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Abstract

This thesis involves systems for virtual presence in remote locations, a field referred

to as telepresence. Recent image-based representations such as Google map’s street

view provide a familiar example. Several areas of research are open; such image-based

representations are huge in size and the necessity to compress data efficiently for storage

is inevitable. On the other hand, users are usually located in remote areas, and thus

efficient transmission of the visual information is another issue of great importance.

In this work, real-world images are used in preference to computer graphics represen-

tations, mainly due to the photorealism that they provide as well as to avoid the high

computational cost required for simulating large-scale environments. The cubic format is

selected for panoramas in this thesis. A major feature of the captured cubic-panoramic

image datasets in this work is the assumption of static scenes, and major issues of the sys-

tem are compression efficiency and random access for storage, as well as computational

complexity for transmission upon remote users’ requests.

First, in order to enable smooth navigation across different view-points, a method for

aligning cubic-panorama image datasets by using the geometry of the scene is proposed

and tested. Feature detection and camera calibration are incorporated and unlike the

existing method, which is limited to a pair of panoramas, our approach is applicable to

datasets with a large number of panoramic images, with no need for extra numerical

estimation.

Second, the problem of cubic-panorama image dataset compression is addressed in a

number of ways. Two state-of-the-art approaches, namely the standardized scheme of

H.264 and a wavelet-based codec named Dirac, are used and compared for the application

of virtual navigation in image based representations of real world environments. Different

frame prediction structures and group of pictures lengths are investigated and compared

for this new type of visual data. At this stage, based on the obtained results, an efficient

prediction structure and bitstream syntax using features of the data as well as satisfying

major requirements of the system are proposed.

Third, we have proposed novel methods to address the important issue of disparity

estimation. A client-server based scheme is assumed and a remote user is assumed to

seek information at each navigation step. Considering the compression stage, a fast

method that uses our previous work on the geometry of the scene as well as the proposed

prediction structure together with the cubic format of panoramas is used to estimate

disparity vectors efficiently.
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Considering the transmission stage, a new transcoding scheme is introduced and a

number of different frame-format conversion scenarios are addressed towards the goal of

free navigation. Different types of navigation scenarios including forward or backward

navigation, as well as user pan, tilt, and zoom are addressed. In all the aforementioned

cases, results are compared both visually through error images and videos as well as using

the objective measures. Altogether free navigation within the captured panoramic image

datasets will be facilitated using our work and it can be incorporated in state-of-the-art

of emerging cubic-panorama image dataset compression/transmission schemes.
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Chapter 1

Introduction

There exist numerous applications [1, 2, 3, 4] in which a user desires to navigate virtually

in a distant real-world environment. Numerous examples can be envisioned: Tourists may

wish to remotely feel the presence in a historic environment. Passengers looking for a

hotel in a city other than theirs may desire to know what it would feel like walking in

the building before making reservations. Not everybody may be able to visit a museum

of interest in a distant location. A customer may want to buy a house in a city different

from his hometown and looks forward to a sense of walking in the new house in advance.

New students applying for universities abroad may want to get a taste of their new

campus from home. Similar demands may exist when an employee looks for a new job

in a remote company. Not everybody has the time, budget, and means to take a space

tour and walk on the moon, but images can be captured in high resolution; A movie

is being shot in an artistically decorated scenery and the director hopes he could have

captured the environment itself such that people could not only watch the movie, but

also be able to virtually walk within the scenery freely after watching it and reproduce

actors experiences themselves. The manager of a newly built sports complex may want

to provide customers with a virtual version of the facilities available for his marketing

purposes. Every year more than two million people attend the religious gathering of hajj

and need to practice the rituals in advance and here again a virtual practice session can

be a great help.

Almost everyone has had such an experience at least once when playing computer

games. A lot of advancements have been achieved in virtual navigation in a virtual

environment e.g. 3D games and 3D animated movies. However, conventional geometry-

based image rendering has its own drawbacks. They rely on geometric model building

1
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Image Dataset

Real World Environment

Trajectory

Viewpoint

Figure 1.1: An image dataset consisting of a collection of basis images in a particular

image format as a discrete image representation of a real-world environment

to synthesize novel views and building such models is a complicated task and computa-

tionally expensive. They also depend on the complexity of the environment. If a good

sense of reality is sought, then some features like the photometric properties of lighting

and shading of the environments should be incorporated, which makes the whole process

more expensive. Also synthesizing novel views from numerous geometric models is so

time consuming that a trade off has to be made in order to balance the rendered image

quality and the rendering speed. While it is difficult to achieve photo-realistic quality

even using the state-of-the-art geometry-based image rendering techniques, image based

rendering (IBR), to which more attention has been paid recently, directly takes image

inputs to synthesize novel views. IBR just relies on the basis images to synthesize novel

images and hence the rendering speed is high and not dependent on the complexity of the

environment. Therefore IBR is an effective way to represent the real-world environments

and provides a promising approach to generate photo-realistic novel-view images.

Having captured a single omnidirectional panoramic image from a single viewpoint,

the user will be able to view the environment in any desired direction within a desired

field of view. If a series of such high-resolution omnidirectional images is taken and stored

properly as shown in Figure 1.1, then the user is able not only to look around, but also
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Augmented multimedia
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Figure 1.2: An image-based virtual environment navigation system with its main com-

ponents including image dataset compression and transmission

to step forward or backward and get a feeling of walking through the environment [2].

From the end-to-end system viewpoint, the user at a remote location issues a command

seeking a new viewing frame and the server in response transmits the next view of the

generated virtual video.

In practice, such panoramic image datasets should be compressed efficiently. As it will

be explained later, the set of images considered in our work has specific features which

can be exploited during the process of compression for storage as well as transmission.

Dealing with these features distinguish our study from a conventional video processing

paradigm. Secondly, in real time according to user commands the compressed data,

i.e. bitstream, should be transcoded from the storage format to a proper video format

in an efficient way to be transmitted through the communication channel. This task

constitutes another area of interest for us. Finally at the receiver side, reconstructed

frames are generated and remote virtual navigation will be realized.

The system architecture consists of various stages, namely, image acquisition; process-

ing and analysis; dataset compression for storage; image sequence rendering and trans-

mission to a remote destination; and finally virtual environment navigation as shown in
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Figure 1.2. The first section of this chapter tries to shed light on how these stages work

in more detail. Our colleagues in the VIVA lab have been working on the aforementioned

stages of this application [1, 5, 6, 7, 8, 9, 10] as part of the NSERC funded NAVIRE

project [11]. The main focus of our research will be the analysis of such cubic-panorama

image datasets toward achieving efficient compression as well as transmission, keeping

the goal of free navigation in mind all the time, while cubic-panorama image dataset

preprocessing stage is addressed as starting point.

Since this is a brand new application, no off-the-shelf solution is available in the

market to be purchased and little research exists on the specific problems. The rest of

this chapter is organized as follows: in section one, the general architecture of the system

from image acquisition to virtual navigation is explained in more detail. In section

two, specific features of the image dataset that can be considered before compression

and transmission are explained. In the last section of this chapter, requirements and

challenges which are considered throughout our research are explained. These challenges

are addressed during this thesis.

1.1 Image-Based Virtual Environment Navigation Sys-

tem

Different practical image-based virtual environment navigation systems providing dif-

ferent exploration capabilities have been developed [1, 2, 3, 4]. The system that has

been used in our research is explained below with more emphasis on compression and

transmission stages [1, 11].

1.1.1 Raw-Image Acquisition

The raw-image acquisition process generates the source input for the navigation system.

Camera orientation and motion trajectory should be well planned to capture an efficient

representation of the environment. Over-sampling the environment increases the burden

and size of raw image sequence by unnecessary overlapping [12] while under-sampling

causes aliasing and image distortion. Spectral analysis [13] and plenoptic sampling the-

ories [14, 15] provide guidelines to avoid either of the above issues.

Such a system can use a single camera [16], multiple cameras [1], or a camera array

combined with a data recording device for storage and a portable computer for controlling
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Figure 1.3: Cubic-panorama raw-image sequence acquisition

the acquisition process, and an on-board power source for providing a steady power

supply.

In our system, as shown in Figure 1.3, a Ladybug camera from Point Grey Research

is used. This camera consists of six ICX204AQ color CCD image sensors and has six high

quality micro lenses with the focal length of 2.5mm. One lens on the top of the camera

head unit points up and five lenses pointing horizontally are assembled in a horizontal

circle. The camera head is pre-calibrated by the manufacturer to enable high-quality

image processing. The lens settings, e.g., the iris and the focus, are fixed to keep the

cameras calibrated during the acquisition process. This camera has been utilized in

several applications [1, 3, 17]. The storage unit involves a number of large-capacity hard

drives to record the uncompressed raw image sequences with huge sizes, and the host

computer is used to control the acquisition procedure and to process and retrieve the

recorded image sequences.

The multi-sensor camera head outputs 6 simultaneously sampled color filter array

(CFA) images of the Bayer raw image signal space at each shot instant of a sequential

acquisition process, Figure 1.4. The CCD sensors capture the five horizontal views in

landscape orientation with resolution 768× 1024 per view. The view overlap of adjacent

lenses is controlled within a small amount of 5 to 10 pixels. Therefore, the horizontal
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Figure 1.4: An example of demosaicked images from the Ladybug camera

circumference is covered by approximately 3800 pixels. Totally the six CCD sensors

capture approximately 4.7M effective pixels at each shot. The uncompressed streaming

raw Bayer CFA image data is transmitted to the storage unit through a fiber-optic cable

at an adjustable rate of 3.75, 7.5, 15 or 30 frames per second.

We assume that no explicit geometry data from the environment needs to be acquired

in this stage. In section 2.1 image base rendering techniques and their classification

depending on captured or estimated geometry data will be explained. Cubic-panorama

image dataset has specific features that can be exploited efficiently for later storage and

transmission stages. These features will be explained in section 1.2.

1.1.2 Image Sequence Preprocessing

Image sequence preprocessing performs operations such as image signal correction, noise

filtering, image format conversion, image reorganization, etc [18, 19] on raw images to

prepare images for the subsequent image processing stage.

As shown in Figure 1.5(a) there are three main categories of panoramas, namely:

cylindrical [2, 20, 21], spherical [22, 23, 24, 25], and cubic panoramas [26, 27, 28]. The

cylindrical representation can be easily mapped onto a 2D surface but has restrictions in

rendering views when the viewer is facing either up or down. The spherical format has
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(a) The cylindrical, the spherical, and the cubic panorama

(b) Texture mapping from six stitched raw images

to a cubic panorama consisting of six side images

Figure 1.5: Three main categories of panoramas and cubic panorama generation

no bias regarding the viewing directions but has no uniform sampling density and results

in problems at its north and south poles. Cubic panoramas on the other hand facilitate

applying planar mapping tools, on side images, which are widely incorporated in practical

applications and using them makes our algorithms most conveniently compatible with

the existing literature including standard image and frame formats. Therefore cubic

format for panoramas is adopted and applied throughout this work.

Basic image preprocessing operations include gamma correction, white balance, noise

filtering, and image format conversion to change the format of raw image signals to the

standard image format required by image dataset compression. Output images from

sensors are usually Bayer color filter array (CFA) images with one color component at

each sample position. The pixel values for the two other color components at each

sample position are interpolated to obtain RGB format, where a demosaicking process is

required. After R, G, and B components are interpolated, a group of six raw full RGB

images can be used to create a basis panorama which consists of six side images IB,k,j

(∀j ∈ {d, u, l, r, b, f}) where the subscripts represent the down, up, left, right, back,,
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Figure 1.6: An example of a set of six resulting side images composing a cubic panorama

unfolded in a flattened out pattern

and front side image respectively, see Figure 1.5(b) borrowed from [10]. The camera

set is pre-calibrated and values are retained during the whole process of acquisition.

The original overlap of 5 to 10 pixels between adjacent raw images is fused by using a

standard blending technique in OpenGL [1] or the more sophisticated multi-perspective

plane sweep technique [3]. Then by locating the geometric center of a cube C at the

same common projection center of the group of the six raw images, the six faces of C are

projected into the surface P of the stitched raw images and texture mapping is performed

from raw images of resolution 768× 1024 onto the surface of C (Figure 1.5(b)) with six

side images of resolution 512 × 512 or 1024 × 1024. Each of these side views has 90

degrees of FOV (Field Of View) in both horizontal and vertical directions. There is a

blind area in the bottom view of the cubic panorama due to the lack of a lens facing

down in the camera set.
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Finally in order to reduce the color data correlation of the tristimulus values, image

transformation from RGB format to YUV 4:2:0 format is carried out. This will result

in a more efficient representation of cubic-panorama image dataset by down-sampling

the chroma components by a factor of 2 in each spatial direction. Here Y represents the

luminance component and U and V are down-sampled chrominance components. This

conversion doesn’t affect the visual quality of the images as perceived by human eyes

because the human visual system (HVS) is less sensitive to high frequency chrominance

signals than luminance signals. This conversion is in line with the fact that the YUV

format is taken as standard color format for video sequence processing and compression.

A typical unfolded cubic-panorama is shown in Figure 1.6.

1.1.3 Basic Image Analysis

Basic image analysis may include image correspondence, camera calibration, image reg-

istration, depth-information extraction and so on. Resultant auxiliary data can be used

to assist the subsequent image compression, image sequence rendering and virtual navi-

gation.

Image correspondence across two or more images plays an important role in image

processing and video compression applications. Region-based correspondence estimation

techniques are applied to all image samples and provide a dense disparity map, but they

tend to break down where there is lack of texture or a depth discontinuity occurs. On the

other hand, feature based methods provide more reliable matching, but correspondence

between sparse sets of image features is achieved with extra computational cost due to the

extra computations for feature definition and detection. Hybrid methods combining the

two approaches also exist in the literature. A review of image correspondence techniques

is provided in section 2.4.

With camera calibration the intrinsic and extrinsic camera parameters may be de-

termined and used in the subsequent compression stage. As we will see in chapters four

and five, image correspondence, plus some camera calibration parameters such as focal

length, play a key issue in video compression in general and especially in our research

where images taken from different view-points are concatenated to form a video sequence.

Since all required data is available offline, a large number of auxiliary data and side in-

formation can be calculated, and used later in real time when the rendered views are

being transmitted. Finally, notice that since scene geometry is unknown to us, as we will

see in section 2.1, our research is associated with the category of image based rendering
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with no geometry.

1.1.4 Image Dataset Compression

A cubic-panorama image dataset should be compressed efficiently to provide certain

requirements of storage, random access, and complexity. These requirements for dataset

compression, one of the major concerns of this thesis, are explained in section 1.3 in more

detail.

Three major approaches include vector quantization (VQ) methods, wavelet-based

methods, and methods based on standardized compression schemes that will be reviewed

in section 2.2.

Since each panorama can be considered as six different views taken at each view

location, parallels can be made with recently developed multi-view video coding (MVC)

application, therefore a quick introduction is given in section 2.6.

As mentioned earlier, analysis of the cubic-panorama image datasets for the compres-

sion stage, as well as the transmission stage which will be explained later, constitute the

main focus of our work.

1.1.5 Image Sequence Rendering

The aim of image sequence rendering is to synthesize novel-view images by taking prim-

itive inputs from compressed image datasets and generating rendered image sequences

based on IBR techniques. Each user has a limited field of view and needs part of the

whole set of cube faces of each panorama to render a view at any time instant and at

an arbitrary viewing location. Free view point rendering can be achieved by means of

image re-sampling, mosaicking, segmentation, or more generally mapping, re-projection,

interpolation, or more specifically warping, morphing, transformation and so on [8, 9, 29].

Some IBR techniques need environmental geometric data while there is a tendency to

apply IBR without using geometric data mainly due to ease of image acquisition process.

In this case, more basis images with greater image correlation are required to avoid image

aliasing.

As explained in [30], the viewing space can be restrained in order to simplify the image

representation. Another concern in this stage is to serve users with rendered images at

a certain level of quality, providing smooth transition among neighbor views.

We assume that rendered views are generated based on user commands at the receiver

by decoding the bitstream at the storage unit and applying linear mapping on part of
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the panorama faces which are within the field of view of the user according to its viewing

direction. This process along with the next stage, i.e., image sequence transmission can

also be considered as a video transcoding stage.

1.1.6 Image Sequence Transmission

As already mentioned, according to the user commands, part of the stored data must

be decoded and converted to proper bitstream format to be transmitted through the

communication channel. Standard video coding schemes can satisfy the requirements

for compressing the rendered image sequence very well. This notion benefits from the

compatibility that the standard provides with other third-party developed software or

hardware.

A quick review of image and video compression standards and techniques is pro-

vided in section 2.3. Notice that as we will see later, motion/disparity estimation and

compensation play a very important role here.

In addition to the streaming output of rendered image sequences, some auxiliary

information and augmented multimedia contents can be combined in the transmitter

multiplexer. Packet techniques can be utilized to map the multiplexed source data to

the transmission layer. Error resilience tools can also be applied for error-prone commu-

nications like streaming over Internet and wireless mobile communications, which is not

studied in this thesis. A transmission buffer can also be designed to regulate the output

bit-stream rate to fit the band-width limitations of the communications channels.

Since this is very close to the idea of video transcoding, this concept and different

kinds of application scenarios is explained in section 2.5.

1.1.7 Virtual Environment Navigation

A user should be able to navigate in the environment freely by interactively requesting

new data at the receiver side. Through proper interfaces, such as mouse, joystick or a

keyboard, control signals are issued to the transmitter side in real-time. With each view

point and view direction, data corresponding to the requested novel view is extracted

from the storage bitstream, converted through a transcoding process and transmitted

through the communication channel. Figure 1.7(a) shows an orientation-location map.

A screen shot of the NAVIRE viewer [31] is shown in Figure 1.7(b).
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(a) Graph of panorama locations

(b) Display interface of the cubic panorama viewer

Figure 1.7: Graph of panorama locations and the interface
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1.2 Features of Image Datasets

In this section features of the image dataset used for virtual navigation are described

from the view point of image dataset analysis for compression and transmission. These

features, if exploited well, can enable us to meet the requirements for image dataset

compression and image sequence transmission explained in the subsequent section.

1.2.1 Image Dataset as Samples of Simplified Plenoptic Func-

tion

Mathematically, IBR techniques can be investigated by making use of the plenoptic

function [30] representing the intensity distribution of light rays in a three dimensional

space. In its most general form, the plenoptic function is a seven-dimensional function

which can be expressed as:

LP = fP (Px, Py, Pz, θ, ϕ, λ, t), (1.1)

representing the light ray intensity LP of any wavelength λ, at any position (Px, Py, Pz),

towards any direction (θ, ϕ) and at any time t in a three-dimensional environment space

(Figure 1.8). An IBR technique can be considered as a method for determining the values

of the plenoptic function corresponding to required orientations and viewpoints.

The plenoptic function in general corresponds to a complicated high-dimensional

multi-variable data structure, which makes image dataset compression more difficult to

deal with. As explained in [32] there are six commonly assumptions that can be used in

order to restrain the viewing space and reduce the amount of data respectively. Some of

those assumptions can be applied here and are explained below:

First, the wavelength variable can be removed from the plenoptic function by sim-

plifying the wavelength dimension into three channels, i.e., the red, green, and blue.

Subsequently, each color component can be investigated separately:

LP → LP6 = fP6(Px, Py, Pz, θ, ϕ, t) (1.2)

Second, the time variable t can be removed from the expression because the environ-

ment under discussion is assumed to be static.

LP → LP5 = fP5(Px, Py, Pz, θ, ϕ) (1.3)
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Figure 1.8: Generalized seven-dimensional plenoptic function representation of light ray

distribution in a three-dimensional space

Instead of moving in the 3D space, the viewer is constrained to be on a surface, e.g.

the ground plane. The plenoptic function can then be reduced one dimension as the

viewers space location becomes 2D.

LP → LP4 = fP4(Px, Py, θ, ϕ) (1.4)

If the viewer moves along a certain trajectory, that is the viewer can move forward

or backward along the trajectory, but s/he can not move off the trajectory, the function

will reduce one dimension.

LP → LP3 = fP3(Trajectory, θ, ϕ) (1.5)

This 3D plenoptic function scenario will be studied in our work and the second last

4D plenoptic function will be considered as an extension scenario. Although restraining

the viewing space reduces the amount of data in each image dataset, the navigation

flexibility will be limited proportionately. Therefore we need to use other features of

image datasets for reducing the size and efficient representation of image datasets.
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1.2.2 Large Number of High-Resolution Basis Images

High sampling rates are required to avoid aliasing when capturing the environment data.

In order to completely cover the represented environments and to be able to synthesize

any novel views at arbitrary viewpoints in the authorized navigation space, even higher

rates are required. The image dataset size is further increased in the case of representing

a large environment with a large navigation space and enabling good quality zoom in

image rendering based on high-resolution basis images. This results in a large number

of high-resolution basis images. The increased amount of data can be regarded as the

expense incurred to avoid the trouble of model building for photo-realistic rendering.

One can think of a minimal number of basis images by properly considering the

sampling theory and spectral analysis but even with minimum number of basis images,

the typical image datasets are still large in size and involve a huge amount of data. As

a result compression of the image datasets is unavoidable in order to reduce the size of

such image datasets and make the image-based virtual environment navigation plausible

in practice.

1.2.3 High Local and Cross-Image Redundancies

Thinking of basis images as the samples of simplified plenoptic functions, there exist

enormous redundancies in all dimensions. When the viewing path is restricted to a

predefined trajectory, image datasets exhibit redundancies in 3 dimensions, while if the

viewer trajectory is only restricted to a planar surface, these redundancies exist in 4

dimensions. When explaining the image based rendering techniques in section 2.1 other

types of constraints and the resultant datasets with different dimensionality will be men-

tioned.

In other words, all the basis images in the image datasets are image samples of the

same environment obtained from different viewing locations. This leads to tremendous

cross-image redundancy and due to this feature, high compression ratios are expected.

Note that the compression efficiency increases with the dimensionality of the plenoptic

function representation.
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1.2.4 Static Scene, Certain Pattern in Cross Image Displace-

ment

In a generic video sequence, image motion is caused by movements of the objects cap-

tured in the frame sequence as well as the camera motion when capturing the frames,

resulting in a complicated motion vector distribution. As mentioned before, in our study

we assume that the scene is static, that means there will be no moving object in the envi-

ronment to be captured. As a result motion, or better here to say displacement, is caused

only by camera motion. Although the depth distribution of the environment generates

some variations in the displacement distribution vector map, the dominant cross image

displacement constitutes a certain pattern corresponding to the camera motion pattern.

This cross-image displacement feature can be utilized efficiently to decrease computa-

tional complexity or equivalently improve the compression performance significantly.

1.2.5 Side Information

Image datasets are sometimes accompanied by certain types of side information, such as

camera pose or location, global motion parameters, etc. Such information can be used

for the purpose of exploiting image coherency and efficient compression of image datasets

with extra considerations taken into account for embedding and perhaps compression of

the side information.

1.3 Requirements for Image Dataset Compression

Requirements for image dataset compression can be summarized as high compression

ratio, high quality, random access, selective decoding, view scalability, low decoding

complexity, fast transcoding, memory constraints, and extendability to higher dimen-

sions.

1.3.1 Compression versus Quality

High efficiency for image dataset compression is the main objective and fundamental

requirement to make image-based virtual environment navigation available in practical

applications. High-resolution basis images with high local and cross-image redundan-

cies have the potential for achieving high compression efficiency. The other challenge,
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besides achieving high compression ratio, is to obtain high compression efficiency and

simultaneously to satisfy other requirements for compressing the image dataset.

The coded basis images should be kept in uniform and high image quality as these

images will be used as input images to synthesize novel-view images and may be displayed

as still images for interactive virtual environment navigation. In conventional video

sequence coding, bit-rate control techniques are applied to adjust the coding parameters

generating coded images with different image qualities related to the image display order

while in image-based virtual environment navigation the access to basis images and the

generation of synthesized images are randomly controlled by user and there is no fixed

order for displaying them.

The human visual system (HVS) also generally has a smaller distortion tolerance to

still images than time-variant image sequences. As a result since both the basis images

and the synthesized images can be required to display as still images at the navigation

stage, basis images and synthesized images are expected to be of high quality.

Here the fact that all data is available offline prior to the compression stage is impor-

tant to notice. It means an asymmetric codec scheme with higher encoding complexity

and lower decoding complexity will be most useful. That is because all the encoding

processing will be done offline where not a highly restricting time constraint exist. On

the other hand, side information obtained in the encoding process can be exploited in

real time when decoding is being performed to speed up the view generation process.

