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Abstract

Current modeling and segmentation techniques are not adequate for visualizing certain kinds of
3D medical data. This paper introduces volumetric deformable models, or active blobs, as a means
of visualizing and segmenting 3D data. It presents an implicit framework that provides a means
of generalizing deformable models to higher dimensions. It presents a new second-order smoothing
function that o�ers some advantages over previous methods for smoothing surfaces. It describes
some of the numerical techniques that are necessary for solving the resulting evolution equations.
Finally it shows some examples of how active blobs are useful for the segmentation and visualization
of 3D ultrasound and MRI data. Active blobs have a number of advantages over other types of
modeling techniques. Because of these advantages, active blobs are able to produce models directly
from the 3D data, rather than presegmented datasets, edge maps, or sets of landmarks.



Deformable

1 Introduction

1.1 Motivation

1.2 Deformable models

The problem of volume visualization is inevitably linked to segmentation. Conventional visualization tech-
niques fall into two categories. The �rst category of techniques consists of the so-called \direct" visualization
techniques that apply lighting and shading models directly to the volume data [1]. Direct volume visual-
ization techniques are inadequate on two accounts. These techniques rely on local (de�ned according to
some scale) image structure to create the appropriate lighting and shading models. Therefore they typically
produce poor results when applied to data that is either noisy or undersampled. Also direct visualiza-
tion techniques by themselves do not address the issue of relevant anatomy. When attempting to visualize
anatomy that is occluded or enclosed in other structures, direct visualization techniques must be combined
with other segmentation techniques that incorporate regions of interest [2].

The second category includes model-based visualization techniques. These techniques apply conventional
rendering methods to geometric models that are somehow constructed from the volume data. The challenge
for model-based techniques is the construction of a geometric model that accurately characterizes the relevant
anatomy in the 3D data. Given a segmentation of the data, the construction of a geometric model is relatively
straightforward; the di�culty is the segmentation. When visualizing 3D medical data, segmentations are
often constructed by hand using contours that are drawn one \slice" at a time. This is a labor-intensive
solution that is too slow and expensive to be routine.

This work presents a new type of deformable model which is capable of segmenting volume data given
an initial estimate (which can be generated automatically from the data in some cases) and the appropriate
tuning of several parameters which control the smoothness and the locality of the solutions. Unlike much
of the previous work on 3D deformable models, this technique does not require sets of edges or hand-drawn
contours, rather it works directly on the 3D data.

The �tting of models to data is a fundamental problem in computer vision. Work in computer vision and
elsewhere has shown the bene�ts of using models to improve image segmentation. models are
models whose shapes depend on a set of parameters. These parameters are tuned (usually through some
minimization process) to change the shape of the model so that it matches some properties derived from the
image data. Deformable models typically combine the external data with some internal forces or constraints.
These constraints might be (as in this work) enforced in a graded or \fuzzy" fashion. Deformable models �nd
a compromise between the constraints and the shapes indicated by the input data. In this way deformable
models resemble the Bayesian approach to image analysis, and the internal constraints of these models are
like the prior distributions that drive a MAP estimation [3]. Deformable models are distinguished according
to three di�erent properties. These properties are the parameterization, the internal constraints, and the
mechanism for reconciling the model and data.

The �rst distinguishing property of active blobs is the parameterization. A geometric model is essentially
a set of numbers that gives rise to a shape. The parameterization is the relationship between those numbers
and the shapes which they generate. Perturbations in the parameters generate deformations in the shape,
so the relationship between the parameters and the shape of the model plays an important role in the
deformation of models. For example, superquadrics [4] generate a range of shapes, from ellipsoids to cube-like
objects, with a small number of parameters. These parameters can be tuned to create a shape that resembles
some aspect of an image, hereafter referred to as the input data. A variety of other parameterizations for
deformable models have been explored, including meshes [5, 6], discrete particle systems [7], and cylinders
[8].

Active blobs incorporate an implicit, rather than explicit, representation of shape. Models are character-
ized by level sets of dense scalar �elds. Parameterizations of such dense scalar �elds are easy to manipulate.
When these scalar �elds are sampled on discrete, regular, rectilinear grids, the implicit models can be rep-
resented by greyscale digital images.

