy function has
the lowest value.

Furthermore, deskewing and smoothing are two important preprocessing strategies to remove
noise from document images. van Beusekom et al.56 proposed a combined skew and orientation
estimation algorithm; based on geometric modeling, the algorithm gives the skewness angle and
its orientation by searching for text lines within a predefined angle range. Smoothing is used to
remove texturized effects in the background of the document image. He et al.57 proposed a filter
operator called a guided filter to smooth the image while preserving edges in the image.

Meanwhile, text line consolidation is based on the intuition that if a region of text lines that
contains the visual cues can be recognized, all pixels from outside the recognized region can be
set to the background pixel value without causing loss of visual cues. Soh et al.58 proposed a
projection-based approach to aggressively clean up the background of digitized historical news-
papers. In their approach, the position and height of the text line were recognized by observing
peak values in the horizontal projection histogram. They, then, for each recognized text line,
set every pixel into textual (foreground) pixels to highlight the recognized region.

2.2 Image-Based Document Image Classification

To extract information from digitized document images, one approach is to use OCR to extract
the textual content, i.e., textual characters, from the images. However, OCR struggles with noisy
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document images.44,45 In Ref. 44, for example, lexicons were used to classify recipes in digitized
historical newspapers, and the performance of the classifier dropped because those relatively
clean lexicons could not address or cover the various distortions in the digital texts caused
by noise. Similarly, Lansdall-Welfare et al.45 sought to identify and extract words to classify
and represent major historical British events in digitized historical newspapers. However,
because of noise, some of the OCRed texts were ambiguous and, thus, discarded from being
used for classification, which resulted in reduced accuracy and richness of the resulting collec-
tion of words. Meanwhile, another approach to document image classification is by analyzing
visual layouts without directly extracting the textual content. This approach is known as image-
based document image classification.59–62 Hu et al.59 proposed an approach to identify five differ-
ent document types (i.e., 1-column and 2-column letters, 1-column and 2-column journals, and
magazine pages) using structural page layout obtained via image-based visual analysis. Shin
et al.61 and Loia and Senatore60 leveraged layouts such as textual to non-textual content ratio,
column structure, and graphic content arrangement to identify document image types. Santosh62

leveraged user-provided feature patterns such as text area information, word count, and metadata
to obtain graph models to extract similar text areas from document images.

Further, there are two types of document images that are discussed separately due to their
visual differences. One deals with handwritten manuscripts, and the other one deals with printed
documents such as historical newspapers. Challenges for the classification of handwritten
manuscripts are very different from those of printed documents. First, character sizes typically
are more consistent in printed documents compared with those in handwritten manuscripts.
Second, character strokes that belong to different text lines rarely touch each other in printed
documents. Third, content layouts of printed documents are typically more complicated than
those of handwritten manuscripts, with compound layouts such as multiple columns on a single
page and graphic figures mixed with textual contents.

Finally, some types of articles have distinctive layouts or visual cues compared with others,
which make them suitable for image-based document image classification. For example, poems
published in printed historical documents (e.g., newspapers) contain recognizable visual struc-
tural information (e.g., gaps between stanzas and unjustified lines).63 As a result, some have
proposed using image-based document image classification to detect poems automatically58

by exploiting such visual cues. Harley et al.21 built a large dataset, RVL-CDIP, for image-based
document classification. Specifically, the RVL-CDIP is used to evaluate state-of-the-art docu-
ment image classification and retrieval using features learned by CNNs. The RVL-CDIP consists
of 40,000 grayscale document images in 16 classes with 25,000 images per class. The dataset is
split into the training set, testing set, and validation set for training and evaluation of CNNs.

2.3 Image Classification Using CNN

Deep learning using a CNN has shown great promise in image-based classification. One of the
most famous CNNs was LeNet, proposed by LeCun et al.20 in 1998. Since then, numerous CNN
models and applications have been proposed. For example, Krizhevsky et al.64 proposed a CNN
known as AlexNet (inspired by LeNet) to classify high-resolution images in ImageNet, and it
drew much attention for outperforming the previous state-of-the-art by a large percentage. He
et al.65 proposed ResNet, which used a connection between the output and input to maintain the
identity map of the input resolution to reduce the training difficulties caused by vanishing
gradient.66 Hu et al.67 further proposed a new block for ResNet that combined Inception,12 fully
connected layers, and ResNet block to improve ResNet further.

CNN-based approaches have been evaluated in the domain of general images, which include
both generic images and document images. In particular, studies of document images using
CNNs have focused on five areas. The first area is category classification. Pondenkandath
et al.23 explored four applications for document classifications including handwriting styles, lay-
out, font, and authorship using a residual network.65 Jain and Wigington22 fused visual features
extracted using the CNN-based deep learning network and noisy semantic information obtained
using OCR to identify document categories. Khan et al.26 proposed a CNN-based approach to
detect mismatching ink-color in hyperspectral document images for identifying forged docu-
ments. The second area is layout analysis. Chen et al.25 proposed a CNN for historical newspaper
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segmentation to distinguish text content from the background and other content types, such as
figures, decoration, and comments. Kosaraju et al.27 adopted a CNN network with a dilated
convolutional kernel to analyze document layouts. Renton et al.28 proposed a CNN-based net-
work to segment handwritten text lines that have various issues such as slanted lines, overlapped
texts, and inconsistent handwritten characters. Xu et al.29 applied a fully CNN to perform page
segmentation and extraction of semantic structures of document layouts. The third area is docu-
ment binarization such as Tensmeyer and Martinez,32 which uses a fully CNN to binarize docu-
ment images. Basu et al. investigated the performances of two deep learning-based approaches
for degraded document image binarization: U-Net and Pix2Pix. The fourth area is text line
extraction. Grüning et al.33 combined a CNN-based U-shape network with a bottom-up cluster-
ing method to identify text lines in historical documents with complex layouts such as curved
arbitrarily oriented text lines. Mechi et al.34 applied a CNN-based U-shape network to segment
text lines and tested their solution on a challenging cBAD dataset.68 The fifth area is OCR. Uddin
et al.36 proposed an approach to recognize Urdu ligatures by separately recognizing primary
and secondary ligatures using CNNs. Zahoor et al.37 proposed recognizing Pashto ligatures
by fine-tuning pretrained AlexNext, GoogleNet, and VGGNet.

3 Methodology

In our investigations, motivated by the challenges outlined in Sec. 1, we focus on two primary
research questions and two subsequent questions of the second research question. The two pri-
mary research questions are: (1) What is the performance gap among shallow, deep, and very
deep CNNs on printed historical documents and document images? and (2) What combination of
preprocessing and learning model is the most helpful? The second research question includes
two subquestions: (2.1) Can some combination of CNN and conventional document image
processing techniques outperform a CNN? and (2.2) Can preprocessing help the CNN have
a better performance in a case of a small training set? These investigations involve two levels
of preprocessing techniques: light-level and aggressive-level, with a total of four different
techniques (smoothing, deskewing, binarization, and consolidation) that are commonly used in
document image processing and a range of shallow, deep, and very deep CNN models such as
LeNet,20 ResNet,65 MobileNetV2,69 and EfficientNet.70

3.1 Preprocessing

We consider three preprocessing levels: no preprocessing, light, and aggressive. Preprocessing is
generally necessary to clean input images, e.g., filtering out noise, in document image analysis
tasks. First, at the no preprocessing level [Fig. 1(a)], we feed the original images into the CNN
model without any preprocessing. Second, for the light-level [Fig. 1(b)] category, we consider
preprocessing techniques that remove noise but merely distort the objective information on the

Fig. 1 Examples of three levels of preprocessing: (a) no preprocessing, (b) light level, and
(c) aggressive level.
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original image, such as smoothing (based on a guided filter57), deskewing (based on Ref. 56),
and binarization (based on Otsu’s method48). Third, at the aggressive level [Fig. 1(c)], we apply
a multi-step preprocessing strategy, such as consolidation,58 which not only removes gray level
information and noise but also highlights visual structural information, such as textual line posi-
tion, length, and height and masks specific textual character information (e.g., space between
two neighboring letters)

3.1.1 Light level of preprocessing

At the light level of preprocessing, we remove noise to a certain level from background pixels,
while minimizing information loss of object pixels. Smoothing, deskewing, and binarization are
considered in this level of preprocessing strategies.

Smoothing reduces noise in an image using a filter. For document images, preserving edges,
such as character strokes, are important. We use the guided filter,57 which can reduce noise and
suppress the gradient-reversal artifacts (i.e., false edges) while creating a good edge profile of the
image. Also the guided filter is a fast non-approximate linear smoothing algorithm with a com-
putational complexity of OðnÞ, where n is the number of pixels.