1.3.2 Random Access, Selective Decoding, and View Scalability

The generated bitstream at the storage unit needs to be highly randomly accessible. In

conventional video coding schemes, random access is usually provided at some intra coded

frames while subsequent frames are being predicted from the previous ones. Hence to

reconstruct a frame, all preceding frames up to the intra coded frame should be decoded

first. This may cause no serious harm because in standard video sequences, the order

of encoding, decoding, and display are usually known in advance, but in image based

virtual environment navigation no such predefined frame sequence order exists. The user

has the ability to navigate the environment freely in an interactive manner. Not only

s/he may start the navigation at any desired frame, but s/he might want to navigate in a

direction which is not known in advance. Notice that the time variable t in standard video

compression scenario is replaced with view location in a virtual navigation system. The

above mentioned requirement is similar to the problem of reverse browsing of standard
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video sequence.

Another important issue is random access within each panoramic basis image. We

know that the field of view of human eyes is limited, and a user at each time instant

needs to access only part of all data available within a panoramic image basis. This

requirement is called selective decoding and the cubic format of panoramic images can

help in achieving this requirement down to the cube face level.

One other requirement is that different users might prefer different virtual walk-

through speeds. In other words, starting navigation at a given frame and a certain

direction, a user may choose normal speed, or wish to navigate with faster or slower

speeds. The latter is associated with frame interpolation and novel view generation while

the former is associated with view scalability. This is analogous to temporal scalability

in standard video sequence coding.

1.3.3 Decoding Complexity, Transcoding, and Memory Con-

straints

In practice captured panoramic image datasets will be encoded once and stored in the

storage unit. On the other hand, the resultant bitstream will be reused several times,

accurately speaking, anytime a new user asks for access to stored data. As a result, the

encoder is allowed to be of higher complexity while the decoder should be kept at lowest

possible complexity, especially for some applications targeting real-time IBR without

hardware assistance.

Since the user commands a new viewing location and view direction each time, the

overall delay for decoding stored data and putting the generated views together to be

passed through the channel should be small. Decoding an existing bitstream followed

by encoding the video sequence with new coding parameters is called video transcoding

which will be surveyed in section 2.5.

The decoding speed is affected by the random access mechanism, the selective-

decoding ability as well as the decoding complexity. Usually fast decoding requires that

the average decoding time should not exceed a prescribed value, e.g. 0.03 or 0.04 second

for real-time video sequence display.

In comparison with the application at hand, if real-time image sequence display is

required for the synthesized image sequences, it means that the basis image decoding

time and the interactive image sequence rendering time put together should not exceed

the prescribed time limit. Thus less time will be left for the decoding process itself
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compared to the conventional video decoding. As a result fast decoding becomes a more

challenging requirement in the design of image dataset compression schemes.

Memory requirements is another issue which should be taken into account. The num-

ber of frames which are required to be stored in the server local memory to reconstruct

some desired frame will introduce limitations both in terms of introduced delay and local

memory requirements and this should be kept in mind when designing a group of pictures

(GOP) format.

1.3.4 Extendability to Higher Dimensions

As mentioned before, the 3D plenoptic function scenario will be studied where a pre-

defined trajectory is assumed to exist in the image acquisition process up to the ren-

dering stage. The higher 4D scenario, where no such predefined trajectory exists in

the 2D ground plane, or even a 5D dataset scenario can be envisioned where the user

trajectory involves moving above the ground plane. Any compression scheme which is fi-

nally adopted for storage should be conveniently extendable to higher dimensional signal

spaces. In the ultimate scenario the user won’t be limited to a predefined trajectory and

would be able to navigate any location within the ground plane for which captured basis

images are available. All above mentioned compression, random access, decoding speed,

etc., is better to be dealt with keeping this extendability along with other requirements

in mind.

1.4 Requirements for Image Sequence Transmission

Requirements for image sequence transmission consist of efficient image dataset compres-

sion, high quality, users’ variable spatial resolution capabilities, repeatability, memory

constraints, and error resiliency.

1.4.1 Compression versus Quality

A video compression standard such as H.264 AVC can potentially be used to generate a

virtual camera sequence by extracting required data from the bitstream to produce the

real-time video camera, according to the user navigational commands.

Here the compression efficiency as well as the computational complexity are the most

important requirements for transmission as it was in compression for storage case. Note
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that the image quality and compression efficiency of the virtual video sequence to be

transmitted through the channel will be directly affected by the quality and efficiency of

the stored bitstream in the storage unit. Much analysis of the dataset can be done offline

and should be used to efficiently and quickly generate such rendered video sequence.

1.4.2 Different Spatial Capabilities

Since this is assumed to be a navigation system used by different users, one point that

should be considered is that viewers may have different capabilities in terms of spatial

resolution of the desired virtual camera. In this case, the decoded data should be pro-

cessed quickly to be able to generate a virtual camera sequence of the desired spatial

resolution, which might be of the similar quality as the reference stored image basis

dataset, or of lower spatial resolution. Notice that a transcoding-like scheme is being

applied, therefore we don’t name this requirement spatial scalability. Any virtual camera

sequence is unique and will be used by a single user and hence no spatial scalability is

necessarily required at the bitstream level. But a single user’s capability may vary from

mobile phone displays up to high definition television, and this requirement can be taken

into account.

1.4.3 Repeatability, Memory Constraints, and Error Resiliency

Unlike conventional video sequence standards, the user might want to repeat navigation

of part of the environment more than once. Examples are when the user turns back and

virtually walks in the opposite direction. In such cases, the information which has been

already sent to the user might need to be exploited again and there should be no need to

retransmit old data again. Addressing this requirement can save the bandwidth usage

to a great extent.

Another example is when the user stops walking and starts looking around while

standing virtually at the same spot. Here s/he even might look back after a short time

again at the same direction as he was looking originally when s/he arrived to that spot.

In such cases, a cache memory at the receiver can be devised to provide this flexibility.

In order to meet the above requirement, local memory constraints at the receiver should

be taken into account.

Another advantage of such an idea is to provide error resiliency. If for some reason

part of data is lost through the communication channel, the existing information at the
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receiver side about neighbor viewing locations or the same location but in different view

directions can be used to conceal the loss occurred in the transmission stage.

1.5 Summary and the Road Map

In this chapter an image based virtual environment navigation system and its compo-

nents, from early raw image acquisition stage to the final environment navigation stage,

was explained first. Each of these parts consist of many subsections and need separate

care and research on their own and our goal was to provide the big picture for the reader

of this introduction. Subsequently, features of the image datasets which will be exploited

throughout this thesis were explained, followed by the major analysis requirements for

the compression and transmission stages.

In chapter two a survey of different existing concepts and existing solutions in the

area of image and video processing which are related to our work will be presented.

Here proposed approaches will be summarized without going through details. As

already mentioned, image dataset analysis for storage and transmission constitutes the

main concern of this thesis. We have noticed that before the compression stage, some

preprocessing techniques are required and should be applied on the basis images, mainly

because the captured images, although already preprocessed for improved quality, are

not aligned in relation to each other. When a video sequence is created by concatenating

a series of such images, in a manner which will be explained later, the transition among

the viewpoints may not necessarily be smooth and a jitter effect might be visible.

In the third chapter we present a novel method to alleviate this problem, that is a

reliable algorithm for cubic-panoramic image dataset alignment as the first contribution

of our work. A quantitative measure for the panoramic image dataset alignment is

introduced and exploited in order to test the performance of the proposed algorithm.

The presented approach will be used for higher dimension, that is the case of navigation

on a plane rather than a predefined trajectory.

In chapter four a comprehensive comparison is made between the existing compres-

sion schemes by running simulations on already preprocessed panoramic image datasets.

First, the standardized compression scheme, namely H.264 advanced video coding (AVC),

is applied to compress the captured image datasets, then results are compared with that

of a state of the art wavelet-based implementation, namely Dirac codec [33] which is one

of the main rivals of the standardized method. Different measures will be used for evalu-

ation and comparison, namely Peak Signal to Noise Ratio (PSNR), Structural Similarity
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(SSIM), and subjectively through image frames and constructed videos.

After this stage, the best scheme is adopted and, within this framework, the efficient

prediction structure among frames, equivalently the cube faces, is sought by examining

different possible frame types and structures. As it will be shown, different Group Of

Picture (GOP) structures as well as different GOP sizes are tested and compared to

each other in order to find the optimum solution. Then, the bitstream syntax and the

prediction structure is extended to the higher dimension and eventually the final proposed

bitstream syntax is presented there. Results up to this point will be presented in chapter

four.

In chapter five novel methods are proposed, mainly in order to reduce the computa-

tional complexity in disparity estimation. Those ideas include the following:

• Finding global displacement parameters among panoramic images and applying

the epipolar constraint in order to improve the computational complexity of the

compression scheme.

• Exploiting a video transcoding like scheme to link the stored data to the communi-

cation channel and respond to the requests for new views issued by the remote user.

Computational complexity and random access would be the main requirement at

his stage.

• Reducing the computational complexity or data size, by exploiting the available

information in case of pan, tilt, and zoom requests, i.e., user navigating within a

single viewpoint.

Our results are obtained using image datasets captured on campus and in the city.

Specifically, twelve image datasets with different characteristics were captured and are

tested throughout this work. These images are captured indoor and outdoor, on a pre-

defined trajectory and on a rectangular grid, on a single straight line and on a group of

connected trajectories, on a linear path and on a semicircular path, etc. The outcome

of our comprehensive image acquisition stage can be considered as a database for future

testing and comparison purposes. Results obtained by testing the proposed approaches

on the above-mentioned captured data are presented at the end of corresponding chapters

respectively.

More details will be provided in the corresponding sections in chapters three, four, and

five where the proposed methods and the corresponding results are presented respectively.

Finally, chapter six is dedicated to the conclusion and future directions.



Chapter 2

Background

In this chapter we present the background, state-of-the-art, and the required definitions

which may be referred to and used later throughout this thesis. The topics covered are

varied and each subject is explained quite briefly in order to avoid the loss of the big

picture. In the first section image-based rendering techniques are introduced as the start-

ing point of our literature review. In the subsequent section, different approaches toward

compression of the image datasets are summarized and compared briefly. Since standard-

ized compression schemes are of interest in our research, the existing image and video

compression [34, 35] standards are listed and reviewed in the subsequent section. Im-

age matching techniques constitute an essential block in video processing, besides many

other image and video processing applications, hence these techniques are categorized

in the subsequent section. Then, different possible video transcoding scenarios, which

will be referred to later in the transmission stage of the virtual navigation system, are

summarized. Finally, multi-view video coding as a recent area of research, that can be

considered as the extended version of the standard single-view video coding, is addressed

through the introduction of a few existing research papers that are most relevant in one

way or another. At the end of this chapter, the reader should have obtained the required

knowledge regarding the context and the existing background on which our work is built

up.

2.1 Image-Based Rendering Techniques

We start this section by providing the definition of image-based rendering. According to

[32]:

23
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IBR Dim. Observe

Space

Rendering Method Ref.

Panoramas 2D fixed point image warping and re-

projection

[2]

[22]

[26]

Concentric

mosaics

3D circular area interpolation of image

slits based on basis image

columns

[16]

Light field

rendering

4D rectangular

area

re-sampling and assem-

bling the basis images

[36]

Plenoptic

stitching

4D unobstructed

area

stitching image columns

derived from recoded

omni-directional images

[37]

Table 2.1: Representative IBR techniques without geometric data

Image-Based Rendering Given a continuous plenoptic function that describes a scene,

image-based rendering is a process of two stages - sampling and rendering. In the

sampling stage, samples are taken from the plenoptic function for representation

and storage. In the rendering stage, the continuous plenoptic function is recon-

structed from the captured samples.

Although studying image-based rendering techniques on its own is not the major is-

sue of concern in this thesis, basic acquaintance with the subject will help the reader to

better place our work within the existing literature. As it was explained it the previ-

ous chapter, the plenoptic function is originally a function of seven continuous variables.

However, as mentioned in [32], up to 6 assumptions might be made to restrain the view-

ing space. Restraining the viewing space is one way to make the image-based rendering

data manageable. Introducing source descriptors is an alternative way and includes scene

geometry, the texture map, the surface reflection model, etc. These latter methods can

reduce the overall number of necessary light rays to be captured by using the correspon-

dence among the light rays. Here we will not go through more details regarding the

source descriptors, but we will rather summarize the 6 assumptions which can be used

to increasingly restrain the viewing space:

Assumption 1 Wavelength dimension may be simplified into three channels, i.e., the
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red, green and blue channels;

Assumption 2 The air may be assumed to be transparent, in other words, we won’t

need to record the radiance of a light ray at different positions along its path, as

they are all the same;

Assumption 3 The scene may be static, hence the time dimension can be dropped;

Assumption 4 The viewer position may be constrained to lie on a surface;

Assumption 5 The viewer may move along a certain trajectory;

Assumption 6 The viewer may have a fixed position.

As it was shown in the previous chapter, we used assumptions 1, 3, 4, and/or 5 and

ended up in the specific 3D or 4D representations that we will be working on throughout

this thesis. A different set of viewing space constraints will result in different represen-

tations, including light field [36], lumigraph [38], and concentric mosaics (CM), to name

a few.

2.1.1 Rendering With No Geometry

The above-mentioned IBR representations fall into the category of rendering with no

geometry [39]. This is the category of interest for us, since it is the most practical

assumption that can be considered so long as the ease of the image acquisition stage

in the virtual navigation system is emphasized. As shown in [10], representative IBR

techniques without geometry data are summarized in Table 2.1.

The two other rendering categories include rendering with implicit geometry and render-

ing with explicit geometry:

2.1.2 Rendering With Implicit Geometry

This is a class of techniques that rely on positional correspondences across a small number

of images in rendering new views. The term implicit is used to emphasize the fact that

geometry is not directly available; rather 3D information is computed only using the

usual projection calculation. New views are computed based on direct manipulation of

these positional correspondences, which are usually point features. They include view

interpolation, view morphing [40], and transfer methods.
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2.1.3 Rendering With Explicit Geometry

In this class of techniques, the representation has direct 3D information encoded in

it, either in the form of depth along known lines of sight, or 3D coordinates. These

techniques include 3D warping, layered depth image rendering [41], and view-dependent

texture mapping.

Sampling and Compression constitutes the two remaining areas of significance in the

area of image-based rendering, beside the above-mentioned topic of Representation. The

main question in Sampling is the following: ”How many samples do we need for anti-

aliasing reconstruction?”. However, Compression is the topic of interest from our point

of view and will be looked into in the following section.

2.2 Image Dataset Compression

In general, there are two major methods to reduce the data size of image-based repre-

sentations. The first one is to reduce the dimensionality, often by limiting viewpoints

or sacrificing some realism, as it was explained in the previous sections. The second

approach, which is more classical, is to exploit the high correlation, or alternatively re-

dundancy, within the specific representation using waveform coding or other model-based

techniques. The second approach itself can be classified into three broad categories [39],

namely:

1. Pixel-based methods;

2. Disparity compensation/prediction (DCP) methods;

3. Model-based/model-aided methods.

In pixel-based methods, the correlation among adjacent image pixels is exploited

using traditional techniques such as vector quantization (VQ) and transform coding.

On the other hand, wavelet-based schemes and standardized compression schemes are

two examples of the DCP methods and will be described below. Finally, model-based

approaches, the area which is out of the scope of this thesis, recover the geometry of

the objects or scene in coding the observed images. In this approach, the models and

other information such as prediction residuals or view-dependent texture maps are then

encoded.
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Figure 2.1: Block diagram of a standardized compression scheme

2.2.1 Vector Quantization Based Schemes

The vector quantization based schemes [36, 42], like other pixel-based methods, utilize

the correlation only among adjacent image pixels and very little geometry information

is used. VQ based schemes are easy to implement and in some cases the random access

problem is usually less complicated. However, their compression performance is limited

compared to the other approaches.

2.2.2 Standardized Compression Schemes

In the DCP methods, scene geometry is utilized implicitly by exploiting the disparity

among neighbor frames/images, to achieve better compression performance. The term

Disparity refers to the relative displacement of pixels in images taken in adjacent phys-

ical locations. Disparity, which has been utilized in coding stereoscopic and multi-view

images, is analogous to the concept of motion of objects in classical standardized video

coding.

Standardized compression schemes [43, 44] are examples of the so called DCP meth-



2 Background 28

Cross-Image
Displacement

Estimation

Cross-Image
Discrete Wavelet

Transform

Spatial Discrete
Wavelet

Transform

Uniform Scalar
Coefficient

Quantization

Embedded
Entropy
Coding

Basis images of
cubic-panorama
image datasets

Displacement
vector fields &
basis images

Decomposed
wavelet

coefficients

Decomposed
wavelet

coefficients

Quantized
decomposition

coefficients

Streaming basis
images

Figure 2.2: Block diagram of a typical wavelet-based scheme

ods. In Figure 2.1 we have shown the block diagram of a standardized video compression

scheme, which has been adopted to be applicable for compression of our image-based

environment representations. The feedback loop is responsible for exploiting the afore-

mentioned disparities among adjacent images in order to facilitate achieving a high com-

pression ratio. The discrete cosine transform (DCT) module utilizes redundancies among

adjacent pixels inside the basis image. The Quantization block [45] exploits another type

of inherent redundancies by properly quantizing the amplitudes of the DCT coefficients.

Finally, the function of the entropy coding block is to exploit entropy redundancies, and

these building blocks altogether are aimed to produce an output bitstream which is much

smaller in size as compared to the input image dataset. The concept of motion estima-

tion/compensation is replaced with disparity estimation/compensation, Motion Vector

(MV) with Disparity Vector (DV), frame with basis image, and so on.

The standardized video compression scheme has been called block based hybrid cod-

ing in the literature because motion or disparity among neighbor frames/images are

estimated on image blocks (usually of size 4 × 4 or 8 × 8) and also because a combi-

nation of the DCT and motion/disparity estimation are used to exploit both inter and

intra frame redundancies in realizing an efficient video or image dataset compression

algorithm.

2.2.3 Wavelet-Based Schemes

Wavelet-based schemes [46, 47] are alternative DCP based solutions to the problem

of the image dataset compression. Compared to the standardized methods, two major

differences can be pointed out: First, the redundancy among neighbor images is exploited

using discrete wavelet transform (DWT), which is called Motion Compensated Temporal

Filtering (MCTF) in case of conventional video coding, as compared to the block based

disparity estimation which works based on discrete cosine transform. Second, no explicit
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Compression

Scheme

Compression

Efficiency

Structure

Complexity

Scheme Character-

istics

References

VQ-based scheme Low Low Simple fast decod-

ing, easy random

access and selective

decoding

[16], [36],

[42], [48]

Standardized base

scheme

High Moderate well-developed,

widely-applied

coding techniques

[43], [44],

[49], [50],

[51], [52]

Wavelet-transform-

based scheme

High High temporal, spatial,

and quality scala-

bilities

[46], [47],

[53], [54]

Table 2.2: Comparison of the coding schemes for image dataset compression used for

image-based virtual environment navigation

feedback loop is used as redundancies are exploited once and among a predefined number

of pictures (basis images) as compared to the case for the block based hybrid coding

method where disparities are estimated among two usually adjacent neighbor frames

and the procedure is repeated each time a new frame is to be encoded.

As compared to the block based hybrid coding scheme, the DCT block is replaced with

spatial DWT block and the feedback loop is replaced with the cross-image displacement

estimation and cross-image DWT (see Figure 2.2). An interesting feature of the wavelet-

based scheme is the video scalability characteristic, most importantly spatial scalability

and temporal scalability (the latter can be called across-viewpoint scalability for the

modified case). Therefore, embedded entropy coding has become plausible which means

partial decoding of the output bitstream, depending on the user requirements and channel

capacity, will result in low resolution versions of the original data.

However, since more than two frames are used in the cross-image disparity estima-

tion, the cross-image displacement estimation and the cross-image DWT will cause the

problem of unconnected pixels which should be addressed properly, and existing tech-

niques known as lifted motion-compensated wavelet transform are potentially applicable.

Nevertheless, unlike standardized compression schemes, this method has not been stan-

dardized yet; instead, different solutions and research papers each responding to specific
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requirements have been proposed. The compression efficiency and structure complexity

of the three above mentioned method are compared in brief in Table 2.2 [10] along with

the scheme characteristics and relevant references.

At the end of this section, notice than among the three type of panoramas, i.e.

cubic, cylindrical, and spherical, in the latter case, applying the harmonic transforms

and convolutions takes a different form due to different sampling nature of the spherical-

panoramic images. Our concern in this thesis is the cubic format. For a study on

spherical harmonic transforms and convolutions the reader may refer to [23].

2.3 Image and Video Compression Standards

As it has been shown so far, many image dataset compression methods in the literature

benefit from existing standardized video coding structures. In this section a quick review

of the image and video compression standards from JPEG to H.264/MPEG-4 AVC [55]

as well as the emerging standard is provided:

2.3.1 JPEG and JPEG2000

Standardized coding of still pictures was first introduced in mid 1980s. A collaborative

work between International Telecommunication Union (ITU-T) and International Stan-

dards Organization (ISO) resulted in the well known JPEG standard [56]. It is a DCT

based algorithm. After the quantization stage, coefficients are variable length coded us-

ing Huffman method for entropy coding. The standard has become very flexible. As

an example, the encoder is parameterizable hence the desired rate distortion trade-offs

can be determined based on the application. There are applications in which the JPEG

standard is used in video coding, which are called motion JPEG. However, temporal

redundancy across frames is not exploited.

At the turn of the new millennium another standard called JPEG2000 [57, 58, 59]

was introduced in response to increasing demands for multimedia, internet, and a variety

of digital imagery standards. It is a wavelet based standard providing better compres-

sion ratio and scalability features. Three major wavelet-based image coding techniques

developed in the literature over time are Embedded Zero-tree Wavelet (EZW) encoding

[60], Set Partitioning in Hierarchical Trees (SPIHT) [61], and Embedded Block Coding

with Optimal Truncation (EBCOT) [62], the latter being used in JPEG2000. At last, it

is worth to mention that, in a manner similar to motion JPEG, motion JPEG2000 has
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also been used in video applications.

2.3.2 H.261

H.261 [63] is the first widely used video codec initially made for video conferencing

applications. The concept of hybrid codec uses DCT transformed coefficient to exploit

spatial redundancy along with temporal prediction to exploit temporal redundancy of

data to be encoded. Residual error is DCT-transformed, quantized, and entropy coded

by a Variable Length Coding (VLC) module. Each quantized block is zigzag scanned

before entropy coding (Huffman coding is used). A loop filter is inserted in the prediction

loop in order to reduce the blocking effect. A buffer is used for rate control before the

encoded data is transmitted through the channel. Different macro-block types are defined

based on motion compensation or no motion compensation decision and inter or intra

mode decision. It is interesting to notice that motion estimation module was originally

optional in this standard.

2.3.3 MPEG-1

MPEG-1 [64] was introduced in response to the industry need for an efficient way of

storing visual information on storage media other than the conventional analogue Video

Cassette Recorders (VCR). The concept of bidirectional prediction and B pictures was

introduced for the first time to provide higher compression ratio, hence preprocessing

and picture reordering became necessary. Since B pictures are disposable by nature,

temporal scalability and fast play was achieved. Motion estimation was considered more

seriously, especially motion estimation with half a pixel precision. Rate control and

adaptive quantization among I, P, and B frames were addressed.

2.3.4 MPEG-2

MPEG-2 [65] was initially introduced for broadcasting purposes. Therefore different

channel and decoder capabilities should have been met. The concept of level and profile

was introduced to categorize different requirements. Interlaced video coding mode was

introduced in addition to the conventional progressive coding mode which resulted in a

new combination of field/frame prediction. Due to different users and channel capacities,

the concept of scalability was introduced including temporal, spatial, SNR and hybrid

scalability.
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2.3.5 H.263

In H.263 [66] the goal was to achieve low bit rate communications due to huge amount

of data and channel bandwidth limitations at the time. Coefficients and motion vec-

tors were coded differently. Some optional modes were introduced in order to increase

the compression ratio. Advanced motion estimation/compensation was applied includ-

ing unrestricted motion vector, four motion vectors per macro-block, overlapped motion

compensation all appreciating importance of motion compensation more seriously. Also

this scheme added the de-blocking filter [67] and motion estimation/compensation with

spatial transforms. B pictures were treated differently resulting in the concept of PB

frames. Advanced variable length coding was used including arithmetic coding, reversible

variable length coding, re-synchronization markers, and advanced intra/inter VLC. Pro-

tection against error was also important, including forward error correction, back channel,

data partitioning, error detection by post-processing, intra and inter-frame error conceal-

ment, loss concealment, and selection of best estimated motion vector. Scalability was

extended to multi-layers. Buffer regulation was also addressed.