The second property of deformable models is the internal constraints that di�erent models enforce. The
�tting of a deformable model to the input data incorporates some compromise between the input data and
the internal constraints of the model. The constraints are often linked to the parameterization. For example
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when matching 3D models to brain images, one might use a brain model which can undergo a
�xed set of distortions such as rotations, translations, and scaling. This is a somewhat \rigid" or \hard"
model because its deformations are highly constrained. Such approaches can work in some circumstances
but they make some very strong assumptions about the input data (e.g. that they contain a rotated, scaled,
etc. version of the prototypical brain). Grenander et al. [9] have developed models which \deduce" the
appropriate deformations through a set of examples (a training set). These models undergo deformations
that are consistent with the statistical variations in the training data. Cootes et al. [10] have applied a
similar approach to 3D medical data. Such approaches are e�ective for segmentation problems that can be
characterized by training sets but are inappropriate in situations where less is known about the input data
a priori. In the absence of speci�c training data, models must incorporate a more general set of constraints
that applies to a wider range of circumstances.

A number of the more general modeling approaches introduce internal constraints implicitly via the
parameterization. For instance when using polynomial representations, the degree of the polynomial one uses
determines the kinds of shapes the model can take. Polynomials of second and third degree can represent
only very simple shapes; higher-degree polynomials allow more complexity and thereby enable the model to
represent \�ner scale" structures. The decision to limit the model to a particular degree of polynomial is a
kind of constraint. The same decision applies to Fourier representations (or spherical harmonics in 3D) [11];
the truncation of the frequency representation introduces a smoothness constraint in the model. Constraints
of this type are typically sensitive to extrinsic decisions about the construction of the parameterization.

The active blob models presented here incorporate constraints that depend only on the intrinsic shape of
the model. Thus the behavior of the model is less dependent on a particular parameterization. This is desir-
able because the parameterization of the model is often a matter of mathematical necessity or convenience.
The internal constraints associated with active blobs are intended to be general, and thus the models are

and able to take on a variety of di�erent shapes while maintaining an internal smoothness constraint
that is enforced by a second-order 
ow.

A third distinguishing property of deformable models is the means by which models and data are rec-
onciled. Often the deformation of models is cast in an energy minimization framework. The problem of
�tting the model to the input data is posed as a minimization of an energy functional that combines the
internal constraints and the input data. Some algorithms seek a global minimization (or maximization) while
other techniques seek out local minima in the vicinity of a set of initial conditions. The volumetric models
described here provide a natural scale space which allows the energy minimization problem to be solved in
a multiscale fashion. This multiscale approach resembles minimization by graduated nonconvexity. Instead
of guaranteeing a minimum solution, it allows one to control the search space based on spatial proximity.

Malladi et al. have presented related work, which involves the embedding of evolving curves for segmen-
tation. In [12], they propose a \seed" which to grows (or shrinks) to �ll an area of interest. This \
ooding"
is constrained by a curvature term as well as the presence of edges in the image. The active blob models do
not grow or shrink on their own, but are pulled in the direction indicated by the input data.

Kass et al. [13] propose active contours or \snakes", which is a somewhat general paradigm for deformable
models. Snakes are parameterized curves with a set of internal constraints that enforce rigidity and smooth-
ness. This paradigm and its many variations have proven useful for certain kinds of 2D segmentation
problems. Rather than review the 2D results, I describe the natural generalization of this approach to 3D
and explain some of the problems presented by this generalization.

A surface is a two-parameter object in a three-dimensional space, i.e., a surface is

: (2.1)

where IR , and IR. The 3D energy terms are similar to the 2D energy terms, except that for
active surfaces I consider only the membrane term, which produces a second-order 
ow, and I exclude the
bending energy (rigidity), which produces a fourth-order 
ow [13]. The internal constraints of an active
surface incorporate both of the free parameters, and :

d = + (2.2)
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d = ( ) (2.3)

where d indicates that these terms are derived from the �rst variation of the corresponding energy terms.
The membrane energy causes the surface to contract, and is the in
uence of the input data on
the model. The function : IR IR is a scalar �eld de�ned over the range of the model which indicates
the presence of interesting features. Note that could take other forms, such as a set of projections, or
a set of range maps, but such possibilities are beyond the scope of this paper. A gradient descent algorithm
yields an evolution equation for the surface:

= d + d (2.4)

where and are free parameters that control the relative in
uence of the internal constraints and the
input data.