Deskewing first detects the orientation and the skewness angle of a document image. Then
it corrects the skewness using the geometric transformation. We use a resolution-independent
skewness detection algorithm56 that derives orientation and skewness angles of a document
image based on the text lines detected by connected components. Its computational complexity
isOðnþ eÞ, where n is the number of pixels and e is the number of connection directions for the
connected component. In addition, we only consider the skewness of the entire document image.
Hence, for one rotation centroid, the geometric transformation is a linear algorithm bound to the
number of pixels, OðnÞ. Thus the computational complexity of deskewing here is Oðnþ eÞ.

Binarization is used to obtain object pixels from the background for further processing. For
newspaper pages, histograms typically follow a bimodal distribution since, on the newspaper
page, the textual pixels are darker while the background pixels are lighter. For our investigation,
we use two binarization techniques based on two different underlying approaches. The first
technique is Otsu’s method,48 which evaluates between-class variance for each intensity in the
histogram to find the optimal threshold. A fast Otsu’s binarization method71 shows that the com-
putational complexity is up to OðL2Þ, where L is the number of gray-level intensities. The
second technique is another state-of-the-art documentation image binarization method, namely
Howe’s method.55 This method has been shown to outperform Otsu’s method in DIBCO 2013.50

Howe’s method defines an energy function with tunable parameters. The optimal threshold is
found when the energy function has the lowest value. Since the tuned energy function reported
in the DIBCO-13 contest50 is applied, we do not consider the computational cost of the function
tuning. Hence, the computational complexity of the algorithm is OðnÞ, where n is the number of
pixels.

3.1.2 Aggressive level of preprocessing

At the aggressive level of preprocessing, we aim to remove as much noise as possible, while
preserving visual structures. Hence, we adopt the approach by Soh et al.58 called consolidation.
This preprocessing strategy segments and horizontally smears the text lines such that the overall
structural characteristics of each text line are highlighted and made more pronounced. Although
the specific textual information is sacrificed, the consolidation enhances the sizes and shapes of
the visual structures effectively. This approach to noise removal is motivated by the intuition to
enhance visual structures by filling out the holes and gaps within text lines, and, at the same time,
to eliminate possible false or noisy pixels that are caused by folding, bleeding, and skewing.

The consolidation strategy, shown as Algorithm 1, has three stages. First, the consolidation
binarizes the input image to roughly identify object pixels from the background using a binar-
ization method (e.g., Otsu’s method) (step 1).

Second, a projection-based text line segmentation is used to locate and segment text lines
using a horizontal profile (steps 2 to 3). This stage takes the binarized image to locate potential
text lines of which the values in the horizontal projection are larger than the overall average.
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In addition, each text line found occupying a large structural area triggers a recursive process
(step 4) to break down the large area further to attempt to find potentially misrecognized text
lines within the area.

During the third stage, the consolidation horizontally smears each resultant text line from the
second stage into a solid rectangle (step 4.2) and, correspondingly, the non-textual lines as well
(step 5). By this process, individual symbolic characteristics of the textual content are removed
completely as the smearing process fills out the holes and gaps among symbolic characters
to produce larger, contiguous visual structures. We can compute the time complexity of APB
as follows.

First, using Otsu’s method as an example, the time complexity of binarization in step 1 in
APB is OðL2Þ, where L is the number of gray-level intensities. Second, for step 2, the compu-
tation step for the horizontal projection histogram traverses each pixel to count the number of
textual pixels for each row. Thus the time complexity bounds to the number of pixels, which is
OðnÞ. Third, step 3 traverses the horizontal histogram row by row to discover both textual and
non-textual lines and, at the same time, to compute the average height. So the time complexity
is OðrÞ; where r is the number of rows in the image. For step 4 we compute the time complexity
for SMEAR first. The SMEAR operation evaluates a window of pixels for each column to find
the beginning and the end of the textual lines, and the size of the window bounds to the height
of each corresponding textual line. Note that, in the worst-case scenario, the height could be the
number of rows r. Hence, SMEAR processes r2c pixels, where c is the number of columns.
Since r × c ¼ n, the time complexity for SMEAR is OðrnÞ. Therefore, the number of gray-level
intensities L is a constant number. Without any recursive call, the time complexity of the algo-
rithm is

EQ-TARGET;temp:intralink-;sec3.1.2;116;177OðL2Þ þOðnÞ þOðrÞ þOðrnÞ ≈OðrnÞ:

However, the time complexity of APB with the recursive call could become exponential.
Hence, we limit the recursion depth of APB to seek a computationally cheaper solution. By
comparing APB results with different recursion depth limits, we find that limiting the recursion
depth to one could make APB more efficient while maintaining consolidation outcomes that are
as good or better. Figure 2 shows one typical example of the comparison of APB results with
limiting the recursion depth to one, two, and three levels. The comparison shows that APB with
recursion limiting to depth one performs well on addressing the textual line missing problem

Algorithm 1 Adaptive projection-based text line segmentation (APB)

Input: Newspaper Page Snippet, s.

Output: Segmented Snippet, srec.

1. Adopt binarization method to binarize the input snippet, sb ← BinarizationðsÞ.

2. Compute horizontal projection histogram, histROT, based on the binarized snippet, sb .

3. Compute average textual line height and non-textual line height, ht t ; htnt ← AVGHEIGHT ðhistROTÞ.

4. For each textual line found, blkr , in histROT, where r is the first row of the line.

4.1. If tblk r :height is bigger than ht t :

a. Recursive call: APBðtblk r Þ.

4.2. Otherwise, smear corresponding textual line in srec ← SMEARðsb; r ; tblk r :heightÞ.

5. For each non-textual line found, ntblk r , in histROT, where r is the first row of the line.

5.1 If ntblkr :height is bigger than htnt :

a. Recursive call: APB (ntblk r ).

End of Algorithm
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[e.g., the missed textual lines in the bottom of Fig. 2(b) were covered in Fig. 2(c)]. And, even for
some cases in the example, APB with recursion limiting to level 1 depth could outperform APB
with recursion limiting to level 2 and level 3 depths [e.g., the covered “subtitle” in the bottom of
Fig. 2(c) was missed in both Figs. 2(d) and 2(e)]. Finally, it follows that by limiting the recursion
depth to one, the time complexity of APB is

EQ-TARGET;temp:intralink-;sec3.1.2;116;492OððrnÞ2Þ:

3.1.3 Comparison between preprocessing strategies

To provide further context for our investigations, here we provide a comparison between the
preprocessing techniques: (1) no-preprocessing (no), (2) light preprocessing, binarization using
Otsu48 (light-Otsu), (3) aggressive preprocessing, consolidation based on Otsu (aggressive-
Otsu), (4) light preprocessing, binarization using Howe55 (light-Howe), and (5) aggressive pre-
processing, consolidation based on Howe (aggressive-Howe).

Figures 3–6 show the results of applying the five preprocessing strategies to the four image
snippets and another four challenging image snippets. We observe that preprocessing reduces
the corresponding noise effects and enhances the object pixels visually, as shown in Figs. 3 and
4, with better contrast [e.g., Figs. 3(b)–3(d), and 4(c)], reduced range effect [e.g., Fig. 4(a)],
removal of bleed-through pixels [e.g., Fig. 4(b)], and enhanced, more connected textlines
[e.g., Fig. 4(b)]. However, we also observe that individual textual characteristics are not retained
after consolidation.

In Figs. 5 and 6, we see that both Otsu-based and Howe-based approaches are effective in
binarization and have their strengths and weaknesses. Howe-based preprocessing addressed the
range effect more effectively than Otsu-based preprocessing [e.g., comparing Figs. 6(a) and 4(a)]
and reduced the blobs more significantly than Otsu-based preprocessing [e.g., comparing
Figs. 6(d) and 4(d)]. On the other hand, Otsu-based preprocessing introduced fewer artifacts
to the images than Howe-based preprocessing [e.g., consider the vertical “line” artifacts on the
left side of the image snippets found in rows (b) and (d) in Fig. 5] and produced thinner, and thus
more precise, lines than Howe-based preprocessing [e.g., comparing Figs. 3(b) and 3(d)].

We also compare the different preprocessing strategies’ performance in terms of the computa-
tional time that each strategy took to preprocess images. Specifically, as shown in Table 1, we
report the total execution time that the preprocessing took to preprocess all images (16,928 snip-
pets) in the dataset. And the execution runs on an eight-core processor, AMD Ryzen 7 5800X.
The computational time shows that the computational cost of the preprocessing strategy is much
lower than the training time (see more details in Sec. 4.1).