2.3.6 H.264/MPEG-4 AVC

H.264/MPEG-4 AVC [68, 69, 70, 71, 72, 73] was considered as the solution to future needs

to cover long term requirements of video compression. The rate distortion performance

was much higher than the existing standards and about 50 percent bit saving were

achieved as compared to H.263 standard. Major differences are listed here:

• Introduction of integer transform;

• Much larger number of motion compensation block sizes;

• Higher precision of motion estimation;

• Multiple reference frames;

• Introduction of SI/SP frames [74, 75];

• De-blocking filter as part of core H.264;

• Hierarchical B Pictures [76].
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For ITU-T recommendation for H.264 see [77], for H.264/AVC reference software

manual see [78], and for text description of joint model reference encoding methods see

[79].

2.3.7 HEVC

At the time of submitting this thesis, we noticed that the new generation of video com-

pression standard known as High Efficiency Video Coding (HEVC) [80] is being prepared

as the newest video coding standard of the ITU-T Video Coding Experts Group and the

ISO/IEC Moving Picture Experts Group. An increasing diversity of services, the grow-

ing popularity of HD video, and the emergence of beyond-HD formats (e.g., 4k × 2k

or 8k × 4k resolution) are creating even stronger needs for coding efficiency superior to

H.264/MPEG-4 AVC’s capabilities. The need is even stronger when higher resolution is

accompanied by stereo or multiview capture and display. Moreover, the traffic caused

by video applications targeting mobile devices and tablet PCs, as well as the trans-

mission needs for video-on-demand services, are imposing severe challenges on today’s

networks. An increased desire for higher quality and resolutions is also arising in mobile

applications.

HEVC has been designed to address essentially all existing applications of H.264/MPEG-

4 AVC and to particularly focus on two key issues: increased video resolution and in-

creased use of parallel processing architectures. The first edition of the HEVC stan-

dard is expected to be finalized in January 2013. Additional work is planned to extend

the standard to support several additional application scenarios, including extended-

range uses with enhanced precision and color format support, scalable video coding,

and 3D/stereo/multiview video coding. In ISO/IEC, the HEVC standard will become

MPEG-H Part 2 (ISO/IEC 23008-2) and in ITU-T it is likely to become ITU-T Recom-

mendation H.265.

2.4 Image Matching Techniques

As it was shown before, disparity estimation is an integral part in any image dataset

compression scheme beside many other applications such as computational stereo [81].

Computational stereo refers to the problem of determining three-dimensional structure

of a scene from two or more images taken from distinct viewpoints and has many appli-

cations, e.g. in turning images into 3D models [82]. In such a problem, matching pixels
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in one image with their corresponding pixels in the other image plays an important role

because disparities can reveal useful information about the depth of the real world points

matched between the two images. As we will see later, for static scenes the search range

can be reduced to one dimension or equivalently, the search can be limited on a scan-line

called the epipolar line. Obtaining disparities among images implies information about

the depth and geometry of the scene which is useful in computational stereo especially in

order to reduce the computational complexity. In an analogous way, if match points are

properly found, high compression ratios can be achieved in an image dataset compression

application.

All of the existing correspondence methods use specific constraints when attempting

to match pixels in one image with their corresponding pixels in the other image. Con-

straints defined on a small number of pixels surrounding a pixel of interest are referred to

as local constraints and similarly constraints defined on some scan-lines or on the entire

image are loosely referred to as global constraints. Local and global constraints in most

of the applications usually rely on two views, however there are applications where more

than two views are used for finding correspondences.

Local methods can be very efficient, but they are sensitive to locally ambiguous

regions in images, e.g. occlusion regions or regions with uniform texture. On the other

hand, global methods can be less sensitive to these problems since global constraints

provide additional support for regions difficult to match locally. However, the global

methods are computationally more expensive. According to [81] local methods in short

include the following:

Block Matching Search for maximum match score or minimum error over small region,

typically using variants of cross-correlation or robust rank metrics.

Gradient-Based Optimization Minimize a functional, typically the sum of squared

differences, over a small region.

Feature matching Match dependable features rather than intensities themselves.

On the other hand, global methods can be categorized as below:

Dynamic Programming Determine the disparity surface for a scan-line as the best

path between two sequences of ordered primitives.

Intrinsic Curves Map epipolar scan-lines to intrinsic curve space to convert the search

problem to a nearest-neighbors lookup problem.
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Graph Cuts Determine the disparity surface as the minimum cut of the maximum flow

in a graph.

Nonlinear Diffusion Aggregate support by applying a local diffusion process.

Belief Propagation Solve for disparities via message passing in a belief network.

Correspondence Methods Deform a model of the scene based on an objective func-

tion.

We will hear more about local methods later in this thesis, especially block matching

and feature matching approaches. The block matching method is adopted in standardized

compression schemes such as H.264. These methods seek to estimate disparity at a point

in one image by comparing a small region about that point with a series of small regions

extracted from the other image. Usually, three classes of metrics are used for block

matching: correlation, intensity differences, and rank metrics.

Normalized Cross Correlation (NCC) is the standard statistical method for deter-

mining similarity. Its normalization, both in the mean and variance, makes it relatively

insensitive to radiometric gain and bias.

The Sum of Squared Differences (SSD) metric is computationally simpler than cross

correlation, and it can be normalized as well:

SSD(d1, d2) =
∑
n1,n2

(IB,c[n1, n2]− IB,r[n1 + d1, n2 + d2])
2 (2.1)

In addition to NCC and SSD, many variations of each with different normalization

schemes have been used. One popular example is the Sum of Absolute Differences (SAD),

which is often used for computational efficiency:

SAD(d1, d2) =
∑
n1,n2

|IB,c[n1, n2]− IB,r[n1 + d1, n2 + d2]| (2.2)

In addition to the above-mentioned correspondence methods, methods for occlusion

and real-time implementations are important issues that one will face in computational

stereo. Much of the stereo research in the last decade has focused on detecting and

measuring occlusion regions in stereo imagery and recovering accurate depth estimates

for these regions. The occlusion problem in stereovision refers to the fact that some points

in the scene are visible to one camera but not the other, due to the scene and camera

geometries. In [81] three classes of algorithms for handling occlusion are reviewed. They
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Figure 2.3: Block diagram of a heterogeneous video transcoder

include: methods that detect occlusion, methods that reduce sensitivity to occlusion,

and methods that model the occlusion geometry.

Real-time stereo implementation is also another issue of importance which is covered

in [81]. It is interesting to notice that although several approaches have been proposed

for the problem of disparity estimation in the literature, simple methods working based

on block matching are still adopted in most of the real time implementations due to their

minimal computational complexity.

2.5 Video Transcoding

Video transcoding, Figure 2.3, is the operation of converting a video from one format

into another format. A format is defined by characteristics such as the bit rate, frame

rate, spatial resolution, coding syntax, and content. One of the earliest application

of transcoding is to adapt the bit rate of a pre-compressed video stream to a channel

bandwidth. For example a TV program may be originally compressed at a high bit

rate for studio applications, but later needs to be transmitted over a channel at a much

lower rate. As the reader might have figured out, there is an analogy here again between

conventional video transcoding and similar concepts in image dataset compression and

transmission. As it is mentioned in [83] video transcoding techniques can be categorized

into the following types:

Bitrate Transcoding Three transcoding architectures for the bit-rate transcoding are

reviewed in [83]: open-loop transcoder, cascade pixel-domain transcoders, and

DCT-domain transcoders. The open-loop transcoders are computationally effi-
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cient. However, they suffer from the drift problem. The two other approaches have

been proposed to alleviate the problem.

Spatial and Temporal Transcoding The heterogeneity of communication networks

and network access terminals often demand the conversion of compressed video

not only in the bit rates, but also in the spatial/temporal resolutions. One of the

challenging tasks in spatial/temporal transcoding is how to efficiently reestimate

or map the target motion vectors from the input motion vectors.

Standards Transcoding In many application, video coded in one coding standard may

need to be converted to another standard besides the changes in bit rate and res-

olution. In [83] two examples are made to illustrate how the information obtained

from the input video sequence may be used to help the standards transcoding

process. The first one is MPEG-2 to MPEG-4 simple profile transcoding and the

other is MPEG-2 to MPEG-4 advanced simple profile transcoding. As we will see

later, this type of video transcoding will be useful in image dataset compression

and transmission, specifically when data need to be extracted from the storage unit

and sent to the user through the communication channel.

Transcoding Quality Optimization In video transcoding many useful statistics such

as the quantization step size, coding modes, coded bits of each macroblock and

frame, and motion vectors, can be easily obtained from the input video bitstream

to help the second pass encoding. Therefore, it is possible for the transcoder to

achieve better video quality than the direct one-pass encoding using the original

source. According to [83] technologies related to video quality optimization fit into

three categories, namely: requantization, rate control, and mode decision.

Information Insertion Transcoding Generally speaking, any operation that changes

the content of a compressed video stream may be regarded as video transcoding.

Two information insertion examples are discussed in [83]. First, logo or watermark

insertion where video watermarks and company logos are inserted into the com-

pressed bitstream for copyright protection. Second, error-resilience transcoding

where a video transcoder can be placed in a network node connected to a high-

loss network to insert error resilience features into the video bitstream to achieve

reliable video transmission over wireless channels.
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2.6 Multi-view Video Coding

Multiview video captured by synchronized cameras, from different viewpoints comprises

rich 3D information of a scene and is widely used as a signal of new types of visual

media such as 3DTV and Free viewpoint TV (FTV). However, it results in a tremendous

amount of data depending on the number of cameras. Thus, efficient compression of

multiview video is a key enabling factor for 3DTV and FTV applications. Multi-view

Video Coding (MVC) explores the interview statistical dependencies in addition to the

temporal ones. A major research topic in this direction is the prediction structure for

example, combined inter-view/temporal predictions are developed by several worldwide

groups. The MVC was released by the Joint Video Team (JVT) in 2008 as an extension

of H.264/AVC (Amendment 4).

Hur et al. in their paper [84] explain how to compensate the illumination mismatches

of the cameras. Using a mean removed SAD together with the conventional SAD during

the disparity vector estimation for a macroblock, illumination can be well compensated

with a small increase of the encoding complexity.

Merkle et al. present multiview video coding with optimized temporal and inter-view

prediction structures for efficient compression based on the H.264/AVC video coding

standard in their paper [85]. The idea is to exploit the statistical dependencies from

both temporal and inter-view reference pictures for motion compensated prediction. The

result shows that the prediction with temporal reference picture is very efficient, whereas

for about 20% blocks in a picture the prediction with reference pictures from adjacent

views is more efficient.

San et al. present in their paper [86] how incorporation of knowledge about scene
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geometry can improve disparity estimation and coding efficiency of MVC. Principles of

camera projection and epipolar geometry are efficiently exploited to improve inter-view

prediction.

A scalable MVC coding structure especially suited for interactive real-time viewing

is presented in the paper [87] by Kurutepe et al., where the base layer videos of all views

are compressed with high ratio, any two views in the enhancement layer are coded by

similar method, and the view selection is user driven. The enhancement layer provides

higher quality under a bit allocation policy for the base layer and for the enhancement

layer.

Analogies can be made between MVC and the specific type of image dataset which is

under study in this thesis. For example, at first sight, the six faces of a cubic panorama

can be considered virtually as captured views by some synchronized cameras. However,

since these virtual cameras are facing towards different directions, not much correlation

exist between any pair of such views and they do not share much visual information,

shown as dotted lines in Figure 2.4. But so long as the extended scenario of the 4D

signal, i.e., panoramic images captured on a rectangular grid, is considered, similarities

can be found with the idea of MVC already explained in this section. Notice that,

however, there exists another major difference, i.e., in MVC we are dealing with different

views and different time instances, while in our captured image datasets, no explicit

time dimension exists and we are always dealing with different views in either direction.

Nevertheless, we found it useful to finish our background chapter by introducing the idea

of MVC and a few relevant research papers.

2.7 Summary

To sum up briefly, in this chapter we first introduced image based rendering and re-

viewed the existing IBR techniques. Subsequently, existing image dataset compression

schemes were reviewed. Then, an introduction to image and video compression standards

and image matching techniques were presented. Afterwards, existing video transcoding

paradigms were explained followed by a quick survey of relevant issues in multiview video

coding. In the following chapters we will propose a number of ideas addressing image

dataset analysis and preprocessing of image datasets for storage and transmission.



Chapter 3

Image Dataset Acquisition,

Analysis, and Alignment

Panoramic images are a new type of visual data that provide many new possibilities as

compared to the classic planar images. Tele-presence and virtual navigation are examples

of such interesting applications. In order to enable smooth navigation across different

view points, we propose a method for aligning cubic-panorama image datasets by using

the concept of epipolar geometry. Unlike the existing method which is limited and

applicable to only one pair of panoramas, our approach is applicable on image datasets

with larger number of panoramic images. It will be shown that using our method no

extra numerical estimation is required. We also introduce a measure in order to enable

objective evaluations.

3.1 Introduction

Due to advancements in communication technologies, panoramic image datasets are going

to be used widely in upcoming applications such as tele-presence and we expect that this

will open up a new venue in the area of multimedia signal processing and communication

in the near future [1]. As explained before, in this work real images are preferred to

computer generated ones due to the lower costs and further realism they can provide.

This work is part of the NAVIRE project at the University of Ottawa which aims at

developing the necessary technology to allow a user to virtually walk through in an

image-based representation of a remote environment.

For the processing and storage of panoramic images, several representations have

40
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been proposed, including cylindrical and spherical. This work focuses on a cubic repre-

sentation of the image panoramas. The idea has been motivated and used by Bradley

et al. [1] and Apple in their QuickTime panorama viewer [2]. Cubic panoramas offer

numerous advantages that make them attractive for our study: storage and rendering

are facilitated, they can be equivalently handled as set of perspective images, there exist

intrinsic relationships between the faces, implicit calibration information is available, etc.

Image dataset analysis and alignment are important issues and will be addressed in

this chapter. Image dataset alignment is required because usually the adjacent cubic

panoramas in the available image datasets, captured either indoor or outdoor, are not

aligned mainly due to the distance between the image capturing positions and camera

displacement, as compared to the conventional video where usually more than 15 frames

per second are captured. An alignment procedure will be required regardless of how much

attention has been taken into consideration by the camera operator and due to unknown

extrinsic camera parameters; if the original captured image dataset is used in virtual

navigation, some undesired effects will be perceived by the user of the navigation system

in real time. As a result, in a practical setting, extrinsic camera parameters should be

estimated and used in a reliable manner in order to align the captured panoramic images

and facilitate seamless virtual navigation within the real world environment.

Our goal is to apply an image rectification algorithm on datasets with a large number

of panoramic images, i.e. more than only a pair of them, in order to enable seamless

virtual navigation in a remote real-world environment. In estimating virtual camera pa-

rameters, two approaches exist, namely the fundamental matrix and the essential matrix.

The latter has the advantage of exploiting the entire set of correspondences among the

two adjacent panoramas, hence providing a more reliable and compact solution. How-

ever, the existing methods are not accurate, unable to facilitate seamless navigation on

image datasets with a large number of panoramic images, and no objective measure for

evaluating the results is presented. Here we will use the essential matrix and alleviate

the shortcomings of the existing work in the literature [7].

Finally, to see a work on alignment of cylindrical-panoramas, the reader is referred

to [20]. An alignment correction method is proposed in their work based on the dense

disparity map between panoramas. However, unlike the approach that we are going to

use, this is a featureless and un-calibrated solution to the alignment of closely taken

panoramic snapshots.

This chapter is organized as the following: in the next section we present a quick

review of the image dataset acquisition and preprocessing stages. In the third section,
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we introduce the existing work. In section four, we introduce our proposed solution to

the problem, and in section five, we present the experimental results of the proposed

algorithm applied on a large number of captured panoramic image datasets. Finally we

summarize the chapter in section six.

3.2 Image Dataset Acquisition and Preprocessing

In this section we will briefly give an introduction to the acquisition and preprocessing

stages of the project which come before the analysis stage discussed in this chapter.

3.2.1 Raw-Image Acquisition

The raw-image acquisition process generates the source input for the navigation sys-

tem. A Ladybug camera from Point Grey Research is used. This camera consists of

six ICX204AQ color CCD image sensors and has six high quality micro lenses with the

focal length of 2.5mm. One lens on the top of the camera head unit points up and five

lenses pointing horizontally are assembled in a horizontal circle. If panoramic images are

captured on a linear trajectory, the resultant image dataset will constitute a 3D signal

and if images are captured on a rectangular grid, then we will refer to the acquired image

dataset as a 4D signal.

3.2.2 Image Dataset Preprocessing

Basic image preprocessing operations include gamma correction, white balance, noise

filtering, and image format conversion to change the format of raw image signals to the

standard image format required by image dataset compression [19]. After the prepro-

cessing stage, a group of six raw full RGB images can be used to create a basis panorama

which consists of six side images IB,k,j (∀j ∈ {d, u, l, r, b, f}) where the subscripts repre-

sent the down, up, left, right, back,, and front side image respectively. Each of these side

views has a 90 degree of FOV in both horizontal and vertical directions. There is a blind

area in the bottom view of the cubic panorama due to the lack of a lens facing down in

the camera set. We need to align the cubic panoramas to a common world coordinate

system at this point.
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3.3 Existing Work

The essential matrix applied to cubic panoramas has been discussed by Fiala and Roth

in [5]. They proposed a method for adjacent panorama alignment in which they assume

that the translational component can be neglected. Later in [7] a generalized solution

of the alignment problem was presented that does not neglect the translational vector.

Two methods were introduced, namely Fundamental matrix F and Essential matrix E.

A set of feature correspondences are found and used to estimate the associated matrix.

In the case of using the fundamental matrix, each cube face is dealt independently of

other faces and correspondences are considered among pairs of cube faces in the two

panoramic images to be aligned. On the other hand, the method estimating the essential

matrix considers the feature points in the 3D space independently of the face they are

projected on. Experimental results in [7] confirm that the two approaches are equivalent.

However, we believe that in a practical application, the method based on the fundamental

matrix will fail as the feature points might be distributed, for example, on two different

faces of the current and reference cubic-panoramas. As a result we adopted and use

the essential matrix estimation. The standard 8-point algorithm discussed in [88] can

be used to estimate the essential matrix. The estimated essential matrix is then used

in [7] to estimate the unity translational vector, i.e., a unity vector starting from the

center of the reference cube and pointing towards the center of the current cube, using

the SVD (Singular Value Decomposition) of the Essential Matrix E. Fig. 3.1(a) (left)

illustrates a pair of the original cubic panoramas before processing and Fig. 3.1(b) (left)

shows the result when the two panoramas are aligned with the unity translational vector.

Full alignment has not been achieved yet since this approach does not take into account

rotation around the axis connecting the two centers. As a result, a minimization problem

is formulated and solved as the final step in [7].

3.4 Proposed Method

Our proposed method tries to address the shortcomings of the approach explained above.

In review, we identified three major problems with that approach, as listed below:

Problem of Approximation As already mentioned, this approach is unable to com-

pensate for the third rotational parameter around the central axis and a numerical

method is used instead.
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a)

b)

c)

Figure 3.1: (a) Original data, (b) Existing method using translation vector T, and (c)

Proposed method using rotation matrix R for cubic-panorama image dataset alignment

Problem of Application The major problem is that this approach cannot be used in

practice on datasets with a large number of panoramic images. This notion is

illustrated in Fig. 3.1. The figures on the right hand side depict the top view of

panoramic images emphasizing the front face by a small arrow. If one aims to align

the original cubes in (a), the result will be something similar to what is shown in

(b). This is because the first two cubes can be aligned (ignoring the third angle

problem) but when it comes to the alignment of the third cube, the already aligned

second cube will align itself now with the third cube, hence at the end no overall

improvement will be achieved.

Problem of Evaluation As the last shortcoming, no quantitative measure is intro-

duced in [7] to evaluate the level of alignment in a given image dataset before and

after the alignment process.

In order to address the first (and the second) problem, having estimated the essential

matrix, instead of the Translation vector we estimate the Rotation matrix between the

pair of panoramas subsequently.

Here we provide details regarding method for estimating the essential matrix first:

As was explained in earlier chapters, the captured raw images are mapped onto a cubic

panorama format similar to what is shown in Figure 3.2. Now if two such cubic panora-

mas are considered, the global image displacement associated with the camera motion

can be modeled with a parameter set consisting of six translational and rotational global

displacement model parameters PM = {Tx, Ty, Tz, θ, ψ, φ} (see Figure 3.2 and [89]). At
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Reference Basis Image

Current Basis Image

E: R, T
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Figure 3.2: Essential matrix, Rotation matrix, and Translation vector

this point the reader might be able to guess how cube alignment can be achieved. If the

rotational and translational parameters are estimated properly, the current basis image

can be aligned with the reference basis image by either compensating changes made due

to rotation or using the translation vector for alignment.

At this point, we will formulate the idea, specifically the approach that we are going

to use to estimate the translation and rotational parameters. The coordinates of a static

scene point with respect to the coordinate system with its origin fixed at the focus of the

camera hold the relationship [90]

(xr, yr, zr)
T = R · (xc, yc, zc)T +T, (3.1)

where (xr, yr, zr) denotes the coordinates of a scene point before the camera motion, and

(xc, yc, zc) denoted its coordinate after the camera motion. The rotation matrix R can

be represented with respect to the rotation angles θ, ψ, φ as shown in Figure 3.3 [90]

R = (rij)33 =

cosφ cosψ cosφ sinψ sin θ − sinφ cos θ cosφ sinψ cos θ + sinφ sin θ

sinφ cosψ sinφ sinψ sin θ + cosφ cos θ sinφ sinψ cos θ − cosφ sin θ

− sinψ cosψ sin θ cosψ cos θ


(3.2)

The model parameters R and T can be obtained by replacing the coordinates of

image correspondence points into the following equation [91]

(xr, yr, zr) · E · (xc, yc, zc)T = 0, (3.3)
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Figure 3.3: Three rotational parameters θ, ψ, and φ in R

where the essential matrix E, expressed with the components of the translation vector

T and the elements of the rotation matrix R, is given by

E = (eij)33 =

Tz · r21 − Ty · r31 Tz · r22 − Ty · r32 Tz · r23 − Ty · r33
Tx · r31 − Tz · r11 Tx · r32 − Tz · r12 Tx · r33 − Tz · r13
Ty · r11 − Tx · r21 Ty · r12 − Tx · r22 Ty · r13 − Tx · r23

 (3.4)

If we can estimate the essential matrix reliably, then finding the translation vector

and the rotation matrix would be the following step. The translation column vector

T = (Tx, Ty, Tz)
T = α · (∆x,∆y,∆z)T can be extracted from the estimated essential

matrix E by solving the homogeneous equations corresponding to ETT = 0 [92] while

∆x,∆y,∆z satisfy the normalization condition

(∆x)2 + (∆y)2 + (∆z)2 = 1 (3.5)

The rotation parameters of the global displacement model are derived from the es-

sential matrix E with the singular value decomposition (SVD) given by:

E = U · Ξ ·VT , (3.6)

where, Ξ is a diagonal matrix of the same dimension as E with nonnegative diagonal

elements in decreasing order; U and V are unitary matrices. Then, the desired rotation

matrix is obtained by
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R = U ·

0 −1 0

1 0 0

0 0 s

 ·VT , or R = U ·

 0 1 0

−1 0 0

0 0 s

 ·VT , (3.7)

where s = det(U) · det(V) = ±1. The rotation angles θ, ψ, φ can be determined upon

request by using equation 3.2 directly from the rotation matrix R.

As we see, estimating the essential matrix plays an important role in cubic-panorama

adjustment as well as displacement estimation which will be discussed later. To estimate

the essential matrix from equation 3.3 we need at least eight correspondences between

the reference and the current basis images. An image matching process is performed

to obtain a number of correspondence pairs in the reference image and the predicted

current image respectively. A sufficient number of correspondence pairs are needed to

obtain robust model parameter estimates. A variety of image matching techniques can be

employed based on their effectiveness and efficiency in performing feature point selection,

detection and matching.