Equations 2.2{2.4 describe the evolution of a model in terms of its parameterization. This formulation
has some substantial limitations. As stated earlier, the precise behavior of the model depends on the
particular parameterization. Often surface parameterizations are limited by topology. For instance the same
parameterization that represents a closed curve in cannot, generally, represent two closed curves in a
continuous fashion. In three dimensions a parameterization of a sphere is generally not compatible with
a torus. For active surfaces such parameterizations would preclude the possibility of a smooth evolution
from a sphere to a torus. As models evolve and undergo large deviations from their original shapes, surface
parameterizations often introduce de facto constraints. If these constraints are not desirable, then the model
must be reparameterized according to set of heuristics or according to some cost function [14]. For instance
the expansion of polygonal models creates a kind of \coarseness" which prevents the model from capturing
smaller structures; thus the evolution of polygonal models requires the creation and deletion of polygons [5].

The surface evolution described by Eqs. 2.2 and 2.4 is intended to motivate the development of a new kind
of deformable model. The particular energy terms d and d are not essential to the work discussed
here. The membrane energy, for instance, will be replaced in Sect. 4 by a more appropriate second-order

ow.

Manifolds such as curves and surfaces have certain shape properties that are independent of any particular
parameterization. There is an to such objects which depends only on their shape in the
domain. In order to avoid some of the drawbacks of parameterized models, I forego the parameterization
and express surfaces implicitly by embedding them as level sets of scalar functions. This strategy removes
the parameterization from the model, leaving only the intrinsic geometry. The strategy for embedding active
contours consists of four steps.

1. Express the equations of motion for a deformable model in terms of some unspeci�ed parameterization
(as was done in Sect. 2).

2. Describe the parameterization in terms of the local geometry of the model.

3. Assume the model is the level set of a function .

4. Express the geometry of the level set in terms of the di�erential structure of , and create an evolution
equation for .

In order apply this strategy to active surfaces, represent a surface as a level set of some 3D scalar function,
: IR IR IR, which evolves over time. The evolution equation of the individual level surfaces speci�es

a corresponding evolution equation for the scalar function ( ), which is a dense set of volume data.
Using the procedure described in Appendix A, obtain an evolution equation that is the embedding of Eq. 2.4:

= ( + + ) (3.1)
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only on level sets

reparameterization locally at each time step

mean curvature

along the direction of least curvature weighted curvature

Equation 3.2 does not specify and uniquely, but the evolution equation, Eq. 3.1, is invariant under transformations that

describe the set of parameterizations de�ned by Eq. 3.2

where indicates derivatives in the normal direction, i.e., = .
Equation 3.1 is invariant under certain kinds of geometric transformations. First, it is invariant to

orthogonal group transformations on , , . Thus the position and orientation of the model in space has no
impact (to within the error introduced by the parameterization of ) on the behavior of the model. Equation
3.1 is also invariant to monotonic transformations on ; that is, Eq. 3.1 acts and treats
each level set of as an individual surface evolving under its own set of constraints and forces.

Another important property of Eq. 3.1 is that it is (at any particular instant in time) equivalent to an
active surface with an explicit parameterization , , in which and are given in units of arc length and
have perpendicular tangents. That is,

= = 1 and = 0 (3.2)

which I will call an orthonormal parameterization. Thus the evolution of the implicit surfaces in Eq. 3.1 is
equivalent to a parametric model if one performs a .

The �rst term of Eq. 3.1 (the term) is the of the level set at every point on the level sets
of . This term was developed from a straightforward generalization of a similar energy term for contours
in 2D [13]. In the absence of external forces (either = 0 or = 0), Eq. 3.1 describes a mean curvature

ow on the level sets of . The evolution of surfaces under mean curvature 
ow has been studied quite
extensively [15]. Although this type of evolution can produce a kind of \smoothing" on surfaces in some
cases, in many other cases it is not a smoothing at all. For instance mean curvature 
ow can break relatively
smooth objects into a number of small, high curvature pieces.

As an alternative to mean curvature 
ow, I propose an evolution term which consists of the weighted
sum of principle curvatures at every point in the surface. Let and be the principle curvatures of a
surface with an orthonormal parameterization and let 
 be the matrix of second-order derivatives of the
surface with respect to any two orthogonal directions in the tangent plane, i.e.