3.2 CNN Model Architectures

The CNN represents the state-of-the-art machine intelligence method for deep learning. In a
CNN, briefly, there are several types of layers, with a layer being a network of neural nodes

Fig. 2 Different recursion depth examples: (a) original snippet; (b) consolidation result when
depth = 0; (c) consolidation result when depth = 1; (d) consolidation result when depth = 2; and
(e) consolidation result when depth = 3.
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such that each node receives signals from the nodes in the previous layer and then generates a
signal for some nodes in the next layer. In particular, there are convolutional layers, pooling
layers, fully connected dense layers, and output layers. A convolutional layer’s purpose is taking
a matrix of the image or a feature map from the previous layer to compute a convolution product
to represent a feature at a certain level using a kernel. A pooling layer’s purpose is to reduce the

Fig. 3 (a)–(d) Results of the two preprocessing strategies: light-Otsu (middle column) and aggres-
sive-Otsu (right column) compared with no-preprocessing (left column) applied to the image
snippets.
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Fig. 4 (a)–(d) Results of the two preprocessing strategies: light-Otsu (middle column) and aggres-
sive-Otsu (right column) compared with no-preprocessing (left column) applied to the challenging
image snippets.
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spatial size of representations to reduce the computational load in the network. A fully connected
dense layer’s purpose is to allow the network to map high-dimensional results of the convolu-
tional layers to a flat (one-dimension) vector layer to prepare for the final classification using
softmax. Dropout between the fully connected dense layer and output layer is a regulation

Fig. 5 (a)–(d) Results of the two preprocessing strategies: light-Howe (middle column) and aggres-
sive-Howe (right column) compared with no-preprocessing (left column) applied to the image snippets.
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Fig. 6 (a)–(d) Results of the two preprocessing strategies: light-Howe (middle column) and
aggressive-Howe (right column) compared with no-preprocessing (left column) applied to the
challenging image snippets.
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technique that has been used to reduce overfitting issues.72 An output layer, known as a one-hot
vector, presents the classification result using a one-by-N vector, with each element in the vector
representing a specific label.

When designing a CNN, one is concerned about the number of layers, the depth of the CNN.
According to feature visualization,47 the deeper the layer is, the more comprehensive the feature
that it can capture is. Also trends at the ImageNet competition19 have shown that a deeper CNN
can have a better classification performance than a shallower one. However, as alluded to in
Sec. 1, printed document images differ from the generic images used in the ImageNet competition
in terms of monochrome color, structurally dense layout, and unique type of noise (bleed-
through), such that document image classification could be sensitive to the depth of CNN differ-
ently, compared with the generic image classification. Based on the number of trainable layers,
which contain trainable parameters, we divide CNN models into three categories, shown in
Table 2: (1) a shallow CNN model has fewer than 10 trainable layers, (2) a deep CNN model
has more than 10 but fewer than 100 trainable layers, and (3) a very deep model has more than 100
trainable layers. In this paper, we consider several architectures that fall under the three general
CNN models: (1) shallow: LeNet20 and its variants (LeNet-5, LeNet-7, and LeNet-9), (2) deep: a
ResNet65 variant (ResNet-18), and (3) very deep: ResNet-152, MobileNet,69 and EfficientNet.70

LeNet was first presented by LeCun et al. to classify handwritten digits. It is a shallow CNN
that performed very well with a 0.9% error rate on the MNIST dataset.73 The originally proposed
model (LeNet-5) has two pairs of convolutional-pooling layers following by a dense layer, as
shown in Fig. 7. Inspired by the work of Zeiler and Fergus,47 we see that, in LeNet, each con-
volutional-pooling layer is a functional block to identify the certain level of feature and that
each added convolutional-pooling layer can potentially increase LeNet’s classification capabil-
ity. Hence, we also build deeper models based on the original LeNet-5, namely, LeNet-7 and
LeNet-9, by adding convolutional-pooling layers. LeNet-7, shown in Fig. 8, has an additional
pair of the convolutional-pooling layer, and LeNet-9, shown in Fig. 9, has two additional pairs
of the convolutional-pooling layer. In addition, the LeNet design inspired the AlexNet, another
shallow CNN that won the ImageNet challenge in 201219 with 15.3% of the top-5 error rate.
Hence, similar to the AlexNet, LeNet would have poorer performance than the deep model,
ResNet, for generic images.

Table 1 Computational time different preprocessing strat-
egy categories.

Preprocessing strategy Total computational time (s)

Light-Otsu 6

Light-Howe 128

Aggressive-Otsu 20

Aggressive-Howe 142

Table 2 Number of layers containing trainable parameters.

Category Model # layers

Shallow LeNet-5 4

Shallow LeNet-7 5

Shallow LeNet-9 6

Deep ResNet-18 43

Very deep ResNet-152 311

Very deep MobileNetV2 105

Very deep EfficientNet 131
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ResNet is a deep CNN model that won the ImageNet challenge in 201574 with 78.25% top
1/93.95% top 5 accuracy. Note that, because of the issue of vanishing gradient,66 it is not possible
to stack LeNet much deeper. As a result, to compare the deep CNN model, we apply ResNet in
our investigations. As alluded to earlier, ResNet was proposed by He et al.65 for the ImageNet
Competition. It provided a solution for solving the vanishing gradient in a very deep CNN
model. The design of ResNet included a base building block. Here we apply the original design.
For ResNet-18, the building block is two 3 × 3 convolutional layers, and for ResNet-152, the
building block is consecutive 1 × 1, 3 × 3, and 1 × 1 convolutional layers, known as the bottle-
neck block.

MobileNetV269 is a very deep CNN model that is designed to significantly reduce the archi-
tecture’s demand for computing resources. It factorizes the standard convolutional layer into
combinations of channel-wise convolution and point-wise convolution to trade-off between
latency and accuracy. By factorizing, the size of the latency is smaller, allowing for an efficient
convolutional computation, but the connection between channels is weakened, lowering the
accuracy.

EfficientNet,70 a very deep CNN model, leverages the tensor shapes of each functional block
to find the best combination to scale up the convolutional networks based on MobileNetV2.69

It formulates the baseline CNN model (i.e., MobileNetV2) with three factors: depth, width, and
resolution. Using the formulation to maximize accuracy and minimize computing resources at
the same time, EfficientNet finds the best factor combination to scale up the network. As a very
deep CNN, EfficientNet achieves 84.4% top 1/97.1% top 5 accuracy.

4 Investigations and Results

As alluded to in Sec. 1, we investigate printed historical documents due to several reasons. First,
historical documents have been increasingly digitized and archived, which leads to increasing
demand for enhanced searchability in digital libraries. Second, their unique layout structures are

Fig. 7 LeNet-5 CNN architecture.

Fig. 8 LeNet-7 CNN architecture.

Fig. 9 LeNet-9 CNN architecture.
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different from generic images, especially in terms of compactness, and yet are rather well suited
for image-based classification.59–61 Third, digitized historical documents are noisy due to a range
of duplication processes (microphotography and digitization) over time, to material degradation
or other damage over time, and to qualities of their original paper form.

In this section, we present four sets of investigations in response to the two primary research
questions posed in Sec. 3. To gain more generalizable insights into the investigations, we use two
classification tasks: (1) a binary poem classification task in which a CNN is trained to determine
whether a document image snippet is a poem or not using the Aida-17k75 dataset and (2) 16-class
document type classification21 in which a CNN is trained to label document images into 16
different classes, [16 document image classes are: (1) letter, (2) memo, (3) email, (4) file-folder,
(5) form, (6) handwritten, (7) invoice, (8) advertisement, (9) budget, (10) news article, (11) pre-
sentation, (12) scientific publication, (13) questionnaire, (14) resume, (15) scientific report, and
(16) specification.] using the RVL-CDIP21 dataset. Note that the second task is a more complex
classification task than the first one. These two datasets represent a wide range of problems or
issues that a document classification task could encounter.

Aida-17k consists of 16,928 image snippets extracted from hundreds of historical newspaper
pages from the Chronicling America repository between the years 1836 and 1840. The dataset is
balanced: half of the snippets have poems (true), and half do not (false) (see Fig. 10 for examples
of the snippets). In other words, there are two classes with 8464 image snippets per class. Each
snippet has the same width-to-height ratio of 2:3. However, the actual dimensions of the images
can be different due to the various levels of resolution found in the newspaper pages. Considering
both constraints above, the input image is sized to 128 × 192 pixels for batched training, and
thus we scaled each image to those dimensions prior to feeding each into the CNNs. The chal-
lenging aspect of this task comes from the profound noise effects on the images in the dataset as
it has various noise types (Fig. 11) and a wide range of severity in noise effects (Figs. 12 and 13).
Finally, for our investigations involving Aida-17k, the 10-fold cross-validation approach is used;
each 10% subset of the dataset is excluded from the training process but is used to obtain the

Fig. 10 Examples of historical newspaper page snippets: (a), (b) snippets that do not contain
poems and (c), (d) snippets that contain poems.