Determination of the essential matrix E is a typical optimization process of estimation

error minimization. By replacing the coordinates of the correspondence pairs into the

image coordinate transformation equation, the sum of the squared errors SE is obtained.

A linear least-squares estimation algorithm is applied by solving a group of equations

resulting from ∂
∂eij

SE = 0 (i ∈ {1, 2, 3}, j ∈ {1, 2, 3}) to determine the values of the

elements in the essential matrix E.

In [7] two approaches are introduced for finding the essential matrix between two

cubic panoramas, one of which works by estimating the fundamental matrix between

each pair of cube faces. The global rotational and translational parameters for each cube

face are estimated separately and then the six set of parameters, associated with the six

cube faces, are merged to achieve an overall set of parameters PM = {Tx, Ty, Tz, θ, ψ, φ}.
This approach has its own drawbacks since, unlike what is done in [7], here we are

dealing with a large number of cubic panoramas and we expect to face situations where

not enough image correspondences will be obtained between two corresponding faces of

the current and reference basis images. In other words, in some cubic-panorama image

datasets there might be occasions were required feature points appear across different

cube faces.

On the other hand, the second approach tries to estimate the essential matrix instead

of the fundamental matrix, a matrix that corresponds to the whole cubic panorama and

not only individual faces. Also, in cases where feature points in the space are mapped
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Figure 3.4: Flowchart of the proposed cube alignment method
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onto different faces of the two cubes, the first approach, i.e., using the fundamental

matrix, would not be capable of detecting and matching such feature points, but using

the second approach, i.e., the essential matrix, will have no limitation in this regard.

This is mainly because the essential matrix works on coordinates in the 3D space while

the fundamental matrix work on 2D image coordinates.

Image coordinates can be converted to the 3D coordinates on the cube surface by a

simple matrix operation (x, y, z)T = Tj · (Xj, Yj, F )
T where Tj is the transformation ma-

trix associated with each cube face (∀j ∈ {u, b, l, f, r, d}), where the subscripts represent
the up, back, left, front, right, and down side image respectively, F is the camera focal

length, and L is the size of a cube:

Td =

 0 0 −L
2

0 +1 −L
2

−1 0 +L
2

 , Tu =

 0 0 +L
2

0 +1 −L
2

+1 0 −L
2

 , Tl =

−1 0 +L
2

0 0 −L
2

0 +1 −L
2

 (3.8)

Tr =

−1 0 +L
2

0 0 +L
2

0 −1 +L
2

 , Tb =

−1 0 +L
2

0 −1 +L
2

0 0 −L
2

 , Tf =

−1 0 +L
2

0 +1 −L
2

0 0 +L
2

 (3.9)

The flowchart of a new cube alignment method is shown in more detail in Figure

3.4. At the first step, the essential matrix between the first (or the subsequent) pair of

panoramas is calculated. This step needs further explanations which will be provided

soon. As we will see later, there might be occasions where a reliable essential matrix can

not be achieved between a pair of basis images. In such scenarios, which did not happen

so frequently in practice, the cube alignment process for that pair will be skipped. But

if a valid essential matrix can be found, then the rotation matrix would be extracted in

the subsequent step. Then, the rotation matrix can be decomposed into three matrices

associated with the three rotational angles,

R = Rφ ·Rψ ·Rθ (3.10)

There are many occasions in which we know that the captured image dataset is

originally acquired in such a manner that the rotational parameters are not solely random

numbers, in other words, we can guess an upper limit for the rotational angles. This

observation will provide a second chance for us to test the validity of our parameter

estimation algorithm by comparing the amplitude of the obtained angles with some
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Figure 3.5: Finding the Essential matrix subsection
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Figure 3.6: Alignment structure for 4D image datasets

predefined threshold values. Following the comparisons, if the obtained angles are bigger

than the predefined threshold values, we will skip the current iteration looking forward

to the next pair of basis images.

At this point, we have the option to decide if we are going to use all the three angles

for cube alignment or only the first angle θ would suffice. This option exists because, in

some practical applications, the camera rotations might be mainly limited to the θ angle

only, the assumption that may apply when the ground plane is flat, most probably in

indoor environments. Nevertheless, the final decision is up to the author of the system

either to use all the estimated rotational parameters or only the θ value. At this point,

the pair of cubic-panoramas should be aligned by accessing the raw acquired images and

mapping them again onto a cube format now considering the modifying rotation matrix.

The original raw images should necessarily be accessed and used at this stage, since

rotation of a cubic panorama is usually a lossy procedure.

Finally, Figure 3.5 shows how we can find the essential matrix iteratively. First,

based on whether dealing with an indoor or an outdoor environment, we use different

cube faces for image correspondence. The down face is never used for feature matching

since not much visual information is available, due to lack of a capturing camera lens
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facing downwards. Also in outdoor environments, the up face is also ignored in feature

matching, because it usually does not convey much useful data or feature points as it is

facing upwards, i.e., towards the open sky.

Then, the essential matrix is estimated and outlier removal is involved in the model

parameter estimation process to obtain more accurate parameter estimates through dis-

carding 10% of the correspondence pairs that have bigger coordinate differences than

others at each iteration step. The essential matrix is recalculated after the outlier re-

moval until the maximum error is smaller than a predefined threshold value or the number

of remaining correspondences M is smaller than the minimum required number of 8. In

the former case a reliable essential matrix has been estimated while in the latter, the

algorithm has failed. The essential matrix estimation block returns a flag indicating

whether the estimated essential matrix is valid in addition to the essential matrix itself.

Results will look like what is depicted in Fig. 3.1(c) for the 3D view of two adjacent

panoramas (left) and top view of three or higher number of panoramas (right). As can

be seen, the two panoramas can be fully aligned using our method (left) and also all the

three (or more) panoramas can be aligned towards the same direction (right).

An alignment structure that can be used to align basis images captured on a rect-

angular grid is also shown in Figure 3.6. The alignment algorithm is performed first on

the middle column (in light grey) starting from the middle basis image, i.e., basis image

number 40 (in dark grey). Middle column and middle basis image are chosen to minimize

the error propagation effects, if there is any. Once the middle column is aligned, each

row of basis image (in white) are aligned using the corresponding middle basis image as

reference.

Finally, in order to evaluate the performance of the proposed algorithm, we introduced

a measure for panoramic image dataset alignment which is defined as below:

ERMS =

√√√√ 1

K − 1

K−1∑
k=1

avg{(Rk − I33) ◦ (Rk − I33)}, (3.11)

where K is the total number of basis images in the image dataset, Rk is the rotation

matrix between IB,k and IB,k+1, and I33 is a 3 by 3 identity matrix. The ◦ operator de-

notes the Hadamard product and the avg operator calculates the average of the elements

in the input 3 by 3 matrix.

Proposed solution to the problem of cubic panorama alignment is tested on a variety

of test sequences. Experimental results will be presented in the following sections.
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No. Name Location In./Out. Size Dim.

1 CHPL Tabaret Hall, 1st floor, Chapel

2 TBT1 Tabaret Hall, 1st floor

3 TBT2 Tabaret Hall, 2nd floor Indoor

4 LAB CBY Building, 4th floor, VIVA Lab 65 3D

5 NGC National Gallery of Canada, Outside

6 CBY Colonel By Building, Outside Outdoor

7 CHPL Tabaret Hall, 1st floor, Chapel

8 TBT1 Tabaret Hall, 1st floor, Lobby

9 LAB CBY Building, 4th floor, VIVA Lab Indoor 9 x 9

10 LBY CBY Building, 1st floor, Lobby = 81 4D

11 NGC National Gallery of Canada, Outside

12 CBY Colonel By Building, Outside Outdoor

Table 3.1: Summary of captured image datasets

3.5 Experimental Results

In this section experimental results associated with the proposed approach in this chapter

will be presented. They can be categorized as the following:

• Raw image acquisition;

• Image dataset alignment;

Two different scenarios will be considered for image dataset acquisition. The first

possibility is to acquire panoramic images on a connected graph like what is illustrated

in Figure 3.7(a). Here each white circle represents one basis image. Captured panoramas

should be indexed properly to facilitate the ease of random access. In a practical ap-

plication however, capturing more than one set of panoramic images might be required,

i.e., data will be captured on a number of trajectories which might be connected at some

intersecting viewpoints. Such image datasets constitute a 3D signal as it was explained

in the introduction chapter. On the other hand, as shown in Figure 3.7(b), panoramic

images can also be captured on a rectangular grid, instead of some predefined trajecto-

ries, where the resultant image dataset would be a 4D signal and free navigation will be

facilitated so long as the user is restricted to the ground plane. Even more complicated
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(a) 2D connected graph of panorama locations

resulting in a 3D image dataset

(b) A rectangular grid resulting in a 4D image

dataset

Figure 3.7: Two image acquisition scenarios

scenarios could be envisioned, for example a 5D image dataset where the user would be

able to navigate vertically off the ground level. Although this case will not be studied

in this thesis, obtained results can be easily extended to higher dimensions. Later in

chapter four, a bitstream syntax for image dataset storage in the application layer will

be presented towards organizing the huge data in the storage unit.

At the raw image acquisition stage, twelve image datasets were captured, i.e., J0 = 12

and K0 = 1, where J0 is the number of real world environments where the image datasets

are captured and K0 is the number of segment within each image dataset as it will be

shown in chapter four. In order to maximize the diversity, various indoor and outdoor

locations were chosen for image acquisition in the city of Ottawa in the Fall of 2009.

They including National Gallery of Canada (NGC), Tabaret Hall building, Colonel By

(CBY) building. Tabaret Hall building itself includes the first floor (TBT1), the second

floor (TBT2), and the meeting room or Chapel (CHPL). Colonel By building includes

the Lobby (LBY) located at the first floor, VIVA lab (LAB) located at the fourth floor,

and the outside space. These information are summarized in Table 3.1.

The first six image datasets consist of 65 basis images, indexed from 0 to 64, captured

on a predefined trajectory (thus compromising 3D image datasets), while the last six

image datasets are captured on a 9 by 9 rectangular grid, i.e., L0 = 9, resulting in 81

basis images (thus compromising 4D image datasets). In each case, the first four image

datasets are captured indoors, while the last two are captured outdoors. Abbreviated

names are used for ease of later referencing.
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Figure 3.8: Captured data (Indoor)
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Figure 3.9: Captured data (Outdoor)

Application of the captured image datasets is not necessarily limited to the work done

in this thesis and they can be used as test data in many other applications any time in

the future. Figures 3.8 and 3.9 show a snap-shot of the image acquisition locations

(depicted in the cylindrical format) for indoor and outdoor environments respectively.

On the right hand side, the top view of the image capturing trajectories is depicted as

well as the specific indexing method for both 3D and 4D image datasets. These image

datasets will be used as the input data later in this chapter for testing and comparing

different algorithms.

In this section we will apply the method previously proposed in this chapter for

aligning the adjacent cubic panoramas. The flowcharts already shown in Figures 3.4

and 3.5 will be used. We use the value of Th = 3 pixels, i.e., the threshold for the

maximum error in feature point image coordinates which is calculated based on the

estimated essential matrix. If the maximum error is higher than this threshold value,

then 10% of the outliers will be removed and the essential matrix will be estimated again.

This process will be repeated until either the maximum error will be less than Th or the

number of remaining feature points will become less than 8, i.e., the minimum required

number of feature points in the eight-point algorithm [88] for estimating the essential

matrix.
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Figure 3.10: Alignment results for TBT2 image dataset

At this point we will explain further practical details regarding processing of the TBT2

image dataset as a very good example. For this image dataset, we preferred to estimate

the R = Rθ values for image dataset alignment. We also used the threshold values of

(90◦, 10◦, 10◦) for (|θ| , |ψ| , |φ|) which, as shown in Figure 3.10, means that in basis images

number 14, 15, 16, and 56, compensation for the rotation matrix is skipped because of

the inaccuracies in estimating the rotational parameters. After compensating for the

available rotation matrices in this image dataset, we faced a gap between the successfully

aligned basis images at two segments of the trajectory, namely around frames 15 as well

as 47, due to some non-existing essential or rotation matrices. In this example, since

we knew that the initial image capturing procedure was a quite smooth one, we found

ourselves eligible to use the spline interpolation for the missing alignment parameters,

specifically the missing θ values. Finally, we ended up to the θs plot shown in Figure

3.10.

Simulations were made on all the captured image datasets and test results for the

first six image datasets are presented in Figure 3.12. For 4D signals similar results were

obtained.

We normalized all the six calculated original Root Mean Square Error (RMSE) values

ERMS by the maximum obtained value among the six image datasets, i.e., that of TBT2,

in order to be able to make comparisons more easily. Results are shown in figure 3.12(a).

As can be seen, the maximum normalized RMSE (value of 1) belongs to the TBT2 image

dataset, mainly due to the special type of the trajectory as shown in Figure 3.8(c). After

TBT2, the two image datasets captured outdoors, i.e. CBY and NGC, possess the
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Figure 3.11: Feature matching scenario between faces of two adjacent cubic panoramas

highest ERMS value. In the same figure, normalized RMSE values after image dataset

alignment are shown. In CHPL, TBT1, and TBT2 image datasets, only R = Rθ is used,

while in LAB, NGC, and CBY image datasets, R = Rφ ·Rψ ·Rθ is exploited for image

dataset alignment. Figure 3.12(b) shows the percentage of the number of basis images

that have been successfully aligned as well as the percentage in RMSE decrease. As can

be seen, in TBT2 image dataset, which is taken in a relatively complicated environment

on a nonlinear trajectory, at least 80 percent of the basis images have been aligned

successfully. For the rest, almost all the basis images have been aligned with success. In

all of the aforementioned experiments, subjective quality of the resultant image datasets

was also satisfactory.1

A combination of Matlab programming and existing image acquisition system in the

lab was used [18, 19]. Notice that in feature matching, a required task in estimating the

essential matrix from equation 3.3, a Scale-Invariant Feature Transform (SIFT) method

was used2. In TBT2 image dataset, search for feature points was not restricted to the

associated side image in the reference basis image only, but side images to the left and

right of the associated cube face in the reference basis image were also exploited in feature

point search by using the matrix transformations of 3.8 and 3.9, see dotted lines in Figure

3.11. We needed to do so mainly due to the specific nature of the trajectory in TBT2

image dataset.

1Video accompanying this thesis can be downloaded from the University of Ottawa thesis repository at

www.ruor.uottawa.ca. It includes alignment results for NGC and CBY cubic-panorama image datasets.
2Visit http://people.cs.ubc.ca/ lowe/keypoints/ to access the SIFT keypoint detector that has been

used in our work
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3.6 Summary

In this chapter we presented a novel image dataset alignment algorithm for cubic panora-

mas enabling seamless transition in acquired real world environments [93]. Our method

is accurate and not restricted to only a pair of panoramic images and also does not add

to the computational complexity, hence can be applied in practice on datasets with a

large number of panoramic images. Our objective measure also confirmed the expected

improvements numerically. Subjectively, our processed image datasets possess no navi-

gational jitter effects as observed in the original data. This method can be used as a first

step in many applications such as cubic panorama interpolation, view synthesis, disparity

estimation, etc. Methods used in this chapter to estimate the essential matrix will be

used in chapter five when the problem of disparity estimation will be addressed. In the

next chapter main issues regarding the storage of data including compression standards

and schemes, prediction structure, and the bitstream syntax will be addressed.



Chapter 4

Cubic-Panorama Image Dataset

Compression

In this chapter we address issues regarding cubic panorama image dataset compression.

Two state-of-the-art approaches, namely H.264/MPEG4 AVC and Dirac video codec, are

used and compared for the application of virtual navigation in image based representa-

tions of real world environments. Different prediction structures and Group Of Pictures

(GOP) sizes are investigated and compared on this new type of visual data. Based on

the obtained results, as well as the requirements of the system, an efficient prediction

structure and bitstream syntax are proposed.

4.1 Introduction

In the previous chapter we proposed an image rectification algorithm to be used on a

large number of captured cubic-panorama images, in order to provide a seamless virtual

navigation in a remote real world environment [93]. Followed by the aforementioned im-

age dataset analysis stage our visual data will be ready for compression. We will apply

and compare the two major existing approaches from the literature first, i.e., a standard-

ized method based on H.264/MPEG4 AVC and an existing wavelet-based scheme called

Dirac. Then, the problem of indexing will be addressed considering the compression ef-

ficiency, random access, and other requirements of our application. Advantages of using

B frames are shown in cases where captured datasets are not uniformly distributed on a

rectangular grid. Based on the aforementioned considerations an appropriate bitstream

syntax will be introduced for cubic-panorama image dataset compression.

61
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The rest of this chapter is organized as the following: in the next section we will

present the background. Our proposed scenario including details on prediction structure

and bitstream syntax will be presented in section three. In section four experimental

results that complement our scheme will be presented. Finally we will conclude in section

five.

A diagram of a client server based approach to the problem is illustrated in Figure

4.1. Here the desired subsection of the general virtual navigation system is drawn again

with additional details. In this setup, image dataset compression stage of the navigation

system receives the captured basis images as the input data and processes them in order

to generate an output bitstream, relatively small in size, that will be referred to later

each time when a remotely located user requests access to parts of the captured image

dataset. Instructions for image rendering will be issued by the remotely located user and

commands will be transmitted backwards to the image sequence rendering stage. Sub-

sequently, scheme design requirements for rendering novel views are sent in a backward

channel to the storage unit so that, depending on the rendering scheme, required data

will be sent forward to the rendering unit. The novel view will be prepared at this point

for transmission through the communication channel.

4.2 Background

Among many existing coding schemes and frame prediction formats, we will try to adopt

the best possible structure which would be able to satisfy the image dataset compression
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requirements introduced in the first chapter. A review of image dataset compression

schemes was presented in section 2.2 and it was mentioned that three major approaches

exist in the literature. They include vector quantization based methods [36, 42], wavelet-

based schemes [46, 47] and standardized based approaches [43, 44].

Vector quantization based methods are simple in implementation with low structural

complexity, decoding is simple and fast, and random access and selective decoding is

provided. However, compression efficiency cannot be high since no inter-frame redun-

dancy is exploited throughout the image dataset compression procedure. Therefore these

approaches will not be useful for compression of our captured panoramic image datasets

which are usually huge in size and demand very high compression ratios.

On the other hand, wavelet-based methods are able to provide high compression ratios

due to the efficient use of wavelet transform both in spatial and temporal directions in

conventional video coding. Wavelet-based approaches are also able to provide temporal,

spatial, and quality scalability. However the structural complexity of such methods are

usually high.

Standardized method for image dataset compression is depicted in Figure 2.1. One

advantage of standardized-based approaches is that users, usually located at various

remote places, will be able to use the compressed image dataset data quite easily if they

only have access to the widely used standard decoders. Also, although scalability [94] is a

significant feature of the wavelet-based methods, we will see later that since the encoding

of data is performed offline and independent of the transmission stage, we can achieve a

high range of output video qualities by choosing proper quantization parameters in real

time. Similarly, at the transcoding stage and in real time, the compressed image dataset

can be decoded and encoded into any desired spatial resolution. The last scalability

feature is named view scalability, analogous to temporal scalability in conventional video

coding, where user navigation with different walking speeds is facilitated. Similar to

quality and spatial scalability, the view scalability requirement can be addressed in the

video transcoding stage too.

The only work that exists on compression of cubic-panorama image datasets in the

literature [10] uses Motion Compensated Temporal Filtering (MCTF) which is a wavelet

based approach. On the other hand we have the standardized video compression scheme

H.264/MPEG4 AVC [68] which is a hybrid video codec. Recently, a new video codec

called Dirac1 was introduced and was used internally by the BBC to transmit High Defi-

1For more details and to download and use the latest version of the Dirac video codec visit

http://www.diracvideo.org
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nition Television (HDTV) pictures at the Beijing Olympics in 2008. A wavelet transform

is applied spatially in order to reduce the spatial redundancy. Notice that although, in

contrast with the MCTF, this method does not apply wavelet filters in the temporal

direction and uses feedback loop for temporal prediction similar to what is shown in

figure 2.1, we name it a wavelet-based scheme for ease of reference. The algorithms in

the Dirac specification have been designed with the intention to provide a competitive

performance as compared to state-of-the-art international standards. Whether they suc-

ceeded is an open question. At least one comparison exists which used implementations

from the second quarter of 2008 [95]. It shows x264 scoring higher than Dirac for classic

videos, however it is somewhat out of date. A study on the performances of the Dirac

codec, dated from August 2009 [96], finds that the quality obtained on SDTV is inferior

to the H.264 output. The study mentions HD in its conclusion, but the numbers on HD

are missing.

In all the aforementioned comparisons, standard video sequences are used as data for

testing. In this work, we use the captured and aligned cubic-panorama image datasets

and compare the performance of the two approaches on this new type of visual data.

After choosing the appropriate video codec, we search for the best frame prediction

structure and Group Of Pictures (GOP) size by running a number of experiments on

our image datasets. For similar existing work on frame type and GOP size which studies

classic video sequences, the reader is referred to [76] where hierarchical B pictures are

analyzed.

In the state-of-the-art video coding standard, H.264/AVC, different frame types are

defined. Intra frames I, Figure 4.2(a), are not predicted from neighbor frames in a

video sequence, hence their encoding is fast but very high compression ratios can not

be achieved. On the other hand P frames are those frames that use one neighbor frame

for prediction, as an example, a typical frame structure for group of picture size of 4 is

shown in Figure 4.2(b).

In B frames more than one frame is allowed to be used as reference for prediction

as shown in Figure 4.2(c). Another type of B frames are introduced in the literature,

known as hierarchicalB frames, that are shown in Figure 4.2(d). In this type of prediction

structure, B frames at lower levels of a pyramid can be used as reference for some other

B frame at higher levels of the pyramid.

P frames possess higher compression efficiency as compared to the I frames in video

compression. However, the need to decode a series of past frames before decoding the

current P frame, makes them not to be the choice for the image dataset compression
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application under study. In [76] it has been shown that hierarchical B pictures achieve

efficient performance for coding conventional video sequences as compared to the other

frame types and also compared to the motion compensated temporal filtering approach

which is a wavelet-based scheme. Similarly, in [85] hierarchical B pictures are adopted

in MVC for temporal frame prediction structure while regular B frames are used for

cross-view frame prediction.

Nevertheless, decoding a B frame at higher layer introduces some delay, since it

requires decoding a number of other reference frames, and this is against the random

access requirement explained in the first chapter. As a result, although hierarchical B

pictures achieve slightly better rate-distortion performance as compared to that of the

B frames, due to the aforementioned requirements we eventually adopt the B frame

structure of Figure 4.2(c) for image dataset compression. As can be seen in the figure,

in order to be able to decode a B frame, only two I frames need to be decoded and if

the intra frames are decoded one time, similar information can be reused to decode other

neighbor B frames and new I frames need to be decoded only once a new GOP is to be
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Frame type I P B hierarchical B

Number 0 3 2 3

Table 4.1: Maximum number of frames to be decoded to access a frame (GOP size

N0 = 4)

accessed.

Usually whenB frames are used, the encoding order will not be the same as the display

order and image sequence reordering in both encoding and decoding stages should be

taken into consideration. For example in Figure 4.2(c) the two intra frames need to

be encoded/decoded first and then it will be time to encode/decode the B frames in

between. In any case since the encoding procedure will be performed offline and not

in real time, the introduced encoding delay will not cause any problem. The maximum

number of frames to be decoded to be able to access a frame in Figure 4.2 is 0, 3, 2,

and 3 for I, P , B, and hierarchical B frames respectively. As can be seen in table 4.1,

after intraframe coding, which would not meet the rate-distortion requirement, proposed

structure of B frames needs the minimum required number of frames to be decoded in

order to randomly access one B frame in the middle of the image sequence, a feature

that is in line with the random access requirement described in the introduction.

To be able to decode one B frame, two I frames need to be decoded first, which

means that the memory requirement is much less compared to the case of hierarchical B

frames. Also unlike the hierarchical B frame structure, the proposed B frame structure

is easily extendable and applicable to image dataset signals with higher dimensionality.

Also, unlike P frames, B frames facilitate view scalability, that is another desirable

requirement in image dataset compression.