 = =
0

0
(4.1)

where is a rotation matrix that indicates the directions associated with the principle curvatures, and
. The mean curvature of a surface is one half the trace of 
: ( + ) 2.
For a curvature 
ow which smoothes surfaces, compute a weighted sum of the principle curvatures

and which implements an averaging . This is the ,
:

=
+

+
=

( + )

+
=

Tr[
] Det[
]




where indicates the Euclidean norm. The weighted curvature is invariant to rotations on 
, and it
can be calculated explicitly from the embedding of (see Appendix B) without any explicit calculation of
the directions or curvatures in the tangent plane of the level set. Figure 4.1 shows an initial surface which
breaks into pieces under mean curvature 
ow but forms a cylindrical shape (and eventually a sphere) under
weighted curvature 
ow.

The previous section describes the continuous mathematics for embedding active surfaces, but it does not
address the practical problems of solving these equations in the discrete domain. In general the scalar
function is not a continuous mapping from the image space, IR , to the real numbers, but rather it
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(a) Initial surface (b) Mean curvature 
ow (c) Weighted curvature 
ow

Figure 4.1: Surface renderings show (a) a dumbbell shaped object, which breaks (b) into pieces under mean
curvature 
ow (after = 12 5 pixel-squared units), but which remains a single, smooth object (c) under
weighted curvature 
ow after the same amount of time.

has some discrete representation in a digital computer. There are many options for representing : IR;
for this work I represent as a discretely-sampled image that is sampled on a �nite, Cartesian grid. That
is, is a collection of in the form of a 3D digital image. The strategy of embedding active contours
does not depend on this particular representation. I have chosen this representation because it provides a
mechanism for performing numerical di�erentiation at multiple scales [16, 17]. There are several important
numerical issues regarding this discrete representation of .

Derivatives of are measured using �nite di�erences with the \tightest �tting" kernels of a particular order
[17, 18]. All derivatives are measured in the directions , and that are associated with the discrete
grid. The derivatives in local Gauge coordinates are computed from these discrete Cartesian derivatives.
Directional derivatives are calculated using a dot product with a unit vector in the desired direction.

The evolution equations for the embedded contours have the form of a Hamilton-Jacobi equation, i.e.,

( )
= ( ) ( ) (5.1)

where = . Discrete solutions using �nite forward di�erences in time are generally not stable. When
implemented on a discrete grid using �nite forward di�erences in time, i.e.,

( + � ) = ( ) +
( )

� (5.2)

such equations can \overshoot" [19, 20] near sharp edges causing ringing and instability.
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Stable to solutions of Eq. 5.1 can be computed by using a approximation. There are several
approaches to computing viscosity approximations. Osher and Sethian [20], for instance, propose an \up
wind" scheme which incorporates piecewise continuous approximations to and utilizes \one-sided" (or up-
wind) derivatives in approximations to . Instead of an up-wind scheme I use a second-order (\di�usion")
term in order to stable solutions to Eq. 5.1, i.e.,

( + � ) = ( ) + ( ) ( ) +
1

2
( ) ( ) � (5.3)

For functions of one dimension, this formulation is identical to the �rst-order up-wind scheme proposed by
[20] except at extrema. However the formulation I use here generalizes to higher dimensions in a rotationally
invariant manner, whereas the up-wind approaches typically assume that the velocity of a moving wave front
is in one of the cardinal directions (i.e. aligned with the grid on which is sampled). Solutions to 5.3
require some speci�cation of the boundary conditions on the image space . For the results in this paper I
use ( ) = 0 , where is the boundary of the image space and is the direction normal to
the boundary. These boundary conditions enable level sets to move across the boundaries unimpeded.

This second-order viscosity scheme requires time steps � that are inversely proportional to the velocity
of the fastest moving wave front. That is,

�
1

sup ( )
(5.4)

which is required in order to maintain the stability of the viscosity term, . The mean and weighted cur-
vature 
ows are stable when using forward di�erences in time and centralized di�erences in space. Therefore,
the ( ) term used for the viscosity solution includes only the in
uence of the image energy .

Two of the disadvantages of working with volumetric models are the relatively large amount of computation
that is necessary for a single iteration and the limited speed of moving wavefronts, which is imposed by the
stability requirement. Parameterized models typically provide some relatively small set of control points
or parameters, but embedded models require calculations on dense sets in the range of the model. This
computational burden is partially o�set by the natural scale space that exists for greyscale images [21].
Solutions can be sought on some coarse grid, where greater wavefront speeds are permitted, and then
extended to progressively �ner grids in order to �ll in the details that are lost at larger scales (coarse grids).
This strategy is depicted in Fig. 5.1.