Fig. 11 Examples of noise effects: (a) range effects, (b) bleed-through, (c) skewed orientation,
and (d) blobs.
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testing accuracy. All of the results reported later in this section are computed from the average of
the 10 rounds of training and testing. Also note that, for each training, we use the result from the
best epoch of training that has the highest testing F1-score (i.e., the harmonic mean of precision
and recall).

RVL-CDIP consists of 16 classes with 25,000 images per class. This dataset has different
types of document images ranging from printed documents to handwritten manuscripts and
from mostly text-based images to mostly graphic-based images. Among these images, there are
320,000 images in the training set, 40,000 images in the validation set, and 40,000 images in the
testing set. The images are sized so that the heights of the images do not exceed 1000 pixels,
whereas the widths of the images are not limited. The actual dimensions (width–height pair) of
the images are different due to the width-to-height ratio varying. Hence, for batched training, we
resized the images to 384 × 256 prior to feeding each into the CNNs.

Table 3 summarizes the four investigations regarding the two research questions using the
above datasets in the two classification tasks.

4.1 Investigating Performance Gap among Shallow, Deep, and Very Deep
CNNs

In this investigation, we compare the performance of CNN models with different depth configu-
rations on the two classification tasks to establish a baseline effectiveness of such models. A gap
is defined as the performance difference between two CNNs in terms of accuracy, precision,
recall, and F1-score.

4.1.1 Task 1: binary poem classification

The CNN models used in this investigation are shallow: LeNet-7 (le7), deep: ResNet-18 (res18),
and very deep: ResNet-152 (res152). In Fig. 14, we show the average, maximum, and minimum
training folds performance. We noticed that Res-Net-152 had the lowest scores in training. To
make sure ResNet-152 was properly trained, in our subsequent investigation, we found that,
despite the lower training scores, ResNet-152 was fully trained since all fold tests of
ResNet-152 reached its best testing performance at an average of 110 epochs while every train-
ing lasted 150 epochs. Thus training in Fig. 14 was valid. It also shows that, in terms of test
accuracy, precision, and F1-score, ResNet-152 performed the best. However, ResNet-18 resulted
in a better recall score, and accuracy, precision, F1-score of ResNet-18 is only lower than

Fig. 12 Data examples that contain a poem with a wide range of noise: from very clean to very
noisy.

Fig. 13 Data examples that do not contain a poem with a wide range of noise: from very clean to
very noisy.
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ResNet-152 by <0.1%. Further, the shallow (LeNet-7) and deep (ResNet-18) models also
resulted in very similar performances. Specifically, except for the recall score, all other score
differences were lower than 1% between LeNet-7 and ResNet-18. On the other hand, when
compared in terms of training time, shown in Table 4, the training of ResNet-152 took 94 h
and was much longer than the training hours needed for ResNet-18 (46 h) and LeNet-7
(35 h). Thus the performance gap between shallower and deeper CNNs for the investigated task
may not be large. Further, the marginal benefit to increasing the depth of the CNN model to
improve the performance is very low considering the additional computational cost.

4.1.2 Task 2: 16-class document type classification

Due to the task’s complexity, we use an expanded set of CNN models in this task, which are
shallow [i.e., LeNet-7 (le7) and LeNet-9 (le9)], deep [i.e., ResNet-18 (res18)], and very deep
[i.e., ResNet-152 (res152), MobileNetV2 (mnetv2), and EfficientNet (enet)]. Figure 15 shows
that, overall, EfficientNet, a very deep CNN model, outperformed all other models, whereas
LeNet-9, a shallow CNN model, finished as second best. However, neither ResNet-18 (deep)
and ResNet-152 (very deep) performed well. In our further analysis, we found that, while the
training of ResNet-18 and ResNet 152 were converging, they suffered from a significantly

Fig. 14 Classification results of 10-fold cross validation using Aida-17k comparing LeNet-7
without preprocessing strategy (le7-no); ResNet-18 without preprocessing strategy (res18-no);
and ResNet-152 without preprocessing strategy (res152-no).

Table 4 Training time of LeNet-7, ResNet-18, and ResNet-152.

Model Training time (h)

LeNet-7 35

ResNet-18 46

ResNet-152 94
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slower gradient descent issue (i.e., with a cross-entropy loss of between 1 and 2.7 throughout the
training epochs, compared with that of between 0 and 0.5 for the other models). Note that all
models used the Adam optimization algorithm76 for stochastic gradient descent in the training
process. The algorithm is known to be able to adaptively estimate the learning rate and momen-
tum for the training parameters to obtain optimized training. Thus the issue showed that deeper
CNNs, such as ResNet-18 and ResNet-152, could be significantly challenging to be trained, even
when an advanced hyper-parameter optimization algorithm is applied. Extending the training
time may allow ResNet-18 and ResNet-152 to achieve high performance under slow gradient
descent. However, the LeNet-9 counterpart had easily outperformed ResNet-18 and ResNet-152,
suggesting that the additional computational cost may not be worth it.

4.1.3 Task 2 variant

To better understand the results from tasks 1 and 2 above, we derive a subset of low-quality
19,200 images, i.e., 1200 images for each of the 16 classes, namely RVL-CDIP-balanced, from
the original RVL-CDIP dataset. Being low quality, these images have (1) an intensity range
similar to those of the Aida-17k image, (2) low contrast, (3) high background noise, and (4) high
global skewness. As shown in Fig. 16, similar to the full RVL-CDIP task (task 2), EfficientNet
performed the best, outperforming ResNet-152 and LeNet-9 each by more than 3%. LeNet-9 and
ResNet-152 performed very similarly: ResNet-152 outperformed LeNet-9 by <1% in accuracy,
precision, and F1 scores. Note that, among these three CNNs, ResNet-152 is the deepest with

Fig. 15 Test results of 16-class document type classification using RVL-CDIP comparing LeNet-7
(le7), LeNet-9 (le9), ResNet-18 (res18), ResNet-152 (res152), MobileNetV2 (mnetv2), and
EfficientNet (enet).

Fig. 16 Test results of 16-class document type classification using RVL-CDIP-balanced compar-
ing LeNet-7 (le7), LeNet-9 (le9), ResNet-18 (res18), ResNet-152 (res152), MobileNetV2 (mnetv2),
and EfficientNet (enet).
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311 layers, EfficientNet has only 131 layers, and LeNet-9 has only 6 layers. A 3% performance
difference between EfficientNet and LeNet-9 is larger for this more challenging document clas-
sification task than for the less challenging tasks (first task: binary poem classification).

This investigation serves as a baseline. While confirming that the performance gap between
shallower and deeper CNN models generally increases with the difficulty of classification task,
we also find that the performance gap between shallow, deep, and very deep CNN models could
be very small, such as <1% in accuracy, precision, recall, and F1-score in the simpler binary
poem classification task. Interestingly, we also observe that a shallow CNN (LeNet-9) outper-
formed a very deep CNN (MobileNet) in terms of accuracy, precision, and F1 scores in the more
challenging 16-class document type classification task. These findings demonstrate the viability
of shallower CNN models matching the performance of deeper ones in classification tasks.

4.2 Investigating Different Levels of Preprocessing

In this investigation, we compare different combinations of CNN models coupled with prepro-
cessing to study the effects of three preprocessing levels—no-preprocessing, light-preprocess-
ing, and aggressive-preprocessing—on the performance of CNN models. The rationale behind
this investigation is as follows. Intuitively, a deeper network tends to learn objects better since
more detailed features could be encoded by the model,47 but at the same time, the network is
computationally more expensive to train. Therefore, we investigate shallower and deeper CNNs
to explore the possibility of a coupling of conventional image processing and a CNN that could
outperform a deeper CNN alone.

4.2.1 Task 1: binary poem classification

There are three CNN models coupled with the preprocessing strategies in this task: (1) shallow:
LeNet-7, deep: ResNet-18, and very deep: ResNet-152. There are three CNN models in this task:
(1) shallow: LeNet-7, deep: ResNet-18, and very deep: ResNet-152. Table 5 shows that, in terms

Table 5 Test results on Aida-17k with different preprocessing strategy categories.