Another parameter that needs to be decided is the size of GOP. Video sequences

with different GOP sizes are depicted in Figure 4.3. First is the intra-frame I coding

where each frame is compressed independently, hence the GOP size can be assumed to

be one, i.e., each GOP consists of a single I frame. GOP values of 2, 4, and 8 are shown

subsequently, which can be denoted by GOP2, GOP4, and GOP8 respectively. Although

in [76] GOP16 and GOP32 are also taken into account, we will not consider those long

structures here. Because in conventional video sequences, frames are captured in time,

where usually 15 to 30 frames are captured during a second, as a result, a very high

correlation will exist among a larger number of neighboring frames. Therefore, in the
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image datasets under study, although the scene is assumed to be static and no moving

objects exist in the environment, since the spacing between the image capturing spots

is sometimes in the range of up to few meters, the rate-distortion performance starts

to deteriorate at GOP8 and higher. This will be shown later in the simulation results

section. It is noteworthy to mention here that the case of GOP2 is used for studio

postproduction, high quality video for storage, and video distribution [55]. We propose

GOP2 as well as GOP4, especially for image datasets with higher cross-correlation among

neighbor basis images, in image dataset compression.

To study the performance of different frame structures, several experiments have

been performed on captured image datasets. Experimental results will be shown later in

detail.
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4.3 Architecture of the Proposed Compression Scheme

In the existing cubic panoramic image datasets, each basis image consists of six side

images, i.e., down, up, left, right, back, and front side images. When images are captured

on a linear trajectory, we are dealing with a 3D image dataset as in Figure 4.4 and when

they are captured on a rectangular grid we have 4D image datasets as in Figure 4.5. For

analysis and alignment of such image datasets visit our earlier work [93] explained in the

previous chapter.

4.3.1 Image Acquisition and Indexing Scenarios

In an existing solution [10], the whole basis image including all of the side images, is

regarded as one single piece of information and a 3D indexing method is used to provide

access to the side images and required information within each basis image. However,

through an approach that we propose in this section, each image dataset is decomposed

into six video sequences and after that each video sequence is processed separately. A

typical video sequence generated as an example by concatenating all the right side images

is shown in grey in Figure 4.4. The advantage of such approach is that it will facilitate

the selective decoding requirement down to the cube face level. That means to access

(decode) one face of the cube, one does not necessarily need to decode other faces of that

cube.

Now consider the case where images are captured on a rectangular grid where the

outcome will be a 4D image dataset as shown in Figure 4.5. Here we will have options

for the right and left side images. Video sequences, for the right side images for example,

can be constructed by concatenating the frames on the rectangular grid of images in a

column-wise manner instead of the already introduced row-wise approach for 3D datasets.

Our simulations made on all right side images of TBT1 and NGC 4D image datasets, see



4 Cubic-Panorama Image Dataset Compression 69

Front

Rig
ht

. . .

. . .

.

.

.

.

.

.

(a) without using the advantage of the new dimension

Front

Rig
ht

. . .

. . .

.

.

.

.

.

.

(b) proposed structure for prediction

Figure 4.5: 4D cubic-panorama image datasets, two different frame prediction scenarios

Figure 4.6, show that the former structure would result in better overall rate-distortion

performance because, for example, for the right side images higher correlation exist among

frames in each column as compared to that of right side images of each row. As a result,

for the down, up, back, and front side images we use the row-wise prediction structure

as in Figure 4.4, while for the right and left side images we prefer a prediction structure

like what is shown in Figure 4.5(b).

4.3.2 Performance Comparison and Requirements

Performance of the two state-of-the-art video coding schemes, i.e. H.264 and Dirac video

codec will be compared in the next section. Our results show that standardized H.264
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Figure 4.6: 4D cubic-panorama image datasets, comparing two frame prediction scenarios

using PSNR measure, experiments made on right side images of TBT1 and NGC image

datasets
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outperforms the Dirac video codec, when tested on cubic-panorama image datasets. In

the state-of-the-art video coding standard, H.264/AVC, different frame types are defined.

They include I, P , B, and hierarchicalB pictures. Rate-distortion performance of various

prediction structures will be compared in the next section.

We prefer B frames for prediction in image dataset compression due to the following

reasons and requirements:

Problem of Occlusion Parts of an object in the scene might not be visible in a neigh-

boring frame while when two frames on both sides are used as reference for predic-

tion, this will become a very rare possibility;

Random Access Requirement Only two intra frames need to be decoded before we

can access a typical B frame, unlike the case of P or hierarchical B frames;

Compression Efficiency Since two references are used for prediction, higher compres-

sion ratios can be achieved as compared to the case when single frame is used;

View Scalability The view scalability feature can be facilitated similar to the idea of

temporal scalability in the paradigm of classic video coding;

Boundary Problem If an object/feature is not visible in one neighboring frame due to

camera displacement, most probably this object/feature exists in the neighboring

frame on the opposite side;

Memory Constraints Unlike hierarchical B pictures, there are only two layers of

frames, hence extra memory for storing additional reference frames will not be

required.

Another advantage of using B frames is that they can be removed from the structure

without disturbing the existing prediction structure. 3D image rendering applications

are also special case of the image datasets explained before when we have only two

columns/rows of basis images on the aforementioned rectangular grid.

The proposed overall prediction structure is shown in Figure 4.7 for GOP4. To be

able to extend the existing prediction structure, i.e., 3D image datasets, we had to shift

the structure of the image dataset at each row or column by one frame, so that each B

frame will have two I frames on both sides, either left and right, or top and bottom. More

specifically, in Figure 4.7 each square represents a top view of a basis image, i.e., each

square side represents one side image, namely left, back, right and front counterclockwise
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Figure 4.7: Top view of the proposed GOP structure for 4D image datasets

starting from the side image on the left. Any back and front side images in a basis image

of type B is predicted with the corresponding front and back side images in the two

I type basis images located to the top and bottom of the current B type basis image

respectively. In a similar manner, any left and right side image is predicted with the

corresponding left and right side images of the two I type basis images located to the

left and right of the current B type basis image respectively. Finally, a similar structure

is used for the up and down side images. As can be seen, a B type basis image uses

four basis images of type I in prediction, two of them to the top and to the bottom and

the other two, to the left and to the right of the current B type basis image. In order

to decode one B type side image, as before, at most two side images of type I need to

be decoded beforehand. At the borders of the image dataset rectangular grid, B frames

can be replaced with P frames, since at those positions only one frame for prediction is

available.

4.3.3 Missing Data, Nonuniform Datasets, Stereoscopic Panora-

mas

As can be seen in Figure 4.8 one advantage of using B frames is that they can be removed

from the structure without disturbing the existing prediction structure. Figure 4.8(a)

shows a scenario where some basis images are missing or when captured data were not

originally uniform. Stereoscopic applications are also special case of the image datasets

explained before when we have only two columns of basis images on the aforementioned

rectangular grid. At least two prediction structures are possible and depicted in Fig-
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Figure 4.8: (a) Usefulness of B frames in case of nonuniform image datasets or missing

data (b) Possible prediction structures for stereoscopic image rendering applications

ure 4.8(b), on the left the one based on what is proposed in the previous sections and

on the right one in which the left views can be decoded for regular applications when

stereoscopic display is not required or available. The one on the left is more efficient as

far as compression efficiency is considered while the one on the right provides scalability

between regular and stereoscopic applications. In order to see examples of work on cylin-

drical and spherical stereoscopic panoramas the reader is referred to visit [21] and [24]

respectively. In [21] a technique is developed for efficient acquisition and rendering of

omni-stereoscopic images based on sampling the scene with clusters of three panoramic

images arranged in a controlled geometric pattern and in [24] a multi-scale approach for

high resolution stereoscopic planar images are proposed first and then extended to be

applicable to spherical-panoramas.

4.3.4 Bitstream Syntax

Now we present the final bitstream syntax for storage and compression of very large sized

image datasets captured in extensive environments. First of all, as it was shown in Figure

3.7 in the previous chapter, two image capturing scenarios or even a combination of the

two, i.e., a combination of Figures 3.7(a) and 3.7(b) might be used in practice. Also, in

larger environments we might need to capture more than one set of image datasets to be

able to cover the whole area for virtual navigation. Furthermore, in the storage unit, we
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Figure 4.9: Proposed bitstream structure

will usually need to store information captured at different environments. The number

of real world environments where images are captured is denoted by J0.

The overall structure of data, at the application layer, is shown in Figure 4.9. An

overall header, on top left side of the figure (in gray), will facilitate access to each

panoramic image dataset. As was explained earlier, each image dataset consists of a

number of trajectories or rectangular grids or a combination, where basis images are

captured. We refer to each such unit of information as a segment inside an image dataset

of a given environment and assume K0 such segments exist within an image dataset.

Each segment itself consists of six parts, namely, down, up, left, right, back, and front

side image sequences. For the case of 4D signals, data at each side image is divided further

into a number of rows or columns of data, indicated by L0, see Figure 4.3. For 3D image

datasets we will have L0 = 1. Each side image sequence consists of a number of group

of pictures, this number is indicated by M0 in the picture. Finally, each GOP consists

of N0 distinct frames, GOP size, and frames are the smallest access units. Headers are

shown in gray; they contain required side information and facilitate random access to

the smaller units of data.
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4.4 Experimental Results

Simulations will be made to compare the rate distortion performance of the standardized

scheme with that of the wavelet-based approach applied on our captured image datasets

as the input data. They include codec comparison, GOP size, and GOP structure anal-

ysis. It is important to mention that before generating the input video sequence for each

side image, all images in the image dataset should be converted to the YUV 4:2:0 for-

mat because this format is usually used in standardized video compression schemes; also

doing so will achieve some initial compression gain after down-sampling the two color

components of images. We use the fact that human eye is not as sensitive to color data

and this will not affect the perceived quality of the existing image datasets. Results are

obtained by experimenting on 3D cubic-panorama image datasets and similar results are

expected for the case of 4D cubic-panorama image datasets when the structure of figure

4.7 is used.

4.4.1 Codec Comparison

In this section we will compare the performance of the standardized based approach,

H.264, with that of the wavelet-based method, Dirac. We will compare the rate distortion

performance of the two approaches here, using two measures in estimating the distortion,

namely: Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) measure

introduced in [97]. PSNR is the most commonly used measure while SSIM produces

more reliable results when comparing two different video codecs.

In order to find the PSNR, one should calculate the Root Mean Square (RMS) error

ERMS first:

EMS =
1

N1N2

∑
n1,n2

(IB,k[n1, n2]− ÎB,k[n1, n2])
2 (4.1)

Subsequently, PSNR can be obtained using the following equation:

PSNR = 10 log10
(IB,max − IB,min)

2

EMS

(4.2)

We use the PSNR value corresponding to the Y component of each frame as a mea-

sure reflecting the visual quality of the whole frame. Also we use the average PSNR

which means average of the frame PSNR values over the whole sequence of side images.

However, there is another alternative, called the overall PSNR, which finds the average
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MSE over the whole image sequence first and then finds the PSNR based on the obtained

average MSE value. For the image datasets that we are here dealing with, both measures

would be suitable and we pick the average PSNR.

On the other hand, we have the SSIM2 which is usually calculated and averaged over

small blocks or windows wi of size 8× 8.

SSIM(w1, w2) =
(2µw1µw2 + c1)(2σw1w2 + c2)

(µ2
w1

+ µ2
w2

+ c1)(σ2
w1

+ σ2
w2

+ c2)
, (4.3)

where µwi
is the average of wi, σ

2
wi

is the variance of wi, σw1w2 is the covariance of w1

and w2, and c1, c2 are variables to stabilize the division with weak denominator [97].

Experiments have been made on front side images of the LAB and CBY image

datasets, as indoor and outdoor examples respectively. The existing reference softwares

for both H.264/AVC3 and Dirac video codec were used by finding and applying appro-

priate parameters in each software manual and by creating and applying appropriate

input image sequences in each experiment. As it can be seen in the associated trajec-

tories of Figures 3.8 and 3.9, different types of displacements are involved in the two

image datasets and as a result they will constitute good examples of our image datasets

for testing and comparison purposes. A combination of I, P , and B frames is used for

the GOP structure denoted by IBBP , which is the most commonly used structure in

conventional video sequence encoding. Rate distortion curves are shown in Figure 4.10,

PSNR (in dB) versus bitrate (in kilobits per frame). As can be seen, the H.264/AVC

based approach outperforms the Dirac video codec and the difference even increases at

higher bitrates. Similar results using the SSIM measure is also depicted in Figure 4.11

where a more constant difference is visible throughout various bitrates. Figure 4.12 also

shows the SSIM versus Compression Ratio (CR) values RC .

In order to take a closer look at the simulation results, average frame PSNR versus

frame number for low bit rates corresponding to the vertical bar in figure 4.10(a) in the

LAB image dataset is illustrated in figure 4.13(a). Average frame PSNR versus frame

number for high bit rates corresponding to the vertical bar in figure 4.10(b) in the CBY

image dataset is illustrated in figure 4.13(b). Notice that since GOP length of 12 is used

in this experiment, usually big local maxima, i.e. frames 0, 12, 24, and so on, correspond

2Here is the link to the video quality measurement tool that was used in out work:

http://compression.ru/video/quality measure/video measurement tool en.html
3The latest H.264/AVC reference software and its documentations including software manual can be

accessed and downloaded here: http://iphome.hhi.de/suehring/tml/
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Figure 4.10: PSNR performance comparison between H.264 and Dirac video codec (ver-

sus bitrate)
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Figure 4.11: SSIM performance comparison between H.264 and Dirac video codec (versus

bitrate)
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Figure 4.12: SSIM performance Comparison between H.264 and Dirac video codec (versus

Compression Ratio)



4 Cubic-Panorama Image Dataset Compression 80

0 10 20 30 40 50 60
28

30

32

34

36

38

Frame Number

F
ra

m
e 

P
S

N
R

 (
dB

)

 

 

IBBP H.264
IBBP Dirac

(a) LAB image dataset front

0 10 20 30 40 50 60
30

35

40

45

50

Frame Number

F
ra

m
e 

P
S

N
R

 (
dB

)

 

 

IBBP H.264
IBBP Dirac

(b) CBY image dataset front

Figure 4.13: Frame PSNR versus frame number
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Figure 4.14: Frame SSIM versus frame number
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to I pictures and small local maxima, i.e. frames 3, 6, 9, and so on, correspond to P

picture.

Similarly, average frame SSIM versus frame number for low bit rates corresponding to

the vertical bar in figure 4.11(a) in the LAB image dataset is illustrated in figure 4.14(a).

Average frame SSIM versus frame number for high bit rates corresponding to the vertical

bar in figure 4.11(b) in the CBY image dataset is illustrated in figure 4.14(b).

Finally, sample results are illustrated and can be compared subjectively for a single

frame (side images corresponding to the vertical bars in figure 4.13 or 4.14) in each image

dataset in Figures 4.15 and 4.16. Differences in the visual quality are visible in various

areas in each frame. They include: chairs and set of computers in the foreground as

well as the background in the LAB image sequence, and details in branches of the trees,

at the foot of the tree, and on the bench and its texture at the foreground in the CBY

image sequence.4

Altogether, standardized approach of H.264/AVC, proposed to be used in the com-

pression stage of the virtual navigation system, outperforms the wavelet-based method

of Dirac video codec both objectively throughout a range of bitrates, as verified through

PSNR as well as SSIM calculations and subjectively through presenting typical side

image examples as well as generated video sequences attached to this thesis.

4.4.2 GOP Size

Now we evaluate and compare the performance of different GOP sizes, namely N0 = 1,

2, 4, and 8. Simulation results are shown in figure 4.17. As can be seen here, the case

of N0 = 1 possesses the lowest performance because this is an intra frame video coding

scheme exploiting no cross-view redundancy in compression. As can be seen, N0 = 2 and

N0 = 4 have comparable results, while the quality drops when N0 reaches the value of 8.

This is mainly because less correlation exists among frames located farther away inside

any image sequence. We observe that, N0 = 2 and N0 = 4 will be appropriate values

for the GOP size in the prediction structure. Figure 4.18 shows frame bits versus frame

number for similar quality corresponding to the horizontal bar in figure 4.17.

4Video accompanying this thesis can be downloaded from the University of Ottawa thesis repository

at www.ruor.uottawa.ca. It includes compression results for LAB and CBY cubic-panorama image

datasets.
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(a) Dirac video codec

(b) Original side image

(c) H.264/AVC

Figure 4.15: Subjective comparison, LAB

(a) Dirac video codec

(b) Original side image

(c) H.264/AVC

Figure 4.16: Subjective comparison, CBY
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(a) LAB image dataset
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Figure 4.17: Average PSNR versus bitrate, GOP size N0 = 1, 2, 4, 8
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Figure 4.18: Frame bits versus frame number (similar PSNR), GOP size N0 = 1, 2, 4, 8
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4.4.3 GOP Structure

Different frame types in our test image sequences are shown and compared in figure 4.19.

As it can be seen here again, there is a distance between the case of intra frame coding

N0 = 1 and all the other inter frame schemes. P frame structure possesses a slightly

better rate distortion performance at lower bitrates, while at higher bit rate it is the

other way round. Also, although no direct comparison is provided in [76] between B and

hierarchical B pictures for classic video sequences, here B pictures and hierarchical B

pictures show a very similar performance for cubic-panorama image datasets captured

in static environments. Therefore, we adopt the B frame structure due all the aforemen-

tioned advantages and requirements in the panoramic image data set compression.

Finally, frame bits versus frame numbers, for a similar quality corresponding to the

horizontal bar in figure 4.19, is shown in figure 4.20. In this figure, the difference between

the number of bits required for encoding an intra I frame as compared to that of P , B,

or hierarchical B frames is one interesting observation to notice.

4.5 Summary

In this chapter a novel compression structure suitable for cubic-panorama image datasets

has been presented [98]. The advantage of the H.264 standard was verified against wavelet

based methods for these new type of image datasets. It was shown that, as compared

to the hierarchical B pictures or the IBBP structure, effective use of B pictures makes

our method effective in the case of panoramic image datasets captured nonuniformly on

a rectangular grid in addition to fulfilling the compression/random access requirements

of the system under study. Efficient prediction structure, especially the GOP size as well

as the frame type and specific prediction structure was studied, keeping image dataset

requirements, such as random access, in mind. In the next chapter, the idea of using

the epipolar constraint in order to reduce the computational complexity of the encoding

stage will be discussed. In addition, regarding the transmission stage, a new transcoding

paradigm will be proposed as well as a method to deal with pan, tilt, and zoom in virtual

navigation. Throughout the next chapter, our focus will be mainly on efficient disparity

estimation.
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Figure 4.19: Average PSNR versus bitrate, I, P , B, and hierarchical B GOP structures

(GOP size N0 = 4)
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Figure 4.20: Frame bits versus frame number (similar PSNR), I, P , B, and hierarchical

B GOP structures (GOP size N0 = 4)



Chapter 5

Disparity Estimation for Storage

and Transmission

In this chapter we address the problem of disparity estimation required for free navigation

in the cubic-panorama image dataset compression stage as well as in the transmission

stage. As for the storage case, a fast method that uses properties of the epipolar geometry,

explained earlier in chapter three, together with the cubic format of panoramas is used

to estimate disparity vectors efficiently. Assuming the use of IBIB format, explained

earlier in chapter four, the concept of forward and backward prediction is addressed and

dealt with. As the transmission stage is considered, a new disparity vector transcoding-

like scheme is introduced and a number of different frame-format conversion scenarios

are addressed. Details on how to pick the best vector among disparity vector candidates

is also explained. Different types of navigation including forward or backward motion,

as well as pan, tilt, and zoom are explained separately. In all the above mentioned cases,

results are compared both visually through disparity vector plots and error images as

well as using the objective measure of PSNR versus time.

5.1 Introduction

In video coding, as well as in image dataset compression, motion or disparity estimation

compromises 60-70% of the encoding complexity [99]. On the other hand, image datasets

which we are dealing with possess specific features, as explained earlier in the introduction

chapter, that can be exploited in order to decrease the encoding complexity to a great

extent.

89
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a) Reference view b) Current view
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Figure 5.1: Disparity: current and reference rendered views when the user moves from

one cubic-panorama to another

In an existing method for Multiview Image Coding (MIC) that works based on ge-

ometric prediction [86], the essential matrices between three frames are used, i.e., the

current frame and the two previously encoded frames, in order to calculate the Disparity

Vectors (DV) among the current frame and the reference frame (i.e., one of the previously

encoded frames). The epipolar constraint and DV search need to be performed at the

encoder and the decoder side. This method achieves some rate-distortion gain, by calcu-

lating the DVs at the decoder side, mainly at low bitrates because at this region disparity

vectors dominate the residual error as compared to the high bitrates. However, encoding

complexity increases 30% and the decoding complexity increases over 1000% when using

full search algorithms and 100% when using fast search algorithms with some decrease

in the coding efficiency. Nevertheless, since our goal first and foremost is to decrease

the encoding complexity without increasing the decoding complexity, we will propose

a method for disparity estimation for storage which works on two frames rather three

frames used in the aforementioned existing work.

Subsequently, proposed methods for disparity estimation in the transmission stage can

be divided into two categories: first, digital video transformation, and second, dealing

with pan, tilt, and zoom. The block diagram of a heterogeneous video transcoder was

shown in Figure 2.3. In chapter two, different existing types of video transcoding schemes

in the literature were explained. They include: bitrate transcoding, spatial and temporal

transcoding, standards transcoding, transcoding quality optimization, and information

insertion transcoding [83]. In this chapter we propose a new type of video transcoding

scheme which converts the input video sequence from cube image format, with six side

images, into a planar image format that can be used for view rendering in the virtual



5 Disparity Estimation for Storage and Transmission 91

(a) Reference view (b) Current view
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Figure 5.2: Disparity: current rendered views when the user does Pan, Tilt, and/or Zoom

navigation system. Our main concern is how to extract and reuse the existing disparity

vectors previously calculated and stored. As it is shown in Figure 5.1(a), the applied

view rendering technique uses a planar mapping approach and at each viewing location,

renders a novel view based on the user’s pan and tilt angles. In this scenario, in each

view at most three faces of the current cubic basis image would be visible, e.g. front,

right and up side images viewed from inside the cubic-panorama. Now, if the user moves

forward to another viewing location, and possibly changes its pan and tilt angles too,

then we will have a rendered view similar to what is depicted in Figure 5.1(b). Our aim

is to extract up to three sets of disparity vectors for each rendered frame and generate a

new set of disparity vectors suitable for new rendered views.

At the end, we will address the pan, tilt, and zoom scenario as shown in Figure 5.2.

That is the case where the user is looking around but not changing the view point. A real

navigation experience can be considered as the synthesis of these two types of experience.

Eventually, our aim is to propose a method that enables the user to enter the navigation

system at any desirable view point in the captured trajectory, be able to move in any

direction of interest, look around to the left or right or top or bottom or zoom in and

zoom out and turn back and move in the opposite direction. Altogether this will form a

free navigation system.

5.2 Disparity Estimation for Storage

The approach that we present in this section can be considered as a mixture of global

displacement estimation and local displacement estimation methods. We use the term

global estimation because the essential matrix including the global translational and
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Epipolar plane

Reference
basis image

Epipolar lines

A Circle

An Ellipse

Figure 5.3: Epipolar curves (a Quadrilateral, an Eclipse, and a Circle) as the intersection

of basis images (Cube, Cylinder, and Sphere respectively) with the epipolar plane

rotational parameters is involved, and also local estimation because further search on the

epipolar line has to be made due to the depth variations of the objects in the environment.

Approaches that only rely on local displacement estimation, for example the block

matching algorithm used in the standardized video codecs such as H.264/AVC, will not

benefit from the existing knowledge of the image datasets, especially the fact that the

scene is static and the existing information about the navigation direction. On the other

hand, in global displacement estimation approaches, the scene depth is usually assumed

to be uniform, or alternatively the camera translation is ignored [100].

5.2.1 Using the Epipolar Constraint

The relationship between the reference and current coordinates of a point in the 3D space

was shown in chapter three in equation 3.3. Now if we know the coordinates of a point

in the current basis image and insert the value in the equation, we obtain:

(xr, yr, zr) · E · p = (xr, yr, zr) · (a, b, c)T = 0, (5.1)

where E · p is called the epipolar plane, a plane that goes through the center of the

cube and is denoted by (a, b, c) as its normal. Therefore, the point on the reference basis

image would lie somewhere at the intersection of the epipolar plane and the reference

basis image, i.e., a cube in the 3D space, as shown in Figure 5.3.