Besides providing some computational advantages, this coarse-to-�ne scale strategy allows image features
to attract models from a distance. Normally the deformation of a model under gradient descent results in
minima that are local (in the space of deformations). This means that models can get \hung up" on smaller,
less interesting features because they are \closer" to the initial conditions even though these features may
be less important than other nearby image structures. Alternatively a global minimization may also be
unsatisfactory, because one may want results that are sensitive to the initial conditions, i.e., the placement
of the initial model can serve as a means of specifying interesting structure, as will be shown in Sect. 6.2).
One of the �ndings of this research is that a multiscale approach provides a means of specifying the
of solution. If the evolution process begins at a very coarse scale, the results are virtually independent of
the initial conditions. If the evolution process begins at a small scale, the results are highly sensitive to the
placement of the initial model.

Three-dimensional ultrasound data presents a unique challenge for volume visualization because of the high
level of noise as well as specularities and echo dropout. The following results are from a 3D dataset that was
scanned using a custom rotating phased array transducer which is designed to sweep out a volume. Before
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7 Conclusions

6.2 Interpolation and segmentation of MRI

Figure 5.1: A multiscale approach to solving the evolution equation.

applying the active blob technique, the data was subsampled by a factor of 2 (making a 128 64 96 volume)
in order to make the results more manageable for storage and visualization. Also before processing, a large
obstruction was removed from directly in front of the face of the fetus. This edit was made with a single
cutting plane that was placed manually with an image editor.

Figure 6.1 shows an isosurface rendering for both the original data and a deformed model. The initial
model is a blurred and thresholded version of the input data. The image on the right shows that the
deformable blob appears to contain less noise than the original and yet retains much of the shape of the
anatomy. The lips and nose are distorted by the noise in the input data but appear quite clearly in the
model.

THe MRI data set of a human head in Fig. 6.2 consists of 22 slices. The sampling in the (transversal)
direction is less dense than the and directions. In this example the active blob models are used to
construct models of both the head and the tumor. These models are produced with a 3 to 1 supersampling
in the direction and a 2 to 1 subsampling in the and directions. This sampling is used because it
produces models that resemble more closely the proportions of the actual anatomy.

Figure 6.3(a) shows the result of a linear interpolation of the original slices and a threshold of the resulting
data. Notice the artifacts that result from the interpolation as well as the noise around the eyes and nose.
Figure 6.3(b) shows the initial models that were used to do the segmentation of the head and tumor. Figures
6.3(c)-(f) show the results of the models. On slices which coincide with the original data, the models are
attracted to edges, as indicated by high gradient magnitude in the input data (the derivative is ignored
in this edge calculation). Between slices the model follows the internal constraints described by weighted-
curvature 
ow. The result is an interpolation based on 3D shape in conjunction with a segmentation. The
weighted curvature 
ow provides a smoothing which does not destroy important structures like the nose,
eyes and ears.

Active blobs are volumetric deformable models that treat each level set of 3D function as an active surface.
The volumetric representation has several important practical implications for 3D medical data. First,
active blobs are topologically 
exible, that is, the models can \split" into pieces to form multiple objects

7
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8 Acknowledgments

Appendix

A The implicit formulation of level surfaces

(a) (b)

Figure 6.1: An isosurface rendering of 3D ultrasound data (a) shows the problems of noise and incomplete
data. A rendering of a deformable blob model (b) which is attracted to areas of high gradient magnitude
shows more clearly the features of the fetus.

[22]. Second, rather than a single surface model, active blobs can represent any number of surfaces in a 3D
image (they must be closed and cannot cross each other). In this way the models can represent uncertainty.
The result of this evolution equation is not a single contour, but a at each point in the image
space. This is important for volume visualization, because the models can be displayed by some method,
such as volume rendering, which captures that uncertainty. The evolution of the embedding is a di�erential
expression that is invariant to orthogonal group transformations (rotations and translations). The shapes
formed by the level sets of are restricted only by the spacing of the pixel grid used to represent . This grid
can be made with �ner spacing than the input data, as was shown in Sect. 6.2. Finally, the representation of
deformable models in terms of an provides a method for multi-scale analysis. The analysis starts on
a coarse grid and then proceeds to progressively �ner grids as the energy reaches a minimum. This reduces
computation time and controls the relative importance of large and small scale structures in the input image.