Model Process level Accuracy (%) Precision (%) Recall (%) F1 (%)

LeNet-7 No 92.52 91.20 93.69 92.41

Light-Otsu 92.22 90.50 93.75 92.08

Aggressive-Otsu 87.10 85.94 88.02 86.95

Light-Howe 92.44 90.54 94.17 92.28

Aggressive-Otsu 89.78 87.88 91.40 89.57

ResNet-18 No 92.86 91.19 94.39 92.72

Light-Otsu 93.09 91.10 94.91 92.93

Aggressive-Otsu 88.92 87.30 90.31 88.71

Light-Howe 92.86 90.95 94.60 92.71

Aggressive-Otsu 91.22 89.77 92.51 91.06

ResNet-152 No 92.49 90.02 94.75 92.28

Light-Otsu 92.71 90.26 95.04 92.49

Aggressive-Otsu 86.91 83.42 89.80 86.41

Light-Howe 92.78 92.65 93.06 92.77

Aggressive-Howe 90.97 90.71 91.29 90.93
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of test accuracy and F1-score, ResNet-18 with the light-Otsu strategy outperformed all other
approaches. Note also that both ResNet-18 with light-Otsu and ResNet-152 with light-Howe
outperformed their counterparts without preprocessing. Thus we see that preprocessing can
improve the performance of CNNs in the poem classification task. Moreover, aggressive pre-
processing resulted in worse performance than the no- and light-counterpart (i.e., light-Otsu
versus aggressive-Otsu, and light-Howe versus aggressive-Howe). This is likely because an
aggressive preprocessing such as the aforementioned consolidation can overprocess an image
causing information loss to the object pixels. Furthermore, we also see that ResNet-18 with light
preprocessing outperformed ResNet-152 with no preprocessing. This is insightful. A deep CNN
model, with the implications of being more efficient to train, can outperform a much deeper CNN
model by just incorporating some light-level, computationally inexpensive image processing
techniques.

In summary, we find from this investigation that CNNs coupled with light-level preprocess-
ing (i.e., binarization) outperformed their counterparts that are coupled with aggressive-level
preprocessing (i.e., consolidation). Note that consolidation generated a more connected and
enhanced visual layout of text lines than binarization. One might expect that, as a result, a
CNN coupled with consolidation would outperform one with binarization. Our findings indicate
that, unexpectedly, though the visual cues were enhanced after consolidation, there was sufficient
information loss that degraded the CNN’s performance. Thus one should be cautious when
deciding on the appropriate preprocessing techniques for CNN and not be reliant on only the
visual quality of the preprocessed images.

4.3 Investigating CNNs with Different Levels of Task Difficulty

In this investigation, we compare the performance of CNN models with different depth configu-
rations coupled with light-level preprocessing on the two classification tasks with different levels
of difficulty. Note that we only apply light-level preprocessing, light-Otsu, and light-Howe since
only light-level preprocessing improved CNN’s performance in the second investigation, as
reported in Sec. 4.2.

4.3.1 Task 1: binary poem classification

In this investigation, the configuration of task 1 is similar to the configuration used in the second
investigation (Sec. 4.2). However, there is one key difference. We use an expanded set of CNN
models, which are shallow [i.e., LeNet-7 (le7) and LeNet-9 (le9)], deep [i.e., ResNet-18 (res18)],
and very deep [i.e., ResNet-152 (res152), MobileNetV2 (mnetv2), and EfficientNet (enet)] to
match the models used in task 2 (see details next) for comparison. We observe that LeNet-9 with
light level preprocessing using Otsu’s method (light-Otsu), outperformed almost all very deep
CNN models without preprocessing in terms of test accuracy, precision, recall, and F1-score, as
shown in Fig. 17. But there are two exceptions: EfficientNet and precision of MobileNetV2.

Fig. 17 Test results of the binary poem classification on the Aida-17k dataset using 10-fold cross
validation comparing shallower CNNs, LeNet-5 (le5), LeNet-7 (le7), LeNet-9 (le9), and ResNet-18
(res18) coupled with light level of preprocessing and deeper CNNs ResNet152 (res152),
MobileNetV2 (mnetv2), and EfficientNet (enet) without preprocessing.
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Compared with EfficientNet, the LeNet-9 was not very far behind; however, there were −1.16%
in accuracy, −1.93% in precision, −0.46% in recall, and −1.22% in F1-score. Furthermore,
ResNet-18, the deep model coupled with preprocessing, also outperformed a very deep model,
ResNet-152, in all four metrics used.

4.3.2 Task 2: 16-class document type classification

Here we use additional light-level preprocessing in addition to binarization to include smoothing
and deskewing, as they are relevant in dealing with full document images in the RVL-CDIP
dataset. Again, we use the same two different binarization methods, Otsu’s and Howe’s.
Thus these techniques together yield four preprocessing variants: (1) smoothing only (smooth),
(2) smoothing and deskewing (smooth + deskew), (3) smoothing, deskewing, and the Otsu’s
binarization (smooth + deskew + Otsu), and (4) smoothing, deskewing, and the Howe’s binar-
ization (smooth + deskew + Howe), which are compared with no-preprocessing (no). Figure 18
shows the testing results of LeNet-5, LeNet-7, LeNet-9, and ResNet-18 with the four light-level
preprocessing variants and ResNet-152, MobileNetV2, and EfficientNet without preprocessing.
Only LeNet-9 with smoothing and deskewing outperformed a deeper CNN model, MobileNetV2,
by 0.25% in accuracy, 0.25% in precision, and 0.27% in F1-score.

In summary, we see that, for classification tasks of different levels of difficulty, such as the
simpler binary classification task and the more challenging 16-class document type classification
task, a shallower CNN’s performance (i.e., LeNet-9) with respect to very deep CNNs’ can be
impacted by coupling it with preprocessing. When coupled with preprocessing, the shallower
CNN outperformed, in terms of F1 score, those of very deep CNNs by as much as 1.92% in the
binary classification task and by as much as 0.61% in the 16-class document type classification
task. Note that the percentage of improvement for the more challenging task is smaller. The
reason could stem from the increased difficulty of the 16-class classification task. A preprocess-
ing strategy cleans up such that their desired visual features are more salient. However, in a
16-class classification task, it is challenging for such enhancement to also lead to increased sep-
aration among the classes; for example, a strategy that further differentiates two classes A and B
might lead to classes B and C being closer visually. Thus the preprocessing’s positive impact on
the 16-class document type classification is less.

4.4 Investigating Smaller Training Sets

In this investigation, we compare the performance of CNN models almost exactly the same way
as that in the third investigation except for using smaller training sets. Here we construct smaller
training sets based on both the Aida-17k and the RVL-CDIP-balanced datasets to investigate
whether, in the case of a smaller training set, preprocessing can help to train a CNN-based
classifier with better performance. In the following, we designate a smaller training set

Fig. 18 Test results of the 16-class document type classification on the RVL-CDIP-balanced
dataset comparing shallower CNNs, LeNet-5 (le5), LeNet-7 (le7), LeNet-9 (le9), and ResNet-18
(res18) coupled with light level of preprocessing and deeper CNNs ResNet152 (res152),
MobileNetV2 (mnetv2), and EfficientNet (enet) without preprocessing.
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“Aida-17k-90” if it consists of 90% of the original Aida-17k dataset and so forth. Further, for
both datasets, we make sure that the numbers of images for every class are balanced in each
smaller training set. In this task, we train each CNN six times. Each time, 10% of training sam-
ples are removed from the training set. Hence, the training sets used are (1) 100%, (2) 90%,
(3) 80%, (4) 70%, (5) 60%, and (6) 50% of the full training set. To do so, we build different
smaller training sets from the Aida-17k and the RVL-CDIP-balance.

4.4.1 Task 1: binary poem classification

In this investigation, the configuration of task 1 is similar to the configuration in the third inves-
tigation (Sec. 4.3). There is one difference that we compare the performances of shallow CNNs,
LeNet-7 and LeNet-9 and a deep CNN, ResNet-18, coupled with using light-level preprocessing—
having found them to be effective from previous investigations—using smaller training sets.
Table 6 shows that there were only three (out of 15) cases (LeNet-7 at 70%, LeNet-9 at 90%,
and ResNet-18 at 60%) with light-level preprocessing that outperformed their no-preprocessing
counterparts, among all smaller training sets (90% to 50%). This indicates that light-level prepro-
cessing does not help address the challenge of having smaller training sets in this task.

4.4.2 Task 2: 16-class document type classification

Here we also use a similar configuration as task 2 in the third investigation. We compare three
CNNs coupled with light-level preprocessing: shallow, LeNet-7 and LeNet-9 and deep, ResNet-
18. Table 7 shows that the majority (13 out of 15 cases) of light-level preprocessing combina-
tions outperformed their no-preprocessing counterparts, except for LeNet-7 at 90% and LeNet-9
at 60%.