This intersection forms a quadrilateral in the 3D space and since we know which

face of the cube is being used for disparity estimation at any time, the search for the
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Face ai bi ci

down −c +b gd(−a)
up +c +b gu(+a)

left −a +c gl(−b)
right −a −c gr(+b)

back −a −b gb(−c)
front −a +b gf (+c)

Table 5.1: Epipolar lines as intersections of cube and epipolar plane

disparity vector will be restricted to one dimension, i.e., on a line denoted as the epipolar

line. Similarly, this constraint is known as the epipolar constraint in the literature. We

will obtain the epipolar lines corresponding to each cube face using the relation between

3D reference coordinates and 2D side image coordinates (xr, yr, zr)
T = Tj · (Xj, Yj, F )

T

where F is the camera focal length (can be assumed 1 here) and transformation matrixes

associated with each cube face given in equations 3.8 and 3.9 in chapter three. Results

are summarized in Table 5.1. Different lines li = (ai, bi, ci) lie on the associated faces of

the cube (∀i ∈ {d, u, l, r, b, f}).
The functions gi in Table 5.1 are defined as below:

gi(m) =
L

2
(m− (ai + bi)) (5.2)

Figure 5.4 shows the overall directions of displacement in a typical pair of cubic

panoramas. Roughly speaking, the global displacement for left, right, up, and down faces

are similar to vertical or horizontal displacements while in case of front and back faces

we witness a zooming in or zooming out effect.

e) Back f) Frontd) Rightc) Leftb) Upa) Down

Figure 5.4: Overall directions of displacement on different cubic-panorama faces in a

typical pair of cubic panoramas
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1

23

Search Range

Figure 5.5: Three Step Search (TSS) algorithm, Search Range = ±7

Before elaborating on our disparity search method, we explain the motion estimation

methods commonly used in the video coding literature. In standardized video compres-

sion schemes, each frame is usually divided into small blocks, for example 8 × 8 pixels.

For each block in the current frame, a Block Matching Algorithm (BMA) is applied in

the reference frame, i.e., usually the previous one. Given a specific search range, Full

Search Algorithm (FSA) is the most trivial one in which all possibilities are examined and

the best match using a minimization measure is chosen. Minimization criteria include

Sum of Squared Differences (SSD) and Sum of Absolute Differences (SAD) as explained

earlier in chapter two. FSA method is computationally so exhaustive therefore a number

of fast methods have been introduced. They include, but are not limited to, Three Step

Search (TSS) and Cross Search Algorithm (CSA). Figure 5.5 shows how the TSS algo-

rithm works. Given a Search Range of ±7 pixels, the search is performed in three steps.

All eight positions surrounding the coordinate with a step size of 4 are searched first. At

each minimum position the search step size is halved and the next eight new positions

are searched. This method searches 25 positions to locate the best match. If higher

search ranges are desired, then one might start with bigger initial step size, for example

8. In that case it will be a Four Step Search (4SS) algorithm where the search range

will be ±15 and 33 positions are searched to locate the best match. In the same manner

one can imagine Five Step Search (5SS), Six Step Search (6SS), Seven Step Search (7SS)

algorithms and so on. Search range and computational complexity for each algorithm is

summarized in the first part of table 5.2. Using fast estimation methods computational
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Method Complexity Range

FSA 225 ±7

TSS 25 ±7

4SS 33 ±15

5SS 41 ±31

6SS 49 ±63

7SS 57 ±127

Disparity Estimation for Storage

Dir N + 4 ±(4(N − 1) + 3)

Dir + refinement N + 12 ±(4(N − 1) + 4)

Disparity Estimation for Transmission

Best 5 -

Median, Mean, and Rand 2 -

Best + refinement 13 -

Median, Mean, and Rand + refinement 10 -

Pan, Tilt, and Zoom

PTZ 0 -

Table 5.2: Computational complexity and search range comparison

complexity reduces in a logarithmic scale.

Our method of search along the epipolar line is inspired by the above mentioned

TSS algorithm. First, for center coordinates of each block on the current frame, we

find the corresponding epipolar line using table 5.1. Then we find the nearest point on

the epipolar line to the center coordinates of corresponding block. This point will be

the reference point for our search and since we know the direction of displacement in

advance, we need only to search on one side of the reference point on the epipolar line;

see figure 5.6 for forward movement and the right reference face. A one dimensional

three step search algorithm named Dir, referring to the directional nature of the search

operation, is proposed. If N search operations are used in the first step, using initial step

size of 4, we achieve search range of ±(4(N − 1) + 3). In this situation, N + 4 search

operations will be required to find the best match. If further refinement is desired for

compensating computational errors, eight adjacent pixels around the found match can be

searched and therefore the computational complexity will become N +12 and the search

range increments 1. Search range and computational complexity for each algorithm is
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Search Direction

on the Right face

(forward movement)

Figure 5.6: Proposed three step Directional search (Dir) on the epipolar line

summarized in the second part of table 5.2. We will refer again to this table later in the

subsequent section.

Since we are working on panoramas in cubic format, there will be occasions where

the search algorithm goes beyond one face boundary. Figure 5.7 depicts a good example

for the case of right face. In case the search algorithm stops in the face it was started in,

like the case indicated by scenario 1, obtained horizontal and vertical disparities are used

directly. In case the best match found is beyond the borders, for example the case of

scenario 2 which is on front face, we store the horizontal and vertical disparities as shown

in the figure. Since in disparity estimation we are interested in two dimensional disparity

vectors, we do not involve 3D coordinates of match points here. Similar awareness exists

at the time of disparity vector extraction and if displacements go beyond the coordinates

of the existing face, it means data on the corresponding neighbor face shall be used.

As shown in chapter four, the IBIB is an appropriate format for storage of cubic-

panorama image datasets. In addition to the bitrate efficiency, this structure facilitates

entering into the captured sequence at any I frame and as we will show in more detail in

the current chapter, the user will be able to walk freely in either direction which is very

important. Introduction of B frames brings with it two types of prediction structures,

namely forward and backward prediction as shown in figure 5.8. In other words, if

the middle frame in the figure is the current frame, depending on which other frame

is considered to be the reference frame, the direction of the search algorithm will vary.

Considering the case of front face, in the forward prediction scenario, the search operation

must be performed toward the epipolar center, usually in the middle of the cube face,

while in the backward prediction structure, search operations must be performed away

from the epipolar center. As a result, this forward or backward prediction choice will
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Figure 5.7: An example when the search operation goes beyond the side image boundary

show up in all the steps used in our work as we will see soon.

Flowcharts for disparity estimation corresponding to the right and front faces are

shown in figures 5.9 and 5.10 respectively. At the beginning, the essential matrix E

between the pair of cubic panoramas is calculated using methods explained in chapter

three. First consider the right face. The intersection of the epipolar plane with the cubic

shape is calculated and the intersection line is found using the information in table 5.1.

Then the nearest point on this epipolar line to the search reference coordinates, i.e. the

center of current 8× 8 block, is found and used as the reference in the search algorithm.

At this stage, if forward prediction is going on, the search operation is performed toward

the left side, as shown in figure 5.6. Otherwise search operation is performed towards

the right side. In either case, if the search operation goes beyond the current face, i.e.,

to the front face or the back face, the first step of search is continued there and the best

match coordinates are updated accordingly. Otherwise the next two steps of search are

done. At the end, in case refined results are desired, a refinement stage is also applied.

In the case of searching for disparities on the front face, after finding the nearest

point on the epipolar line, the corresponding epipolar center is also calculated. In the

case of forward prediction, the search operation is performed inwards, i.e., toward the

epipolar center. Otherwise the search operation is performed outwards, i.e., away from

the epipolar center and towards the face borders. In backward prediction, in case the

search operation goes beyond the current face, the search operation is continued on the

left (or the right) face and the search results are updated accordingly. The remaining
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Front

Forward Prediction Backward Prediction

Figure 5.8: Forward and backward prediction scenario in B frames

steps are similar to the previous flowchart.

Finally, similar to the conventional block-based coding schemes, the disparity vector of

each block is predicted as one of its neighboring disparity vectors, and then the difference

between the true (or current) and predicted disparity vector is encoded using a variable-

length coder. The median predictor is widely used in state-of-the-art coding schemes,

see figure 5.11. The predictors are calculated separately for the horizontal and vertical

components of the disparity vectors DV1, DV2, and DV3, see figure 5.12(a). For each

component, the predictor is the median value of the three candidate predictors for this

component:

predx = median(DV 1x, DV 2x, DV 3x) (5.3)

predy = median(DV 1y, DV 2y, DV 3y) (5.4)

The difference between the components of the current disparity vector and their

predictions are variable length coded. The vector differences are defined by:

DVDx = DVx − predx (5.5)

DVDy = DVy − predy (5.6)
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Figure 5.9: Flowchart for Dir method when the right face is concerned

In the special cases at the borders of the picture, the following decision rules are

applied in order as follows:

1. The candidate predictor DV1 is set to zero if the corresponding block is outside

the picture at the left side (figure 5.12(b)).

2. The candidate predictors DV2 and DV3 are set to DV1 if the corresponding blocks

are outside the picture at the top (figure 5.12(c)).

3. The candidate predictor DV3 is set to zero if the corresponding block is outside

the picture at the right side (figure 5.12(d)).
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Figure 5.10: Flowchart for Dir method when the front face is concerned

5.2.2 Experimental Results

A number of experiments are made on CHPL and LAB cubic-panorama image datasets

as explained below. We use front face and right face of cubic-panoramas to include all

types of displacement. Latest version of Matlab is used for experiments of this chapter.

Our directional method named Dir is compared with Full Search Algorithm (FSA) and

fast step search algorithms explained earlier in this chapter as well as the case where no

disparity estimation is performed. When using the Three Step Search (TSS) or similar

algorithms, disparity vectors are predicted using median predictor similar to what was

explained in equations 5.3 and 5.4. In our Dir algorithm no prediction is required since

for each block the reference for search is calculated based on epipolar line calculations
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Figure 5.12: Disparity vector prediction structure at the borders of a side image

independently and we are even aware of the search direction. Disparity compensation

error and associated PSNR outcomes are used in objective assessment of performances as

well as the computational complexity or time in seconds. Assuming that IBIB prediction

structure is desired, the middle frame must be predicted using its immediate neighbors on

both sides. In B frames, disparity compensation is performed forward and backward and

the average disparity compensation error is calculated. In order to simulate an encoding

procedure, obtained disparity vectors are eventually encoded using median predictor of

figure 5.12 followed by the huffman variable length coding procedure that is available in

Matlab using appropriate category based on search range and maximum absolute value

of disparity vector differences.

To start, we pick three consecutive frames of cubic-panoramas, for example right faces

number 24, 25, and 26 from CHPL image dataset. Frame number 25 is shown in figure
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(a) Frame No. 25 right (b) No Estimation (Intra)

(c) Three Step Search (TSS) algorithm (d) Directional Search (Dir) algorithm

Figure 5.13: Residual error images (CHPL image datasetright, side images No. 24, 25,

and 26)

5.13(a). Next, the essential matrix for pairs number 24 and 25 and also pairs number

25 and 26 is calculated using the algorithm explained in chapter three. We compare

results with Intra and TSS methods. Intra simply means the case where no disparity

estimation is performed and the error image is the difference between the current frame

and the reference frame; since in B pictures we have two reference frames, the average

of the two is used as the reference. This is shown in figure 5.13(b) and shows how the

three frames under study differ without processing. For disparity estimation each frame

is partitioned into 8 × 8 blocks. We use the luminance component of each image for

disparity estimation. The TSS algorithm needs 25 operations for each block as shown

in table 5.2 when search range ±7 pixels is desired. To have a similar computational
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complexity in the Dir algorithm we set N = 21 so that the computational complexity

N + 4 would be the same as in TSS algorithm. In this case the search range would be

±(4(N − 1) + 3) = 83 pixels. At the borders we use the scheme explained in figure 5.7.

No refinement is used at this point to maintain similar computational complexity.

Results for this experiment can be compared in figures 5.13(c) and (d). Notice that

for better visualization, the value of 0.5 is added to disparity compensation error in each

case. Notice also that in the CHPL sequence, disparity compensation error is higher

where the chairs are placed due to different depths as well as on the walls where we

have a large number of vertical columns. With similar computational complexity, a

much better outcome is achieved using the proposed Dir method. Similar experiments

were made on right faces of CHPL sequence as well as the LAB sequence which has a

different visual content. Also FSA is used to see how results will improve when more

computational complexity is allowed as compared to TSS algorithm. FSA increases the

computational complexity drastically as shown in table 5.2 from 25 to 255 while our

experiments show that negligible quality improvement is achieved and that is mainly

due to the same short search range of ±7 pixels. Instead, for a better comparison 4SS

or higher step search algorithms are used later in this section.

As an example estimated disparity vectors for indoor sequence LAB, faces number 36

and 37 are shown in figure 5.14. Specifically 7SS algorithm has computational complexity

of 57 and search range of ±127, i.e., the first step search algorithm with higher search

range as compared to Dir. Obtained disparity vectors are depicted visually in figures 5.14

(a), (b), and (c) for 5SS, 6SS, and 7SS algorithms respectively and disparity vectors for

Dir is shown in 5.14(d). Here again we see that even 7SS algorithm with higher search

range can not grasp the nature of real disparity vectors.

Results regarding disparity estimation for storage are summarized in table 5.3. Ex-

periments are made on all 65 front and right frames of CHPL and LAB image sequence.

In one set of experiments using Dir, final refinement is also applied to make an im-

provement and also be able to compare the results using quality versus computational

complexity curves. Time percentage required for estimating the essential matrix is also

calculated. That shows the ratio of computational complexity required for global dis-

parity estimation versus local search operations. These results are depicted as disparity

compensation error PSNR versus spent time for each scenario in figures 5.15 and 5.16

in our four experiments. One interesting observation is that using step search at higher

search ranges in CHPL sequence disparity compensation error increases after a certain

point. That means although the overall search range is increasing, the accuracy of vector
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CHPL TBT1

DE Method front right front right

Intra 20.7 dB 17.9 dB 19.9 dB 17.9 dB

TSS 26.6 dB 22.5 dB 23.7 dB 20.0 dB

4SS 28.8 dB 25.8 dB 26.2 dB 21.6 dB

5SS 29.5 dB 27.9 dB 28.6 dB 24.0 dB

6SS 29.0 dB 28.4 dB 29.8 dB 27.3 dB

7SS 28.4 dB 27.8 dB 30.2 dB 29.8 dB

Dir 30.8 dB 29.6 dB 29.1 dB 24.6 dB

Dir + refinement 31.4 dB 30.2 dB 29.7 dB 24.9 dB

Time

TSS 932 947 938 963

4SS 1197 1217 1219 1247

5SS 1572 1577 1523 1508

6SS 1783 1823 1857 1789

7SS 2173 2118 2094 2110

Dir 1021 1037 1003 1034

Essential Matrix 10.7 % 10.4 % 8.6 % 8.5 %

Dir + refinement 1331 1351 1310 1357

Essential Matrix 8.2 % 8.0 % 6.6 % 6.5 %

Table 5.3: Disparity estimation for storage: Average PSNR and Time (in seconds)

estimations are decreasing mainly due to large step sizes. Another observation is that

overall and in both image datasets, front sequences result in less disparity compensation

error as compared to the right sequences. That is mainly due to the larger disparities

involved in side-wise displacement as compared to the case for forward displacement. It

can be observed in these figures that for a given similar disparity compensation error,

required disparity estimation time can be decreased to a great extent using our proposed

smart search algorithm. For example consider horizontal bars in figures 5.16(b) and (a).

It shows that, to maintain similar disparity compensation error, by using our proposed

method around 34 to 40 percent of disparity estimation time will be saved respectively,

resulting in similarly accurate disparity vectors.
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(c) DV front 7SS algorithm
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Figure 5.14: Estimated disparity vectors (for indoor image sequence LAB, side images

No. 36 and 37)
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Figure 5.15: Disparity estimation for storage: Residual error PSNR (dB) versus Time

(in seconds), CHPL image dataset
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(b) right side images

Figure 5.16: Disparity estimation for storage: Residual error PSNR (dB) versus Time

(in seconds), TBT1 image dataset
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Figure 5.17: Three different possibilities in view rendering

5.3 Disparity Estimation for Transmission

The results obtained in the previous section can be used in the cubic-panorama image

dataset compression stage. Disparity vectors can be found faster and with more accuracy

using data obtained after analyzing the image dataset. In real time, remote users are

interested to interact with the stored image datasets by sending signals backward through

the communication channel. In between, there exists a view rendering stage where,

given the desired viewing position and angles, a planar view is generated by extracting

appropriate information from the dataset. Three different possibilities are depicted in

figure 5.17. The information to be extracted mainly includes stored residual error as

well as the stored disparity vectors. In this section we propose a novel method for

extracting and converting the existing disparity vectors efficiently. In other words, our

objective is to reuse the existing data obtained in the storage stage, and adapt them to

the new coordinate system and frame prediction structure to avoid extra computational

complexities at the transmission stage.

Consider required rendered view as shown in figure 5.1 at the beginning of this chap-

ter. A new set of disparity vectors is to be calculated, based on three sets of disparity

vectors existing between each pair of cube faces at the storage unit. Figure 5.18 is a

schematic plot of our proposed system. In addition to the disparity vector extraction

and transformation it includes a disparity vector selection stage. That is required be-

cause cubic-panorama image datasets are assumed to be stored in IBIB format while

the user will be interested in IPPP prediction structure. Standards transcoding have

been used to convert the video frame structure using B frames (for storage) to the one

using P frames (for transmission) in the literature. In [99] a set of candidate motion

vectors, from the incoming bitstream, are extracted and used in the new video sequence

format. Inspired from techniques used in their approach, we design a new disparity vec-

tor transformation scheme that can be embedded in the image sequence transmission
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Figure 5.18: Proposed disparity vector extraction and conversion structure

stage of our project.

5.3.1 Introducing a New Video Transcoding Scheme

The disparity transformation stage can be summarized as follows. In order to find the im-

age coordinates (Xr, Yr) in the reference picture corresponding to the image coordinates

(Xc, Yc) in the current picture, one should take the following steps:

1. First find the coordinates of the point on the cube face in the 3D space (xc, yc) by

applying an inverse mapping transformation.

2. Then, by using the existing information, such as the precalculated disparity vectors

at the encoding stage performed on the source image dataset, new coordinates

(xr, yr) in the 3D space on the reference basis image, which is in cube format, can

be obtained.

3. Finally, by using a forward projection transformation, desired 2D image coordinates

(Xr, Yr) can be calculated. At this point, overall Disparity Vector (DV) can be

obtained as below:

DV = (d1, d2) = (Xc, Yc)− (Xr, Yr) (5.7)

In order to find all the required disparity vectors, this procedure should be repeated

for all the smallest coding units, e.g. 4 × 4 or 8 × 8 blocks, at each frame. Using the
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Figure 5.19: Four criterion for selecting the best disparity vector among four existing

DV candidates

explained coordinate mappings properly, we will be able to extract disparity vectors

between any two rendered views from the existing disparity vectors already calculated

in the compression stage of the virtual navigation system, information which is highly

valuable.

Since in practice we are working with blocks of pixels and in transformations, from

2D rendered current view coordinates to 3D cube coordinates, the centers of each block

on the current rendered view will lie somewhere in the middle of four neighbor blocks

on the corresponding current cube face, therefore for each block on the current rendered

view we will obtain four different disparity vector candidates, i.e., four disparity vectors

corresponding to the four nearest neighbor block centers in the reference cube frame.

Therefore, for each block we will have four disparity vector candidates and a decision

making criterion should be envisioned. This phenomenon is depicted visually in fig-

ure 5.19. A refinement stage can also be applied around the best choice in each case

afterwards. Specifically, we use four different methods:

Median Let DV = {DV1, DV2, DV3, DV4} represent the four adjacent disparity vectors.

The distance between each vector and the rest is calculated as the sum of their

Euclidean distances as follows:

di =
4∑

j=1,j ̸=i

∥DVi −DVj∥. (5.8)

The median vector is defined as one of these vectors that has the least distance

from all, i.e.
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Figure 5.20: Five different scenarios used for converting the frame prediction structure

med(DV ) = DVk ∈ DV such that min di = dk. (5.9)

This method extracts the disparity vector situated in the middle of the rest of the

disparity vectors.

Mean To calculate the average or mean of the input disparity vectors, given by:

DV = 1/4
4∑
i=1

DVi. (5.10)

Best To pick the disparity vector with the minimum residual error at the storage stage.

Rand To randomly pick one among four disparity vector candidates.

Computational complexities with or without refinement for each case are summarized

in table 5.2. Great computational savings are noticeable here. Input cubic-panorama

image dataset is assumed to be stored in IBIB format. Regarding the frame prediction

structure conversion five different scenarios are considered as the following, see figure

5.20:

Scenario A Desired views by the user in assumed to be in IBIB format, i.e., the same

format as the cubic-panoramas are stored.
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Figure 5.21: Disparity vector transformation algorithm in more detail

Scenario B It is assumed that the user is interested in IPPP prediction structure. This

is more realistic assumption since with B frames the user has to wait for a future

frame to be decoded before getting the current frame and that is not desired in real

time navigation applications. In this scenario and in disparity vector conversions,

all backward predictions are multiplied by factor −1 and reused. At this stage only

even disparity vector indexes are transformed to be able to have a fair comparison

with results in scenario C below.

Scenario C Similar to scenario B, but this time instead of negating current backward

predicted disparity vector, we use the immediate previous forward predicted dis-

parity vector instead. In this scenario too, only even disparity vector indexes are

transformed and evaluated for comparison purposes. Obtained outcomes will be

compared in experimental results section.

Scenario D In this scenario a mixture of scenarios B and C are used. Here again

only even disparity vector indexes are transformed and evaluated and in each case

the best of negated current backward disparity vector and the immediate previous

forward predicted disparity vector is used. This will add to the computational

complexity but improved performance is expected.

Scenario E Eventually, results obtained in scenario D are used for even disparity vector

indexes. For odd indexes, results of Scenario A are applied directly. This scenario

realizes a IBIB to IPPP conversion as far as disparity vectors are concerned.
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Figure 5.22: Disparity vector transformation unit details

Details of disparity vector transformations that can be used in aforementioned sce-

narios are depicted in two figures. First, the desired rendered view has a certain Width

and Height which does not change throughout the navigation process, see figure 5.21.

Parameters that change include the frame index number 1 (reference frame), frame index

number 2 (current frame), pan, tilt, and zoom factors associated with each frame index

and the disparity vector index, i.e. the set of stored disparity vectors that are to be used

as was already shown in figure 5.20. This information at each step is provided to the

disparity vector transformation unit. This unit is interacting with the stored disparity

vectors unit. At each step, four sets of disparity vectors are generated and fed into the

disparity compensation unit. At the same time, two current and reference views are

created using similar data. Based on four different sets of input disparity vectors at this

stage, four different error images are obtained.

The disparity vector transformation unit is shown in more detail in figure 5.22. For

each set of input information, 2D block coordinates are calculated first. These block

coordinates are converted from rendered view format coordinates, into 3D coordinates

on cubic panoramas. For each coordinate on a cube, four disparity vectors are extracted

by interaction with the disparity vectors database. Therefore, four new 3D coordinates

are found for each 8×8 block. These coordinates are mapped again back to 2D rendered

view coordinates. Therefore, four sets of disparity vectors are generated for each block

in rendered view coordinates.
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(a) No Estimation (Intra) (b) Three Step Search (TSS) algorithm

(c) Directional Search (Best method) (d) Directional Search (Median method)

(e) Directional Search (Mean method) (f) Directional Search (Rand method)

Figure 5.23: Residual error image (indoor image sequence LAB, θ = −π/4 frames No.