Thanks to the University of North Carolina Department of Computer Science for providing computing
resources to assist this work. The MRI dataset in Fig. 6.2 is from The University of North Carolina Hospitals,
Department of Radiation Oncology. Tomographic Technologies Incorporated provided the ultrasound data
used in Fig. 6.1. This work is supported by Bull SA, ICL Plc, and Siemens AG.

Represent an active surface ( ) as a level set of a scalar function, ( ) : IR IR IR, i.e.,

( ) = (A.1)
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x y zFigure 6.2: The MRI data set contains 22 slices. The voxel resolution in the , , and directions are
0.090278, 0.090278, and 0.65 centimeters respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: From the MRI data of Fig. 6.2: (a) an isosurface rendering of a 3 to 1 linear interpolation of
the original data, (b) the ellipsoidal models that were used as the initial conditions for segmenting the head
and tumor, (c) the result of the head model after 40 iterations performed at each of 3 di�erent scales, (d)
the resulting tumor model which was produced with the same parameters ( and ) as the head model but
with a di�erent initial model. Transparent renderings (e){(f) of both the head and tumor models show the
relative positions of the two.
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F F F
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F F F

RW;

R w F u
v F F

H W ; H W ; H W :

H F
W F

F F

F = F F H F:

F W

W
F F
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;

The surface remains a level set of over time, so the time derivative is zero:

0 =
( )

+ ( ) (A.2)

where

( ) = (A.3)

Thus,

= = (A.4)

where is the normal to the level surface.
The evolution of ( ) (Eq. 2.4) is expressed in terms of derivatives of under the assumption of a

orthonormal parameterization, = = 1 and = 0:

= = and (A.5)

= (A.6)

where the subscripts in and represent derivatives with respect the directions and respectively.
Multiplying by and adding the energy terms gives

= ( + ) ( ) (A.7)

Note that + is twice the mean curvature of the level set which is invariant to rotations (within the
tangent plane) of the - coordinate system.

The weighted curvature term described in Section 4 requires the calculation of three separate invariant
expressions of the second-order structure of the level sets of . In this section I describe a method for
calculating the invariant second-order properties of the level sets of 3D without any explicit representation
of and , i.e., these invariants can be computed directly from the �rst- and second-order di�erential
structure of .

The second-order structure of is given by the Hessian:

D = = = = (B.1)

where is a 3 3 rotation matrix that aligns the direction with the gradient of . The directions and
lie in the tangent plane to the level set of . The trace, determinant, and Euclidean norm of D are

invariant to rotations. Thus,

Tr[ ] = Tr[ ] Det[ ] = Det[ ] and = (B.2)

This relationship is important because can be computed by direct di�erentiation of with respect to
any Cartesian basis, while assumes an explicit representation of the tangent planes to the level sets of .
Only the term can be computed directly from , i.e.,

= (1 ) (B.3)

The second-order properties of the level sets of are described by the upper left 2 2 submatrix of ,

= (B.4)
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which characterizes the second-order information of restricted to the tangent plane of the level surface.
The trace of this matrix is twice the mean curvature of the surface (times the gradient magnitude, which is
necessary for the evolution equation) which is given by

Tr[ ] = + = + +

= Tr[ ] = + + (B.5)

The norm of is the deviation from 
atness of the level surface (to within a factor of ):

= + 2 + = 2 + (B.6)

= 2 + = 2 + (B.7)

which is computed directly from �rst- and second-order derivatives of .
The Gaussian curvature of the level set, which is given by the determinant of (divided by ),

is a combination of the other two invariants:

Det[ ] =
1

2
Tr[ ] (B.8)

Finally, the explicit expression of the weighted curvature, which is used instead of the mean 
ow (the
term in Eq. A.7) to enforce \smoothness" in the implicit models, is

=
1

2
( + + )

( + + )

2 +
1 (B.9)

Explicit values for principle curvatures, and , are not necessary for the evolution equations presented
in this paper. However, they can be calculated by solving the quadratic equation that results from values
for the mean and Gaussian curvatures. Thus even the principle curvatures can be calculated without an
explicit representation of the tangent space to the level surfaces.
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