In summary, from the mixed performance results dealing with a smaller amount of training
data, we observe that preprocessing can play an effective role in improving a CNN’s perfor-
mance. The performance of CNN was improved in the more challenging 16-class document
type classification task more than the simpler binary poem classification task. It implies that
the CNN model coupled with preprocessing may be able to generalize better than the model
without preprocessing in some cases. Further, we find that preprocessing impacts ResNet a bit
more than LeNet: preprocessing improves ResNet’s performance 6 out of 10 times (60%) and
LeNet’s performance 10 out of 20 times (50%). This is likely due to a fundamental difference
between the two architectures. ResNet has a “shortcut connection” structure65 that LeNet does
not have. It is known that the shortcut connection helps CNN retain information or details better
from the beginning layers to the last layers.65 As a result, ResNet could retain the detailed visual
cues, for example, enhanced by preprocessing better than LeNet. On the other hand, as the layer
gets deeper in LeNet, the information becomes more abstracted, diminishing the subtle visual
cues and thus minimizing the impact of preprocessing.

5 Conclusion and Future Work

In this paper, to understand the impact of preprocessing on CNN’s performance in terms of
effectiveness and efficiency, we studied several state-of-the-art CNN models of different depths
(Sec. 3.2), two levels of preprocessing techniques (Sec. 3.1), and two classification tasks with
different levels of difficulty in four sets of investigations (Sec. 4). The first investigation provides
a baseline for the performances of shallow, deep, and very deep CNN models on two classi-
fication tasks and demonstrates the potential of shallower CNNs to match the performance
of deeper CNNs. This baseline contextualizes the subsequent three investigations.

Building on the baseline investigation, the second investigation compared light-level and
aggressive-level preprocessing techniques using a binary poem classification task. We found
that even though aggressive-level preprocessing could enhance the cues visually, it could
degrade CNN’s performance due to excessive information loss. Encouraged by the findings from
the second investigation, the third investigation looked into how the improvement provided by
preprocessing could bridge the performance gap between shallow CNNs and deep CNNs. We
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found that shallow CNNs coupled with preprocessing could yield better performance than deep
CNNs’ in both the binary and 16-class classification tasks. However, the degree of improvement
was smaller when the classification task was more challenging, as in the 16-class document type
classification task in which it was more difficult to enhance the separation between the many
classes. For the fourth investigation, we considered efficiency and the constraint of having a
small number of training samples. We found that CNN models coupled with preprocessing could
outperform those without preprocessing in cases in which there were smaller training samples.
This was more so when the classification task was more challenging (e.g., the 16-class classi-
fication task). This implies that preprocessing could help CNN models learn more from a smaller
set of training samples. This in turn hints that preprocessing could help CNN training more
efficiently as it would require a smaller set of training samples.

Overall, based on our investigations, we derive three pieces of insights or suggestions for
when and how to use preprocessing for classification tasks using CNNs.

• An aggressive preprocessing technique such as consolidation is not helpful, even though it
could highlight visual cues better than a light preprocessing technique, since it could also
remove potentially useful information in the document image. This means that even when,
say, preprocessing technique A generates a better image visually than preprocessing tech-
nique B, it is not guaranteed that coupling Awith a CNN would yield better classification
accuracy than coupling B with a CNN.

• A preprocessing technique coupled with a shallow CNN could help improve performance
effectively for a relatively less challenging classification task, even to the point of outper-
forming a much deeper CNN. This means that practitioners could feasibly consider using
preprocessing instead of always opting for deeper CNN models, as deeper CNN models
typically demand more computing power than shallow CNNs and different classification
tasks have different levels of difficulty.

• A preprocessing technique coupled with a CNN (shallow or deep or very deep) could help
improve performance effectively in the case of limited training data, especially when the
classification tasks are relatively more challenging. This means that in cases in which the
number of ground-truthed training samples is small, practitioners could look to using
preprocessing to improve the performance of the CNN model.

Considering together the second and third insights given above, we see that preprocessing
was more helpful to a shallow CNN in a classification task that was less challenging, whereas
preprocessing was more helpful to CNNs in a classification task that was more challenging in
cases in which the number of samples was small. One would expect that preprocessing’s role or
impact on the performance of a CNN to trend similarly in such classification tasks, but our
findings show otherwise. This could mean that there is a sweet spot at which an optimal level
of preprocessing could yield the most effectiveness and efficiency when coupled with a CNN.
This motivates our next steps in further investigating coupling preprocessing with a CNN.

In terms of future work, first, the CNN models are developed essentially based on general
images. However, there are special visual cues that only the document image has, such as aligned
text lines and sematic information between characters. We will continue to extend our inves-
tigation to develop more suitable CNN models for document classification tasks. This would
involve exploring more CNN architectures such as inception12 and DenseNet;77 more document
image preprocessing techniques such as Zemouri and Chibani’s78 binarization for degraded
document images, Koo and Cho’s skewness estimation,79 and image augmentation80 to increase
the amount of “groundtruth” training data; and more document image databases such as a medi-
eval document image collection.81 Second, our investigations revealed impact trends of coupling
preprocessing the CNN’s performance and demonstrated that the impact of coupling preprocess-
ing could stem from different factors. This means that the selection of appropriate preprocessing
techniques is a non-trivial problem. In particular, can we automate the selection of preprocessing
techniques to couple with a CNN for a particular type of classification task? We plan to inves-
tigate the properties of the document images in our classification tasks and the effectiveness of
preprocessing techniques in terms of visual cues exploited by CNN models to lay the ground-
work for such an intelligent system to select preprocessing adaptively. Third, we plan to
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investigate the width of the CNN architecture as another factor that influences the impact of
preprocessing. Fourth, with respect to the application domain, historical newspaper classification
using CNN is underdeveloped. For example, Chronicling America has a vast historical news-
paper collection of which searchability eagerly needs an expansion. Hence, we will continue to
investigate other classification tasks that involve color document images and for other journal-
istic elements (e.g., advertisements, obituaries, and job postings) using CNNs to extend the
searchability of historical document collections.

Acknowledgments

This project was supported in part by the Institute of Museum and Library Services and has
received previous support from the National Endowment for the Humanities. Charles Nugent
helped build the initial convolutional neural network architecture that shaped its development.
This work was completed utilizing the Holland Computing Center of the University of Nebraska,
which receives support from the Nebraska Research Initiative.

References

1. X. Cao et al., “Hyperspectral image classification with Markov random fields and a convolu-
tional neural network,” IEEE Trans. Image Process. 27, 2354–2367 (2018).

2. Y. He et al., “Multiscale dual-level network for hyperspectral image classification,”
J. Electron. Imaging 29, 033008 (2020).

3. H. Lee and H. Kwon, “Going deeper with contextual CNN for hyperspectral image clas-
sification,” IEEE Trans. Image Process. 26, 4843–4855 (2017).

4. L. Wang et al., “Knowledge guided disambiguation for large-scale scene classification with
multi-resolution CNNs,” IEEE Trans. Image Process. 26, 2055–2068 (2017).

5. J. Yang et al., “Multi-channel and multi-scale mid-level image representation for scene
classification,” J. Electron. Imaging 26, 023018 (2017).

6. T. Fang et al., “Crop leaf disease grade identification based on an improved convolutional
neural network,” J. Electron. Imaging 29, 013004 (2020).

7. S. H. Lee, C. S. Chan, and P. Remagnino, “Multi-organ plant classification based on con-
volutional and recurrent neural networks,” IEEE Trans. Image Process. 27, 4287–4301
(2018).

8. S. Bianco et al., “Artistic photo filter removal using convolutional neural networks,”
J. Electron. Imaging 27, 011004 (2017).

9. T. Chen, S. Lu, and J. Fan, “SS-HCNN: semi-supervised hierarchical convolutional neural
network for image classification,” IEEE Trans. Image Process. 28, 2389–2398 (2019).

10. G. Ding et al., “DECODE: deep confidence network for robust image classification,” IEEE
Trans. Image Process. 28, 3752–3765 (2019).

11. Z. Pan et al., “Topic network: topic model with deep learning for image classification,”
J. Electron. Imaging 27, 033009 (2018).

12. C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf. Comput. Vision
and Pattern Recognit., pp. 1–9 (2015).

13. T. Remez et al., “Class-aware fully convolutional Gaussian and Poisson denoising,” IEEE
Trans. Image Process. 27, 5707–5722 (2018).

14. K. Zhang et al., “Beyond a Gaussian denoiser: residual learning of deep CNN for image
denoising,” IEEE Trans. Image Process. 26, 3142–3155 (2017).