18 and 19)

5.3.2 Experimental Results

Disparity vectors that have been already estimated, encoded, and stored in the previous

section, are accessed, decoded, and reused in this section based on navigation scenarios as-

sumed in each experiment in order to obtain a new set of disparity vectors appropriate for

the required rendered views format. Figure 5.23 shows the results, specifically resultant

error images for indoor sequence LAB performing disparity estimation between cubic-

panoramas number 18 and 19. Values of FOV = π/3, Width = 512, and Height = 256

are used and it is assumed that θ = −π/4, that is when the user is looking 45 degrees

to the right. Particularly, that corresponds to what is depicted in figure 5.17(b). The
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Figure 5.24: Estimated disparity vectors (indoor image sequence LAB, θ = −π/4 frames

No. 18 and 19)

difference values between rendered frames are shown in 5.23(a) while the result of TSS

algorithm are given in 5.23(b). Performance of Best, Median, Mean, and Rand can be

compared visually in 5.23(c) to (f) respectively. It is interesting to notice that the Mean

operator gives poor results in comparison. The Rand operator also generates salt and

pepper effects. The Median operator gives comparable subjective results as compared to

the Best operator. Estimated disparity vectors for this test are also depicted in figure

5.24 in order to provide a better visual understanding.

Results considering five test scenarios will be shown here. Tests are run on 65 frames

of CHPL and TBT1 sequences, indexed from 0 to 64, using θ = −π/4 and θ = 0

respectively. These assumptions will be equivalent with what was already shown in

figure 5.17(b) and (a) respectively. Table 5.4 summarizes reference frame, current frame,

and disparity vector indexes required in test scenario A. For example at the beginning,

the reference frame index is 0 and the current frame is 1 and we use disparity vector

index 1 0 2 2 4 4 6 6 8 8 10 ...

index 2 1 1 3 3 5 5 7 7 9 9 ...

DV index 1 2 3 4 5 6 7 8 9 10 ...

Table 5.4: Disparity estimation for transmission: Scenario A, index table
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DE Method CHPL TBT1

TSS 24.6 dB 24.9 dB

4SS 27.5 dB 27.7 dB

Best 29.8 dB 31.2 dB

Median 26.7 dB 28.1 dB

Mean 23.5 dB 26.9 dB

Rand 23.9 dB 27.5 dB

Time

TSS 476 490

4SS 615 635

Best 163 168

Median 112 114

Mean 108 111

Rand 109 112

Table 5.5: Disparity estimation for transmission: Scenario A, Average PSNR and Time

(in seconds)

index 1 1 3 5 7 9 11 13 15 17 19 ...

index 2 2 4 6 8 10 12 14 16 18 20 ...

DV index -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 ...

Table 5.6: Disparity estimation for transmission: Scenario B, index table

index 1 as shown in figure 5.20. Immediately after, the reference frame index will become

equal to 2 and the current frame will become equal to 1 and we use disparity vector index

2. The indexing scheme is such because we are converting from IBIB cubic format to

IBIB planar format. Disparity compensation PSNR values using four proposed methods

and corresponding required time are summarized in table 5.5. Performance of TSS and

4SS algorithms are shown for comparison. These two algorithms are applied on rendered

views without any reference to the already calculated and stored disparity vectors at

the database. As expected, great improvement is achieved in terms of computational

complexity, however, the output format is yet IBIB and therefore more test scenarios

should be run to get to the desirable state.
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DE Method CHPL TBT1

TSS 24.6 dB 253 dB

4SS 27.8 dB 326 dB

Best 26.8 dB 87 dB

Median 24.4 dB 59 dB

Mean 23.1 dB 57 dB

Rand 22.7 dB 57 dB

Time

TSS 237 25.4

4SS 306 28.7

Best 81 28.3

Median 55 25.8

Mean 53 25.3

Rand 54 25.4

Table 5.7: Disparity estimation for transmission: Scenario B, Average PSNR and Time

(in seconds)

Table 5.6 summarizes reference frame, current frame, and disparity vector indexes

required in test scenario B. In this scenario we use even disparity vector indexes and

also negate disparity vectors, see figure 5.20. For example at the beginning the reference

frame index is 1 and the current frame is 2 and we use disparity vector index 2 as shown

in figure 5.20. Immediately after, the reference frame index will become equal to 3 and

the current frame will become equal to 4 and we use disparity vector index 4. The

indexing scheme is such because we are testing only even disparity vector indexes here.

Disparity compensation PSNR values using four proposed methods and corresponding

required time are summarized in table 5.7 along with the performance of TSS and 4SS

algorithms. In this experiment we witness a decrease in quality due to using backward

disparity estimation in cube space for forward disparity estimation of required views.

Now we move to scenario C to test an alternative scenario.

Table 5.8 summarizes reference frame, current frame, and disparity vector indexes

required in test scenario C. In this scenario we use odd disparity vector indexes instead,

see figure 5.20. For example at the beginning the reference frame index is 1 and the

current frame is 2 and we use disparity vector index 1 as shown in figure 5.20. Immedi-
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index 1 1 3 5 7 9 11 13 15 17 19 ...

index 2 2 4 6 8 10 12 14 16 18 20 ...

DV index 1 3 5 7 9 11 13 15 17 19 ...

Table 5.8: Disparity estimation for transmission: Scenario C, index table

DE Method CHPL TBT1

TSS 24.6 dB 25.4 dB

4SS 27.8 dB 28.7 dB

Best 24.3 dB 26.6 dB

Median 22.7 dB 24.5 dB

Mean 22.5 dB 24.5 dB

Rand 21.8 dB 24.3 dB

Time

TSS 243 254

4SS 313 327

Best 83 87

Median 57 60

Mean 55 57

Rand 55 58

Table 5.9: Disparity estimation for transmission: Scenario C, Average PSNR and Time

(in seconds)

ately after, the reference frame index will become equal to 3 and the current frame will

become equal to 4 and we use disparity vector index 3. The indexing scheme is such

because we are testing only odd disparity vector indexes. Disparity compensation PSNR

values using four proposed methods and corresponding required time are summarized in

table 5.9 along with the performance of TSS and 4SS algorithms. In this experiment

we witness a relatively better performance, but results are not satisfying yet. That is

mainly due to the fact that disparity vectors between immediate past neighbor pair of

cubes are used to predict the current pair. In scenario D we use a combination of test

scenarios B and C.

Table 5.10 summarizes reference frame, current frame, and disparity vector indexes
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index 1 1 3 5 7 9 11 13 15 17 19 ...

index 2 2 4 6 8 10 12 14 16 18 20 ...

DV index 1 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 ...

DV index 2 1 3 5 7 9 11 13 15 17 19 ...

Table 5.10: Disparity estimation for transmission: Scenario D, index table

required in test scenario D. In this scenario we use the best choice in Scenario B and C

for each block while concentrating on every second pair of frames, see figure 5.20. For

example at the beginning the reference frame index is 1 and the current frame is 2 and

we use disparity vector index 2 and 1 as shown in figure 5.20. Immediately after, the

reference frame index will become equal to 3 and the current frame will become equal to

4 and we use disparity vector index 4 and 3. The indexing scheme is such because we are

testing both odd and even disparity vector indexes. Disparity compensation PSNR values

using four proposed methods and corresponding required time are summarized in table

5.11 along with the performance of TSS and 4SS algorithms. As we could expect, this

scenario outperforms scenarios B and C while computational complexity and therefore

timing is still very reasonable.

Finally, table 5.12 summarizes reference frame, current frame, and disparity vector

indexes required in test scenario E. In this scenario we use the results of Scenario A and D

for originally forward and backward prediction structures respectively, see figure 5.20. For

example at the beginning the reference frame index is 0 and the current frame is 1 and we

use disparity vector index 1 (scenario A) as shown in figure 5.20. Immediately after, the

reference frame index will become equal to 1 and the current frame will become equal to

2 and we use disparity vector index 2 and 1 (scenario D). Disparity compensation PSNR

values using four proposed methods and corresponding required time are summarized in

table 5.13 along with the performance of TSS and 4SS algorithms.
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DE Method CHPL TBT1

TSS 24.6 dB 25.4 dB

4SS 27.8 dB 28.7 dB

Best 28.3 dB 31.1 dB

Median 23.9 dB 25.7 dB

Mean 22.9 dB 25.4 dB

Rand 22.2 dB 24.8 dB

Time

TSS 250 248

4SS 324 322

Best 144 141

Median 82 80

Mean 77 75

Rand 77 76

Table 5.11: Disparity estimation for transmission: Scenario D, Average PSNR and Time

(in seconds)

index 1 0 1 2 3 4 5 6 7 8 9 ...

index 2 1 2 3 4 5 6 7 8 9 10 ...

DV index 1 1 -2 3 -4 5 -6 7 -8 9 -10 ...

DV index 2 - 1 - 3 - 5 - 7 - 9 ...

Table 5.12: Disparity estimation for transmission: Scenario E, index table
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DE Method CHPL TBT1

TSS 24.8 dB 25.2 dB

4SS 27.9 dB 28.5 dB

5SS 29.4 dB 30.9 dB

6SS 28.8 dB 31.5 dB

7SS 28.4 dB 31.5 dB

Best 29.6 dB 33.0 dB

Median 25.5 dB 27.8 dB

Mean 23.3 dB 26.7 dB

Rand 23.2 dB 26.8 dB

Best + refinement 31.1 dB 34.4 dB

Median + refinement 27.0 dB 29.1 dB

Mean + refinement 24.5 dB 27.7 dB

Rand + refinement 24.1 dB 27.9 dB

Time

TSS 503 507

4SS 647 654

5SS 791 801

6SS 941 944

7SS 1089 1091

Best 235 230

Median 144 140

Mean 137 133

Rand 137 134

Best + refinement 395 394

Median + refinement 307 517

Mean + refinement 298 299

Rand + refinement 300 299

Table 5.13: Disparity estimation for transmission: Scenario E, Average PSNR and Time

(in seconds)
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(a) CHPL image sequence, θ = −π/4
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(b) TBT1 image sequence, θ = 0

Figure 5.25: Disparity estimation for transmission: Residual error PSNR (dB) versus

Time (in seconds), CHPL and TBT1 image sequences
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(b) Tilt (c) Zoom(a) Pan

Figure 5.26: Visual demonstration of Pan, Tilt, and Zoom

Adopting this scenario, more results are depicted as disparity compensation error

PSNR versus spent time in figure 5.25. One interesting observation is that using step

search at higher search ranges in CHPL sequence disparity compensation error increases

after a certain point. That means although the overall search range is increasing, the

accuracy of vector estimations are decreasing mainly due to large step sizes. After Best

method, Median achieves highest performance and this is also in line with out visual

observations of figure 5.23. It can be observed in this figure that for a given similar

disparity compensation quality, required disparity calculation time can be decreased to

a great extent using our proposed disparity conversion algorithm. For example consider

horizontal bars in figures 5.25(a) and (b). To maintain similar disparity compensation

error, by using our proposed algorithm and Median method around 73 to 78 percent of

time will be saved respectively, resulting in similarly accurate disparity vectors.

5.4 Dealing with Pan, Tilt, and Zoom

Figure 5.26 shows Pan, Tilt, and Zoom when the user is not changing the view point

but the view angles or field of view. This situation is to a great extent similar to the

view point change which was already explained in the previous section except the fact

that the second step in the disparity vector search is not required here and therefore the

search algorithm will consist of only two steps as explained below, see also figure 5.2:

1. First find the coordinates of the point on the cube face in the 3D space (xc, yc) by

applying an inverse mapping transformation.

2. Then, by using a forward projection transformation, desired 2D image coordinates
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(a) Pan, ∆θ = 2◦ (b) Tilt, ∆ψ = 2◦

(c) Zoom, factor = 0.9 (d) Pan, Tilt, and Zoom

Figure 5.27: Pan, Tilt, and Zoom, Intra (indoor image sequence LAB, frame No. 18)

(Xr, Yr) can be calculated. Overall Disparity Vector (DV) can be obtained as in

equation 5.7.

As before, in order to find all the required disparity vectors, this procedure should

be repeated for all the smallest coding units, e.g. 4× 4 or 8× 8 blocks, at each frame.

Since disparity vectors will be calculated using the pan and tilt angles and the zooming

factor issued by the user, disparity vectors need not be transmitted through the channel

and the decoder will be able to calculate the disparity components only based on the

three parameters of pan and tilt angles and the zooming factor.

5.4.1 Experimental Results

Figure 5.27 shows difference images for LAB sequence frame number 18, that includes,

2 degrees pan, 2 degrees tilt, zooming factor 0.9 and eventually combination of the three

possibilities. One noticeable observation is that, unlike CHPL image sequence, since this

image sequence consists of more horizontal lines, higher error is produced in tilt scenario

as compared to pan case.

Results for disparity compensation error using the above mentioned method are given

in figure 5.28. The residual error in this case is reduced to almost zero everywhere, except
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(a) Pan, ∆θ = 2◦ (b) Tilt, ∆ψ = 2◦

(c) Zoom, factor = 0.9 (d) Pan, Tilt, and Zoom

Figure 5.28: Pan, Tilt, and Zoom, PTZ (indoor image sequence LAB, frame No. 18)

at the left border in pan and the top border in tilt. Estimated disparity vectors for these

pan, tilt, and zoom values are also depicted in figure 5.29. Finally, simulation results

for 90 degrees pan with 2 degree step size performed on CHPL and TBT1 sequence are

summarized in table 5.14 and are compared with the TSS algorithm.

5.5 Summary

In this chapter we pursued three major goals. First, to obtain disparity vectors for

storage of cubic-panorama image dataset using results obtained in previous chapters. In

chapter 3 it was explained how to analyze the pair of panoramas and the concept of

essential matrix and epipolar geometry was introduced. In chapter 4 different prediction

structures as well as GOP sizes were examined. It was shown that IBIB prediction

structure is useful in storing large number of image datasets due to properties of B

frames. Combining the two, in this chapter we applied the epipolar geometry constraints

to sequences in IBIB format to achieve a fast disparity estimation algorithm which was

named Dir. It was shown that to maintain similar disparity compensation error, by using

our proposed algorithm around 34 to 40 percent of time will be saved, resulting in no

less accurate disparity vectors.



5 Disparity Estimation for Storage and Transmission 126

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

 

 
Disparity Vectors

(a) Pan, ∆θ = 2◦
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(b) Tilt, ∆ψ = 2◦
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(c) Zoom, factor = 0.9
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(d) Pan, Tilt, and Zoom

Figure 5.29: Pan, Tilt, and Zoom, Estimated disparity vectors

In the second step, an algorithm was explained in detail to extract the already calcu-

lated and stored disparity vectors at the time of virtual navigation. It includes disparity

vector extraction, disparity vector transformations, and also prediction structure conver-

sion followed by an optional refinement stage. It was shown that by appropriate disparity

conversion as well as prediction format conversion, an efficient outcome can be achieved

with much less computational complexity. Differences were shown through disparity

compensation error images, disparity vector plots as well as quality versus computa-

tional complexity plots. It was shown that to maintain similar disparity compensation

error, by using our proposed algorithm and Median method around 73 to 78 percent of

time will be saved, resulting in no less accurate disparity vectors.

In the third and last part, it was explained how to find disparity vectors when the user

turns around or decides to zoom in or zoom out. A real navigation includes a combination

of the two above mentioned types of navigation. Altogether, our approach facilitates free

navigation. That means the remote user can enter the sequence at any I frame, that

means every second frame. He or she may decide to move to navigation in the right or

the left direction. Since our disparity estimation method considers the IBIB to IPPP

conversion, moving in either direction will not be a problem. Also since this method takes

into account pan and tilt, returning back from the already walked navigation path at any

point of interest is also facilitated. In short, disparity vectors are estimated accurately



5 Disparity Estimation for Storage and Transmission 127

DE Method CHPL TBT1

TSS 25.2 dB 27.7 dB

PTZ 34.5 dB 36.2 dB

Time

TSS 176 177

PTZ 15 15

Table 5.14: Pan, Tilt, and Zoom, Average PSNR and Time (in seconds) for 90◦ Pan,

∆θ = 2◦

first hand at the storage time and reused efficiently at the transmission time [101].

At the end, notice that different users’ spatial capabilities requirement, explained

among the requirements of the system in the first chapter, is automatically addressed by

using our approach. Since recording and storage of data is performed separate from the

transcoding stage, using different rendered view sizes throughout the navigation for each

specific user will help users with different capabilities to access and use the stored data

effectively.



Chapter 6

Conclusion: Contributions and

Future Work

In this thesis we worked on a virtual navigation system and particularly considered the

problem of analysis of cubic-panorama image datasets for storage and transmission of

data. We started by introducing an image-based virtual environment navigation system

with its main components including cubic-panorama image dataset compression and im-

age sequence transmission. We discussed the interesting features of such image datasets

as well as requirements for cubic-panorama image dataset compression and image se-

quence transmission. A chapter was dedicated to literature review, including image

based rendering techniques, video compression schemes and standards, image matching

techniques and existing classic video transcoding schemes. In order to be able to evaluate

any proposed idea we needed to obtain a number of cubic-panorama image datasets first.

All the images shown and used in this work have been acquired by our image acquisition

system in the lab:

Image dataset acquisition Twelve cubic-panorama image datasets have been cap-

tured. Various indoor and outdoor locations were chosen for image acquisition

in the city of Ottawa in the Fall of 2009, including the National Gallery of Canada,

Tabaret Hall, and Colonel By building on campus at the University of Ottawa.

Captured cubic-panorama image datasets can be used for testing and comparison

purposes in various applications including the virtual navigation system.

In this work we have proposed various ideas for omnidirectional cubic-panorama

image dataset preprocessing, compression, and transmission stages of a virtual navigation

128
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system, with special attention on disparity estimation, and have presented experimental

results and a number of contributions, including the following.

6.1 Contributions

This section describes the contributions of this thesis to knowledge. Supporting contri-

butions include the following:

Image dataset analysis and preprocessing A novel method which aims to achieve

alignment of a large number of cubic image panoramas was presented. Also a

measure was introduced for assessment of the overall alignment level among the

basis images in a given cubic-panorama image dataset. Subsequently, the proposed

method was tested using the introduced measure and the simulation results confirm

the desired improvements. These results were presented in ICASSP conference in

year 2011 [93].

Standardized versus wavelet-based methods The two major existing approaches

in the literature, i.e., standards-based scheme and wavelet-based scheme, have

been compared using two different quality measures, namely PSNR and SSIM for

both indoor and outdoor cubic-panorama image datasets. The standardized based

scheme has shown better rate distortion performance for captured cubic-panorama

image datasets over various range of bitrates.

Efficient prediction structure A state-of-the-art standardized video codec, H.264/AVC,

was adopted and used for compressing the acquired cubic-panorama image datasets.

In search for an efficient prediction structure, various GOP sizes as well as vari-

ous frame types and structures were tested and discussed. Presenting an efficient

prediction structure for cubic-panorama image datasets, as contrasted with the

case of conventional video sequences, constitutes another contribution of our work.

The case of 4D cubic-panorama image datasets has been addressed similarly and

a practical prediction structure was presented as an extended application of the

already explained 3D cubic-panorama image datasets. A bitstream syntax, at the

application layer of the network, was presented in order to facilitate organizing and

randomly accessing the required data in such huge size captured cubic-panorama

image datasets. These two set of results were presented in SPIE Electronic Imaging

symposium in year 2012 [98].



6 Conclusion: Contributions and Future Work 130

Main contributions include the following:

Using the essential matrix for displacement estimation We proposed using the

properties of the essential matrix and the epipolar constraint along with the cubic

format of existing panoramas, mainly in order to reduce the computational com-

plexity in the encoding process of the captured cubic-panorama image datasets.

In conventional video coding approaches, usually a block matching algorithm is

used in motion vector search. This task is performed over a search window around

the current reference point, restricted by a parameter called the maximum search

range in both horizontal and vertical direction. No information about the nature

of the video is usually exploited and the previously estimated motion vector is used

as the initial guess for the current motion vector, the assumption that implies a

uniform motion across the video frame.

First, as has been explained earlier, in video coding, as well as in cubic-panorama

image dataset compression, motion or disparity estimation compromises 60-70% of

the encoding complexity. By using a wiser approach, e.g., exploiting the properties

of the essential matrix, and the specific cubic format of the basis images, we were

able to reduce the computational complexity to a great extent, by restricting our

search with a directional search algorithm.

More accurate disparity vectors were achieved, because we are basically searching

in the right place for the disparity vector when using a directional search algorithm.

We also did not need to assume that the disparity vectors possess smooth changes

across the basis image; instead we were able to avoid using a predictive structure

in the search for disparity vectors. This is a more realistic assumption since objects

are usually located at different depths. As an example, objects located farther from

the camera possess less disparities compared to the ones which are located closer

to the camera. In addition, we realized higher search ranges along the epipolar line

due to the minimal 1D nature of the search algorithm.

A new video transcoding scheme A new type of video transcoding was proposed

which converts the information extracted from the storage unit from the cube for-

mat into a planar video sequence ready for transmission through the communication

channel. In practice, the residual error should also be decoded and re-encoded. Our

concern in video transcoding was mainly to extract the precalculated disparity vec-

tors and reuse them in an efficient manner to be able to reduce the computational
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complexity of the transcoding stage to a great extent. Also, since disparity vectors

are usually calculated for each image block (usually of size 4 × 4 or 8 × 8), when

going back and forth from the panoramic images in cube format to the planar im-

age format, we considered a few candidate vectors in disparity vector estimation

inspired from the existing works in standards transcoding applications.

The case of pan, tilt, and zoom was also explained and a method for finding dis-

parity vectors were explained. As can be seen by comparing the two figures of

5.1 and 5.2, the idea which was proposed for dealing with the cases of pan, tilt,

and zoom, can be considered as a simplified case of the previously explained video

transcoding step. In other words, our goals at this step were achieved by taking

the transcoding algorithm and simply discarding its second step (among the three

steps introduced for video transcoding). The aforementioned set of contributions

were presented in SPIE Electronic Imaging symposium in year 2013 [101].

6.2 Future Directions

Eventually, a number of future directions can also be envisioned as below:

Real world application We have already made several simulations using different as-

sumptions and test scenarios without directly involving the existing implementation

of the source codes. However, our method can be embedded in any existing stan-

dardized video codec. Specifically, the motion/disparity estimation module needs

to be modified as explained in chapter five such that it can be used in different

ways for comparing and testing various approaches. The existing reference software

for H.264/AVC, along with the software manual1, the ITU-T recommendation for

H.2642, as well as the email listing of the JVT experts team will be a great help

for anyone who wishes to extend this work.

Therefore, by using our method we believe that it is possible not only to reduce the

computational complexity, but also we look forward to increasing the compression

efficiency, due to a more realistic approach towards estimating the disparity vectors.

Note that the task of video transcoding can be considered as a combination of an

encoding and a decoding module. Therefore, if enough experience in using the

1Available here: http://iphome.hhi.de/suehring/tml/
2Available here: http://www.itu.int/rec/T-REC-H.264



6 Conclusion: Contributions and Future Work 132

. . .

I B B I B B I

I
P P P

. . .

dv 2 dv 4 dv 6 dv 8

dv 1 dv 3 dv 5 dv 7

DV 1 DV 2 DV 3

Figure 6.1: An example of view scalability requirement in image sequence transmission

encoding/decoding stages is achieved, we expect to achieve similar improvements

in the video transcoding step in a relatively shorter time period as explained in

chapter five. Existing standardized video codec can be modified to be able to test

the proposed disparity estimation algorithm. Once this task is achieved, we will

be able to extract the disparity vectors out of the resultant bitstream in an inverse

manner, and subsequently we will be able to combine the two tasks in order to

reaffirm improvements obtained in the video transcoding step as well as the last

step of dealing with pan, tilt, and zoom. Notice that negligible residual error in

pan, tilt, and zoom scenario is equivalent with lower bit rate and therefore higher

encoding efficiency. Also since the user is aware of the view angles he is submitting

to the transmitter, in practice, no disparity vector need to be transmitted to the

receiver side so far as pan, tilt, or zoom scenario is considered.

View scalability As can be seen in Figure 6.1, by using this method in the image

dataset transcoding stage, the desired view scalability feature can also be achieved

for more complex scenarios, for example IBB prediction structure, given required

essential matrixes are already calculated and stored. If normal speed is sought,

between any pair of frames in this setting, two candidate disparity vectors exist

for example +dv1 and half of dv2 (briefly +0.5dv2) between the first pair can be

used and so on for the rest. However, for fast navigation, i.e. twice the normal
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speed, a typical conversion scenario is briefly shown. disparity vectors (DVs) are

to be estimated from already calculated and stored ones noted by dv in the figure.

Below is a candidate decision scenario for each possibility:

possible candidates for DV1: +dv2, +2dv1, and -dv4.

possible candidates for DV2: +2dv5, -2dv3, +dv6, and -dv4.

possible candidates for DV3: -dv8, -2dv7, and +dv6.