15. X. Fu et al., “Clearing the skies: a deep network architecture for single-image rain removal,”
IEEE Trans. Image Process. 26, 2944–2956 (2017).

16. Y. Liu et al., “DesnowNet: context-aware deep network for snow removal,” IEEE Trans.
Image Process. 27, 3064–3073 (2018).

17. K. Zhang, W. Zuo, and L. Zhang, “FFDNet: toward a fast and flexible solution for CNN-
based image denoising,” IEEE Trans. Image Process. 27, 4608–4622 (2018).

18. A. Krizhevsky, “Learning multiple layers of features from tiny images,” PhD Thesis,
University of Toronto (2009).

Liu, Soh, and Lorang: Investigating coupling preprocessing with shallow and deep convolutional. . .

Journal of Electronic Imaging 043024-27 Jul∕Aug 2021 • Vol. 30(4)

https://doi.org/10.1109/TIP.2018.2799324
https://doi.org/10.1117/1.JEI.29.3.033008
https://doi.org/10.1109/TIP.2017.2725580
https://doi.org/10.1109/TIP.2017.2675339
https://doi.org/10.1117/1.JEI.26.2.023018
https://doi.org/10.1117/1.JEI.29.1.013004
https://doi.org/10.1109/TIP.2018.2836321
https://doi.org/10.1117/1.JEI.27.1.011004
https://doi.org/10.1109/TIP.2018.2886758
https://doi.org/10.1109/TIP.2019.2902115
https://doi.org/10.1109/TIP.2019.2902115
https://doi.org/10.1117/1.JEI.27.3.033009
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/TIP.2018.2859044
https://doi.org/10.1109/TIP.2018.2859044
https://doi.org/10.1109/TIP.2017.2662206
https://doi.org/10.1109/TIP.2017.2691802
https://doi.org/10.1109/TIP.2018.2806202
https://doi.org/10.1109/TIP.2018.2806202
https://doi.org/10.1109/TIP.2018.2839891


19. J. Deng et al., “ImageNet: a large-scale hierarchical image database,” in IEEE Conf.
Comput. Vision and Pattern Recognit., pp. 248–255 (2009).

20. Y. Lecun et al., “Gradient-based learning applied to document recognition,” Proc. IEEE
86, 2278–2324 (1998).

21. A. W. Harley, A. Ufkes, and K. G. Derpanis, “Evaluation of deep convolutional nets for
document image classification and retrieval,” in 13th Int. Conf. Doc. Anal. and Recognit.,
pp. 991–995 (2015).

22. R. Jain and C. Wigington, “Multimodal document image classification,” in Int. Conf. Doc.
Anal. and Recognit., pp. 71–77 (2019).

23. V. Pondenkandath et al., “Exploiting state-of-the-art deep learning methods for document
image analysis,” in 14th IAPR Int. Conf. Doc. Anal. and Recognit., pp. 30–35 (2017).

24. S. Ukil et al., “Improved word-level handwritten Indic script identification by integrating
small convolutional neural networks,” Neural Comput. Appl. 32, 2829–2844 (2020).

25. K. Chen et al., “Convolutional neural networks for page segmentation of historical docu-
ment images,” in 14th IAPR Int. Conf. Doc. Anal. and Recognit., pp. 965–970 (2017).

26. M. J. Khan et al., “Deep learning for automated forgery detection in hyperspectral document
images,” J. Electron. Imaging 27, 053001 (2018).

27. S. C. Kosaraju et al., “DoT-net: document layout classification using texture-based CNN,” in
Int. Conf. Doc. Anal. and Recognit., pp. 1029–1034 (2019).

28. G. Renton et al., “Handwritten text line segmentation using fully convolutional network,”
in 14th IAPR Int. Conf. Doc. Anal. and Recognit., pp. 5–9 (2017).

29. Y. Xu et al., “Page segmentation for historical handwritten documents using fully con-
volutional networks,” in 14th IAPR Int. Conf. Doc. Anal. and Recognit., pp. 541–546
(2017).

30. S. Tarride et al., “Combination of deep neural networks and logical rules for record seg-
mentation in historical handwritten registers using few examples,” Int. J. Doc. Anal.
Recognit. 24, 77–96 (2021).

31. A. Basu et al., “U-Net versus Pix2Pix: a comparative study on degraded document image
binarization,” J. Electron. Imaging 29, 063019 (2020).

32. C. Tensmeyer and T. Martinez, “Document image binarization with fully convolutional neu-
ral networks,” in 14th IAPR Int. Conf. Doc. Anal. and Recognit., pp. 99–104 (2017).

33. T. Gruning et al., “A two-stage method for text line detection in historical documents,” Int. J.
Doc. Anal. Recognit. 22, 285–302 (2019).

34. O. Mechi et al., “Text line segmentation in historical document images using an adaptive
U-net architecture,” in Int. Conf. Doc. Anal. and Recognit., pp. 369–374 (2019).

35. A. Dutta et al., “Segmentation of text lines using multi-scale CNN from warped printed and
handwritten document images,” Int. J. Doc. Anal. Recognit. (2021).

36. I. Uddin et al., “Recognition of printed Urdu ligatures using convolutional neural networks,”
J. Electron. Imaging 28, 033004 (2019).

37. S. Zahoor et al., “Deep optical character recognition: a case of Pashto language,” J. Electron.
Imaging 29, 023002 (2020).

38. D. Sinwar et al., “Offline script recognition from handwritten and printed multilingual docu-
ments: a survey,” Int. J. Doc. Anal. Recognit. 24, 97–121 (2021).

39. K. C. Santosh, Document Image Analysis: Current Trends and Challenges in Graphics
Recognition, Springer, Singapore (2018).

40. J.-C. Burie et al., “Deep learning for graphics recognition: document understanding and
beyond,” Int. J. Doc. Anal. Recognit. 24, 1–2 (2021).

41. A. Sulaiman, K. Omar, and M. F. Nasrudin, “Degraded historical document binarization:
a review on issues, challenges, techniques, and future directions,” J. Imaging 5, 48 (2019).

42. C. Tensmeyer and T. Martinez, “Analysis of convolutional neural networks for document
image classification,” in 14th IAPR Int. Conf. Doc. Anal. and Recognit., pp. 388–393
(2017).

43. G. Nagy, “Twenty years of document image analysis in PAMI,” IEEE Trans. Pattern Anal.
Mach. Intell. 22, 38–62 (2000).

44. M. van Erp, M. Wevers, and H. Huurdeman, “Constructing a recipe web from historical
newspapers,” Lect. Notes Comput. Sci. 11136, 217–232 (2018).

Liu, Soh, and Lorang: Investigating coupling preprocessing with shallow and deep convolutional. . .

Journal of Electronic Imaging 043024-28 Jul∕Aug 2021 • Vol. 30(4)

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ICDAR.2015.7333910
https://doi.org/10.1109/ICDAR.2019.00021
https://doi.org/10.1109/ICDAR.2019.00021
https://doi.org/10.1109/ICDAR.2017.325
https://doi.org/10.1007/s00521-019-04111-1
https://doi.org/10.1109/ICDAR.2017.161
https://doi.org/10.1117/1.JEI.27.5.053001
https://doi.org/10.1109/ICDAR.2019.00168
https://doi.org/10.1109/ICDAR.2017.321
https://doi.org/10.1109/ICDAR.2017.94
https://doi.org/10.1007/s10032-021-00362-8
https://doi.org/10.1007/s10032-021-00362-8
https://doi.org/10.1117/1.JEI.29.6.063019
https://doi.org/10.1109/ICDAR.2017.25
https://doi.org/10.1007/s10032-019-00332-1
https://doi.org/10.1007/s10032-019-00332-1
https://doi.org/10.1109/ICDAR.2019.00066
https://doi.org/10.1007/s10032-021-00370-8
https://doi.org/10.1117/1.JEI.28.3.033004
https://doi.org/10.1117/1.JEI.29.2.023002
https://doi.org/10.1117/1.JEI.29.2.023002
https://doi.org/10.1007/s10032-021-00365-5
https://doi.org/10.1007/s10032-021-00372-6
https://doi.org/10.3390/jimaging5040048
https://doi.org/10.1109/ICDAR.2017.71
https://doi.org/10.1109/34.824820
https://doi.org/10.1109/34.824820
https://doi.org/10.1007/978-3-030-00671-6_13


45. T. Lansdall-Welfare et al., “Content analysis of 150 years of British periodicals,” Proc. Natl.
Acad. Sci. U. S. A. 114, E457–E465 (2017).

46. V. P. d’Andecy et al., “Discourse descriptor for document incremental classification
comparison with deep learning,” in Int. Conf. Doc. Anal. and Recognit., pp. 467–472
(2019).

47. M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” Lect.
Notes Comput. Sci. 8689, 818–833 (2014).

48. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man
Cybern. 9, 62–66 (1979).

49. I. Pratikakis, B. Gatos, and K. Ntirogiannis, “ICDAR 2011 document image binarization
contest (DIBCO 2011),” in Int. Conf. Doc. Anal. and Recognit., pp. 1506–1510 (2011).

50. I. Pratikakis, B. Gatos, and K. Ntirogiannis, “ICDAR 2013 document image binarization
contest (DIBCO 2013),” in 12th Int. Conf. Doc. Anal. and Recognit., pp. 1471–1476 (2013).

51. I. Pratikakis et al., “ICDAR2017 competition on document image binarization (DIBCO
2017),” in 14th IAPR Int. Conf. Doc. Anal. and Recognit., Vol. 1, pp. 1395–1403 (2017).

52. I. Pratikakis et al., “ICDAR 2019 competition on document image binarization (DIBCO
2019),” in Int. Conf. Doc. Anal. and Recognit., pp. 1547–1556 (2019).

53. J. Liu, W. Li, and Y. Tian, “Automatic thresholding of gray-level pictures using two-dimen-
sion Otsu method,” in China Int. Conf. Circuits and Syst., Vol. 1, pp. 325–327 (1991).

54. O. Nina, B. Morse, and W. Barrett, “A recursive Otsu thresholding method for scanned
document binarization,” in IEEE Workshop Appl. Comput. Vision, pp. 307–314 (2011).

55. N. R. Howe, “Document binarization with automatic parameter tuning,” Int. J. Doc. Anal.
Recognit. 16, 247–258 (2013).

56. J. van Beusekom, F. Shafait, and T. M. Breuel, “Combined orientation and skew detection
using geometric text-line modeling,” Int. J. Doc. Anal. Recognit. 13, 79–92 (2010).

57. K. He, J. Sun, and X. Tang, “Guided image filtering,” Lect. Notes Comput. Sci. 6311, 1–14
(2010).

58. L.-K. Soh, E. Lorang, and Y. Liu, “Aida: intelligent image analysis to automatically detect
poems in digital archives of historic newspapers,” in Proc. Thirtieth Innovative Appl. Artif.
Intell. Conf. (2018).

59. J. Hu, R. Kashi, and G. Wilfong, “Document classification using layout analysis,” in Proc.
Tenth Int. Workshop Database and Expert Syst. Appl., Vol. 99, pp. 556–560 (1999).

60. V. Loia and S. Senatore, “An alternative, layout-driven approach to the clustering of docu-
ments,” Int. J. Intell. Syst. 23(7), 795–821 (2008).

61. C. Shin, D. Doermann, and A. Rosenfeld, “Classification of document pages using struc-
ture-based features,” Int. J. Doc. Anal. Recognit. 3, 232–247 (2001).

62. K. C. Santosh, “G-DICE: graph mining-based document information content exploitation,”
Int. J. Doc. Anal. Recognit. 18, 337–355 (2015).

63. E. Lorang et al., “Developing an image-based classifier for detecting poetic content in his-
toric newspaper collections” (2015).

64. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolu-
tional neural networks,” Commun. ACM 60, 84–90 (2017).

65. K. He et al., “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput.
Vision and Pattern Recognit., pp. 770–778 (2016).

66. X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in Proc. Thirteenth Int. Conf. Artif. Intell. and Stat., pp. 249–256 (2010).

67. J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc. IEEE Conf.
Comput. Vision and Pattern Recognit., pp. 7132–7141 (2018).

68. M. Diem et al., “cBAD: ICDAR2017 competition on baseline detection,” in 14th IAPR Int.
Conf. Doc. Anal. and Recognit., Vol. 1, pp. 1355–1360 (2017).

69. M. Sandler et al., “MobileNetV2: inverted residuals and linear bottlenecks,” in Proc. IEEE
Conf. Comput. Vision and Pattern Recognit., pp. 4510–4520 (2018).

70. M. Tan and Q. Le, “EfficientNet: rethinking model scaling for convolutional neural net-
works,” in Int. Conf. Mach. Learn., pp. 6105–6114, PMLR (2019).

71. N. Zhu et al., “A fast 2D otsu thresholding algorithm based on improved histogram,” in
Chin. Conf. Pattern Recognit., pp. 1–5 (2009).

Liu, Soh, and Lorang: Investigating coupling preprocessing with shallow and deep convolutional. . .

Journal of Electronic Imaging 043024-29 Jul∕Aug 2021 • Vol. 30(4)

https://doi.org/10.1073/pnas.1606380114
https://doi.org/10.1073/pnas.1606380114
https://doi.org/10.1109/ICDAR.2019.00081
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/ICDAR.2011.299
https://doi.org/10.1109/ICDAR.2017.228
https://doi.org/10.1109/ICDAR.2019.00249
https://doi.org/10.1109/CICCAS.1991.184351
https://doi.org/10.1109/WACV.2011.5711519
https://doi.org/10.1007/s10032-012-0192-x
https://doi.org/10.1007/s10032-012-0192-x
https://doi.org/10.1007/s10032-009-0109-5
https://doi.org/10.1007/978-3-642-15549-9_1
https://doi.org/10.1109/DEXA.1999.795245
https://doi.org/10.1109/DEXA.1999.795245
https://doi.org/10.1002/int.20289
https://doi.org/10.1007/PL00013566
https://doi.org/10.1007/s10032-015-0253-z
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/ICDAR.2017.222
https://doi.org/10.1109/ICDAR.2017.222
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CCPR.2009.5344078


72. G. E. Hinton et al., “Improving neural networks by preventing co-adaptation of feature
detectors,” arXiv:1207.0580 (2012).

73. L. Deng, “The MNIST database of handwritten digit images for machine learning research,”
IEEE Signal Process. Mag. 29(6), 141–142 (2012).

74. O. Russakovsky et al., “ImageNet large scale visual recognition challenge,” Int. J. Comput.
Vision 115, 211–252 (2015).

75. E. Lorang et al., “Aida NEH start-up grant data, 1836-1840 case study,” (2017).
76. D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,” in 3rd Int. Conf.

Learn. Represent., Y. Bengio and Y. LeCun, Eds., San Diego, CA (2015).
77. G. Huang et al., “Densely connected convolutional networks,” in IEEE Conf. Comput.

Vision and Pattern Recognit., pp. 2261–2269 (2017).
78. E.-T. Zemouri and Y. Chibani, “Nonsubsampled contourlet transform and k-means cluster-

ing for degraded document image binarization,” J. Electron. Imaging 28, 043021 (2019).
79. H. Koo and N. I. Cho, “Robust skew estimation using straight lines in document images,”

J. Electron. Imaging 25, 033014 (2016).
80. N. Journet et al., “DocCreator: a new software for creating synthetic ground-truthed docu-

ment images,” J. Imaging 3, 62 (2017).
81. S. En et al., “New public dataset for spotting patterns in medieval document images,”

J. Electron. Imaging 26, 011010 (2016).

Yi Liu received his BE degree in computer science and technology from Shanghai University
of Engineering Science, Shanghai, China, in 2015. He is a doctoral student at the University of
Nebraska–Lincoln. He is currently pursuing his PhD in computer science at the University of
Nebraska, Lincoln, NE, USA, where he is a graduate research assistant. His research interests
include the development of image-based historical newspaper analysis using computer vision
and machine learning techniques.

Leen-Kiat Soh is a professor of Computer Science and Engineering at the University of
Nebraska–Lincoln. His research areas are in multiagent systems and modeling, computer science
education, computer-aided education, and intelligent data analytics including image processing,
applied artificial intelligence, and multiagent simulation. He has also contributed to broadening
participation in computing and computational thinking. He has published more than 200 journals
and conferences. He is a member of ACM, AAAI, and IEEE.

Elizabeth Lorang is an associate professor in the University Libraries at the University of
Nebraska–Lincoln, and she is a fellow of the Center for Digital Research in the Humanities
and the Center for Great Plains Studies. She co-leads a research team exploring image analysis
and machine learning in digital libraries of historic materials. She has received funding from the
Council on Library and Information Resources, Institute of Museum and Library Services, and
National Endowment for the Humanities.

Liu, Soh, and Lorang: Investigating coupling preprocessing with shallow and deep convolutional. . .

Journal of Electronic Imaging 043024-30 Jul∕Aug 2021 • Vol. 30(4)

https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1117/1.JEI.28.4.043021
https://doi.org/10.1117/1.JEI.25.3.033014
https://doi.org/10.3390/jimaging3040062
https://doi.org/10.1117/1.JEI.26.1.011010