The rest will be similar. If this scenario is developed carefully in a similar manner

as it was done in chapter five, the user will be able to navigate twice faster and the

goal of view scalability explained earlier in the first chapter can be fulfilled.

View synthesis One interesting aspect of any panoramic image dataset is view syn-

thesis. We elaborated enough on free virtual walk-through, yet the view locations

are limited to the center of cubic-panoramas in our work. However, analysis of

cubic-panoramas give us tools to work on view synthesis. As shown in [27, 28],

by exploiting properties of the geometry of the scene, the triangular re-projection

method can be extended to virtual cubic-panorama synthesis. In their work, the

desired panorama is synthesized from three neighboring reference cubic panoramas

in two steps. The first step is to synthesize the central part in each cube face, and

the second step is to synthesize the region near the cube edges, with emphasis on

solving the difficulties due to the discontinuity at the edges. Also If you would like

to see an interesting work on spherical-panorama stereo with wavelet filtering for

novel view synthesis, visit chapter six of Brunton’s thesis [25].

Therefore in addition to the aforementioned contributions, our work can be used as

a starting point in a number of future directions in the area of cubic-panorama image

dataset processing.



Appendix A

Glossary of Terms

4SS Four Step Search

5SS Five Step Search

6SS Six Step Search

7SS Seven Step Search

AVC Advanced Video Coding

CBY Colonel By

CCD Charge-Coupled Device

CFA Color Filter Array

CHPL Chapel

CM Concentric Mosaic

CR Compression Ratio

DCP Disparity Compensation/Prediction

DCT Discrete Cosine Transform

DE Disparity Estimation

DV Disparity Vector
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Glossary of Terms 135

DWT Discrete Wavelet Transform

EBCOT Embedded Block Coding with Optimal Truncation

EZW Embedded Zero-tree Wavelet

FOV Field Of View

FSA Full Search Algorithm

FTV Free viewpoint TV

GOP Group Of Pictures

HDTV High Definition Television

HEVC High Efficiency Video Coding

HVS Human Visual System

IBR Image-Based Rendering

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISO International Standards Organization

ITU International Telecommunication Union

JPEG Joint Photographic Experts Group

JVT Joint Video Team

LAB Laboratory

LBY Lobby

MCTF Motion Compensated Temporal Filtering

MIC Multiview Image Coding

MPEG Moving Picture Experts Group

MSE Mean Square Error
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MV Motion Vector

MVC Multiview Video Coding

NAVIRE Virtual Navigation in Image-based Representations of Real World Environ-

ments

NCC Normalized Cross Correlation

NGC National Gallery of Canada

NSERC Natural Sciences and Engineering Research Council

PSNR Peak Signal to Noise Ratio

PTZ Pan, Tilt, and Zoom

RGB Red, Green, Blue

RMSE Root Mean Square Error

SAD Sum of Absolute Differences

SIFT Scale-Invariant Feature Transform

SPIHT Set Partitioning in Hierarchical Trees

SSD Sum of Squared Differences

SSIM Structural Similarity

SVD Singular Value Decomposition

TBT Tabaret

TSS Three Step Search

VCR Video Cassette Recorder

VLC Variable Length Coding

VQ Vector Quantization



Appendix B

List of Symbols

a, b, c Epipolar plane

ai, bi, ci Epipolar line

c1, c2 Variables to stabilize the division with weak denominator

d, u, l, r, b, f Down, up, left, right, back and front side images

d1, d2 Vertical and horizontal displacement

E or (eij)33 Essential matrix

EMS Mean square error

ERMS Root mean square error

F Focal length of the camera

I33 Identity matrix (3 x 3)

IB,k kth basis image in an image dataset

IB,k,j j
th image segment in IB,k

IB,c, IB,r Current and reference basis images

ÎB,k Reconstructed IB,k

J0 Total number of image datasets available in the image database
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List of Symbols 138

K Size of the image dataset

K0 Number of image dataset segments in each image dataset

L Size of a cube

L0 Number of basis images in each image dataset segment

LP Plenoptic function of the light ray intensity distribution

LPm m-dimensional plenoptic function

M Number of image correspondences

M0 Number of group of pictures

N Number of search operations in the first step

N0 Number of frames in each group of picture

N1, N2 Width and Height of each side image in pixels

PM Model parameter set

R or (rij)33 Rotation matrix

Rk Rotation matrix between IB,k and IB,k+1

RT Rotation matrix (resulted from the translation vector T)

RC Compression ratio

SE Sum of squared errors

T Translation vector

Tx, Ty, Tz Translation vector components

Td, Tu, Tl, Tr, Tb, Tf Transformation matrices of down, up, left, right, back and front

side images

wi Image window

∆x, ∆y, ∆z Scaled translation vector components



List of Symbols 139

x, y, z Coordinates of a scene point

X, Y Coordinate of the scene point projected on the image plane of the camera

µwi
The average of wi

σ2
wi

The variance of wi

σw1w2 The covariance of w1 and w2

θ, ψ, φ Rotation angles

θ′, ψ′ Rotation angles (resulted from T)



Bibliography

[1] D. Bradley, A. Brunton, M. Fiala and G. Roth, ”Image-based Navigation in Real

Environments Using Panoramas,” Proc. IEEE Int. Workshop on Haptic Audio

Visual Environments and their Applications (HAVE’05), Ottawa, ON, Canada,

Oct. 2005, pp. 57-59.

[2] S. E. Chen, ”QuickTime VR - An Image-Based Approach to Virtual Environment

Navigation,” Proc. ACM Annu. Conf. Computer Graphics and Interactive Tech-

niques (SIGGRAPH’95), Aug. 1995, pp. 29-38.

[3] M. Uyttendaele, A. Criminisi, S. B. Kang, S. Winder, R. Szeliski and R. Hartley,

”Image-Based Interactive Exploration of Real-World Environments,” IEEE Trans.

Computer Graphics and Applications, vol. 24, no. 3, pp. 52-63, May 2004.

[4] C. Zhang and J. Li, ”Interactive Browsing of 3D Environment over the Internet,”

Proc. SPIE Visual Communications and Image Processing Symp., San Jose, CA,

USA, Jan. 2001, vol. 4310, pp. 509-520.

[5] M. Fiala and G. Roth, ”Automatic Alignment and Graph Map Building of Panora-

mas,” Proc. IEEE Int. Workshop on Haptic Audio Visual Environments and their

Applications (HAVE’05), Ottawa, ON, Canada, Oct. 2005, pp. 104-109.

[6] X. Huang and E. Dubois, ”3D Reconstruction Based on a Hybrid Disparity Es-

timation Algorithm,” IEEE Int. Conf. on Image Processing, pp. 1025-1028, Oct.

2006.

[7] F. Kangni and R. Laganière, ”Epipolar Geometry for the Rectification of Cubic

Panoramas,” Proc. of the 3rd Canadian Conference on Computer and Robot Vision

(CRV’06), June 2006, pp. 70-77.

140



References 141

[8] X. Sun and E. Dubois, ”A Matching-Based View Interpolation Scheme,” Proc.

IEEE Int. Conf. Acoustics Speech Signal Processing, pp. II 877-880, March 2005.

[9] L. Zhang, D. Wang and A. Vincent, ”Adaptive Reconstruction of Intermediate

Views from Stereoscopic Images,” IEEE Trans. Circuits and Syst. for Video Tech-

nol., vol. 16, pp. 102-113, Jan. 2006.

[10] Kehua Jiang, ”Cubic-Panorama Image Dataset Compression for Image-Based Vir-

tual Environment Navigation,” PhD Thesis, University of Ottawa, Feb. 2009.

[11] NAVIRE: http://www.site.uottawa.ca/research/viva/projects/ibr.

[12] S.-C. Chan and H.-Y. Shum, ”A Spectral Analysis for Light Field Rendering,”

Proc. IEEE Int. Conf. Image Processing (ICIP’00), Vancouver, BC, Canada, Sept.

2000, vol. 2, pp. 25-28.

[13] C. Zhang and T. Chen, ”Spectral Analysis for Sampling Image-Based Rendering

Data,” IEEE Trans. Circuits and Syst. for Video Technol., vol. 13, no. 11, pp.

1038-1050, Nov. 2003.

[14] J.-X. Chai, X. Tong, S.-C. Chan and H.-Y. Shum, ”Plenoptic Sampling,”

Proc. ACM Annu. Conf. Computer Graphics and Interactive Techniques (SIG-

GRAPH’00), New Orleans, LA, USA, 2000, pp. 307-318.

[15] Z. C. Lin and H.-Y. Shum, ”On the Number of Samples Needed in Light Field

Rendering with Constant-Depth Assumption,” Proc. IEEE Conf. Computer Vision

and Pattern Recognition (CVPR’00), Hilton Head Island, SC, USA, June 2000, vol.

1, pp. 588-595.

[16] H.-Y. Shum and L.-W. He, ”Rendering with Concentric Mosaics,” Proc. ACM

Annu. Conf. Computer Graphics and Interactive Techniques (SIGGRAPH’99), Los

Angeles, CA, USA, Aug. 1999, pp. 299-306.

[17] S. Ikeda, T. Sato and N. Yokoya, ”High-Resolution Panoramic Movie Genera-

tion from Video Streams Acquired by an Omnidirectional Multi-Camera System,”

Proc. IEEE Int. Conf. Multisensor Fusion and Integration for Intelligent Systems

(MFI’03), Aug. 2003, pp. 155-160.

[18] M. Beermann and E. Dubois, ”Capture and Generation of Cubes,” NAVIRE In-

ternal Technical Report, Nov. 2006.



References 142

[19] M. Beermann and E. Dubois, ”Acquisition Processing Chain for Dynamic

Panoramic Image Sequences,” Proc. IEEE Int. Conf. Image Processing (ICIP’07),

Sept. 2007, vol. V, pp. 217-220.

[20] L. E. Gurrieri and E. Dubois, ”Optimum alignment of panoramic images for stereo-

scopic navigation in image-based telepresence systems,” proc. of the 11th Work-

shop on Omnidirectional Vision, Camera Networks and Non-Classical Cameras

OMNIVIS2011, Barcelona, Spain, Nov. 2011.

[21] L. E. Gurrieri and E. Dubois, ”Efficient panoramic sampling of real-world environ-

ments for image-based stereoscopic telepresence,” Proc. of the IS&T/SPIE Annual

Symposium on Electronic Imaging Science and Technology, Stereoscopic Display

and Applications, San Francisco, USA, Jan. 2012.

[22] R. Szeliski and H. Shum, ”Creating Full View Panoramic Image Mosaics and En-

vironment Maps,” Proc. ACM Annu. Conf. Computer Graphics and Interactive

Techniques (SIGGRAPH’97), 1997, pp. 251-258.

[23] Alan Brunton, Jochen Lang, and Eric Dubois, ”Spherical Harmonic Transforms

and Convolutions on the GPU,” Journal of Graphics, GPU, and Game Tools,

15(1):13-27, 2010.

[24] A. Brunton, J. Lang, and E. Dubois, ”Efficient Multi-Scale Stereo of High-

Resolution Planar and Spherical Images,” International Conference on 3D Imaging

Modeling Processing Visualization and Transmission (3DIMPVT), 2012.

[25] Alan Brunton, ”Multi-Scale Methods for Omnidirectional Stereo with Application

to Real-Time Virtual Walkthroughs,” Ph.D. Thesis, University of Ottawa, Nov.

2012.

[26] N. Greene, ”Environment Mapping and Other Applications of World Projections,”

IEEE Computer Graphics and Applications, vol. 6, no. 11, pp. 21-29, Nov. 1986.

[27] C. Zhang, E. Dubois, and Y. Zhao, ”Intermediate cubic-panorama synthesis based

on triangular re-projection,” 17th IEEE International Conference on Image Pro-

cessing (ICIP’10), September 2010.

[28] C. Zhang, Y. Zhao, and F. Wu, ”Triangulation of cubic panorama for view synthe-

sis,” Applied Optics, vol. 50, no. 22, pp. 4286-4294, August 2011.



References 143

[29] X. Sun and E. Dubois, ”View Morphing and Interpolation through Triangulation,”

Proc. SPIE Electronic Imaging Symp., Conf. on Image and Video Communications

and Processing, vol. 5685, pp. 513-521, Jan. 2005.

[30] E. H. Adelson and J. Bergen, ”The Plenoptic Function and the Elements of Early

Vision,” Computer Models of Visual Processing, pp. 3-20, MIT Press, Cambridge,

MA, USA, 1991.

[31] D. Bradley, ”Navire Cube Viewer,” Navire Internal Technical Report, NAV-TR-

2005-01, Aug. 2005.

[32] C. Zhang and T. Chen, ”A Survey on Image-Based Rendering – Representation,

Sampling and Compression,” Signal Processing: Image Communication, vol. 19,

pp. 1-28, Jan. 2004.

[33] Dirac video codec: http://www.diracvideo.org.

[34] G. Sullivan and T. Wiegand, ”Rate-distortion optimization for video compression,”

IEEE Signal Processing Magazine, vol.15, no.6, pp.74-90, Nov. 1998.

[35] G. Sullivan and T. Wiegand, ”Video Compression - From Concepts to the

H.264/AVC Standard,” Proceedings of the IEEE, vol.93, no.1, pp.18-31, Jan. 2005.

[36] M. Levoy and P. Hanrahan, ”Light Field Rendering,” Proc. ACM Annu. Conf.

Computer Graphics and Interactive Techniques (SIGGRAPH’96), New Orleans,

LA, USA, Aug. 1996, pp. 31-42.

[37] D. G. Aliaga and I. Carlbom, ”Plenoptic Stitching: A Scalable Method for Re-

constructing 3D Interactive Walkthroughs,” Proc. ACM Annu. Conf. Computer

Graphics and Interactive Techniques (SIGGRAPH’01), Los Angeles, CA, USA,

Aug. 2001, pp. 443-450.

[38] S. Gortler, R. Grzeszcczuk, R. Szeliski and M. F. Cohen, ”The Lumigraph,”

Proc. ACM Annu. Conf. Computer Graphics and Interactive Techniques (SIG-

GRAPH’96), New Orleans, LA, USA, Aug. 1996, pp. 43-52.

[39] H. Y. Shum, S. B. Kang and S. C. Chan, ”Survey of Imaged-Based Representations

and Compression Techniques,” IEEE Trans. Circuits and Syst. for Video Technol.,

vol. 13, no. 11, pp. 1020-1037, Nov. 2003.



References 144

[40] S. M. Seitz and C. R. Dyer, ”View Morphing,” Proc. ACM Annu. Conf. Computer

Graphics and Interactive Techniques (SIGGRAPH’96), New Orleans, LA, USA,

Aug. 1996, pp. 21-30.

[41] J. Shade, S. Gortler, L. W. He and R. Szeliske, ”Layered Depth Images,”

Proc. ACM Annu. Conf. Computer Graphics and Interactive Techniques (SIG-

GRAPH’98), Orlando, FL, USA, July 1998, pp. 231-242.

[42] X. Tong and R. M. Gray, ”Interactive Rendering from Compressed Light Fields,”

IEEE Trans. Circuits and Syst. for Video Technol., vol. 13, no. 11, pp. 1080-1091,

Nov. 2003.

[43] K. Jiang and E. Dubois, ”Motion-Oriented Coding Scheme for Compression of

Concentric Mosaic Scene Representations,” Proc. IEEE Int. Workshop on Haptic

Audio Visual Environments and their Applications, Ottawa, ON, Canada, Oct.

2004, pp. 37-42.

[44] H. Y. Shum, K. T. Ng and S. C. Chan, ”Virtual Reality Using the Concentric

Mosaic: Construction, Rendering and Data Compression,” Proc. IEEE Int. Conf.

Image Processing (ICIP’00), Sept. 2000, vol. 3, pp. 644-647.

[45] G. Sullivan, ”Efficient Scalar Quantization of Exponential and Laplacian Vari-

ables,” IEEE Trans. Information Theory, vol. 42, no. 5, pp. 1365-1374, Sept. 1996.

[46] B. Girod, C. L. Chang, P. Ramanathan and X. Zhu, ”Light Field Compression

Using Disparity-Compensated Lifting,” Proc. IEEE Int. Conf. Acoustics, Speech

and Signal Processing (ICASSP’03), Hong Kong, China, Apr. 2003, pp. IV760-

763.

[47] L. Luo, Y. Wu, J. Li and Y. Q. Zhang, ”Compression of Concentric Mosaic Scenery

with Alignment and 3D Wavelet Transform,” Proc. SPIE Image and Video Com-

munications and Processing Symp., San Jose, CA, USA, Jan. 2000, vol. 3974, pp.

89-100.

[48] X. Tong and R. M. Gray , ”Coding of Multi-View Images for Immersive Viewing,”

Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP’00), Is-

tanbul, Turkey, June 2000, vol. 4, pp. 1879-1882.



References 145

[49] M. Magnor and B. Girod, ”Hierarchical Coding of Light Fields with Disparity

Maps,” Proc. IEEE Int. Conf. Image Processing (ICIP’99), Kobe, Japan, Oct.

1999, vol. 3, pp. 334-338.

[50] M. Magnor and B. Girod, ”Data Compression for Light-Field Rendering,” IEEE

Trans. Circuits and Syst. for Video Technol., vol. 10, no. 3, pp. 338-343, Apr. 2000.

[51] C. Zhang and J. Li, ”Compression of Lumigraph with Multiple Reference Frame

(MRF) Prediction and Just-in-Time Rendering,” IEEE Data Compression Conf.,

Snowbird, UT, USA, Mar. 2000, pp. 254-263.

[52] C. Zhang and J. Li, ”Compression and Rendering of Concentric Mosaics with

Reference Block Codec (RBC),” Proc. SPIE Visual Communications and Image

Processing Symp., Perth, Australia, June 2000, vol. 4067, pp. 43-54.

[53] Y. Wu, L. Luo, J. Li and Y. Q. Zhang, ”Rendering of 3D-Wavelet Compressed

Concentric Mosaic Scenery with Progressive Inverse Wavelet Synthesis (PIWS),”

Proc. SPIE Visual Communications and Image Processing Symp., Perth, Australia,

June 2000, vol. 4067, pp. 31-43.

[54] Y. Wu, C. Zhang and J. Li, ”Smart Rebinning for the Compression of Concentric

Mosaic,” IEEE Trans. on Multimedia, vol. 4, no. 3, pp. 332-342, Sept. 2002.

[55] M. Ghanbari, ”Standard Codecs: Image Compression to Advanced Video Coding,”

The Institution of Electrical Engineers, London, 2003.

[56] ISO/IEC JTC1/SC29/WG1, ”Information Technology — Digital Compression and

Coding of Continuous-tone Still Images: Requirements and Guidelines,” ISO/IEC

10918-1 and ITU-T Rec. T.81 (JPEG), 1992.

[57] ISO/IEC JTC1/SC29/WG1, ”Information Technology — JPEG 2000 Image Cod-

ing System, Part 1: Core Coding System,” ISO/IEC 15444-1 and ITU-T Rec.

T.800 (JPEG2000), Aug. 2000.

[58] M. D. Adams and F. Kossentini, ”JasPer: A Software-Based JPEG 2000 Codec

Implementation,” Proc. IEEE Int. Conf. Image Processing (ICIP’00), Vancouver,

BC, Canada, Sept. 2000, vol. 2, pp. 53-56.

[59] D. T. Lee, ”JPEG 2000: Retrospective and New Developments,” Proceedings of

the IEEE, vol. 93, no. 1, pp. 32-41, Jan. 2005.



References 146

[60] J. M. Shapiro, ”Embedded Image Coding Using Zerotrees of Wavelet Coefficients,”

IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3445-3462, Dec. 1993.

[61] A. Said and W. A. Pearlman, ”A New Fast and Efficient Image Codec Based on

Set Partitioning in Hierarchical Trees,” IEEE Trans. Circuits and Syst. for Video

Technol., vol. 6, pp. 243-250, June 1996.

[62] D. Taubman, ”High Performance Scalable Image Compression with EBCOT,”

IEEE Trans. Image Processing, vol. 9, no. 7, pp. 1158-1170, July 2000.

[63] ITU-T, ”Video Codec for Audiovisual Services at p x 64 kbit/s,” ITU-T Rec. H.261,

Mar. 1993.

[64] ISO/IEC JTC1/SC29/WG11, ”Information Technology — Coding of Moving Pic-

tures and Associated Audio for Digital Storage Media at Up To About 1.5 Mbit/s,

Part 2: Video,” ISO/IEC 11172-2 (MPEG-1), Nov. 1992.

[65] ISO/IEC JTC1/SC29/WG11, ”Information Technology — Generic Coding of Mov-

ing Pictures and Associated Audio Information, Part 2: Video,” ISO/IEC 13818-2

and ITU-T Rec. H.262 (MPEG-2), Nov. 1994.

[66] ITU-T, ”Video Coding for Low Bit Rate Communication,” ITU-T Rec. H.263,

Version 2, Jan. 1998.

[67] S. C. Tai, Y. Y. Chen and S. F. Sheu, ”Deblocking filter for Low Bit Rate MPEG-

4 Video,” IEEE Trans. Circuits and Syst. for Video Technol., vol. 15, no. 6, pp.

733-741, June 2005.

[68] ITU-T and ISO/IEC, ”Advanced Video Coding for Generic Audiovisual Services,”

ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC (H.264/AVC), 2003.

[69] ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6, ”H.264 /MPEG-4 AVC Ref-

erence Software,” ISO/IEC and ITU JVT-X072, July 2007.

[70] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T. Stock-

hammer and T. Wedi, ”Video Coding with H.264/AVC: Tools, Performance, and

Complexity,” IEEE Circuits and Syst. Magazine, vol. 4, no. 1, pp. 7-28, First

Quarter 2004.



References 147

[71] A. Puri, X. Chen and A. Luthra, ”Video Coding Using the H.264/MPEG-4 AVC

Compression Standard,” Signal Processing: Image Communication, vol. 19, pp.

793-849, 2004.

[72] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, ”Overview of the

H.264/AVC Video Coding Standard,” IEEE Trans. Circuits and Syst. for Video

Technol., vol. 13, no. 7, pp. 560-576, July 2003.

[73] G. J. Sullivan, P. N. Topiwala, and A. Luthra, ”The h.264/avc advanced video

coding standard: overview and introduction to the fidelity range extensions,” Ap-

plications of Digital Image Processing XXVII, SPIE 2004, vol. 5558, no. 1, pp.

454-474, August 2004.

[74] M. Karczewicz and R. Kurceren, ”The SP- and SI-Frames Design for H.264/AVC,”

IEEE Trans. Circuits and Syst. for Video Technol., vol. 13, no. 7, pp. 637-644, Jul.

2003.

[75] X. Sun, S. Li, F. Wu, J. Shen, and W. Gao, ”The improved sp frame coding tech-

nique for the JVT standard,” Proc. IEEE Int. Conf. Image Processing (ICIP’03),

vol. 3, pp. III 297-300 vol. 2, 14-17 Sept. 2003.

[76] H. Schwarz, D. Marpe and T. Wiegand, ”Analysis of Hierarchical B Pictures and

MCTF,” IEEE International Conference on Multimedia and Expo, pp.1929-1932,

2006.

[77] ”ITU-T Recommendation H.264 : Advanced video coding for generic audiovisual

services,” International Telecommunications Union, Nov. 2007.

[78] A. M. Tourapis, A. Leontaris, K. Suehring, and G. Sullivan, ”H.264/mpeg-4 AVC

Reference Software Manual, JVT-AD010,” Tech. Rep., January 2009.

[79] K. P. Lim, G. Sullivan, and T. Wiegand, ”Text Description of Joint Model Refer-

ence Encoding Methods and Decoding Concealment Methods, JVT-O079,” Tech.

Rep., April 2005.

[80] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand,

”Overview of the High Efficiency Video Coding (HEVC) Standard,” IEEE Trans.

Circuits and Syst. for Video Technol., vol. 22, no. 12, December 2012.



References 148

[81] M. Z. Brown, D. Burschka and G. D. Hager, ”Advances in Computational Stereo,”

IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 993-

1008, August 2003.

[82] F. Remondino, S. F. El-Hakim, A. Gruen, and L. Zhang, ”Turning images into 3-D

models,” IEEE Signal Processing Magazine, vol. 25, no. 4, pp. 55-65, July 2008.

[83] J. Xin, C. Lin and M. Sun, ”Digital Video Transcoding,” Proceedings of the IEEE,

vol. 93, no. 1, pp. 84-97, January 2005.

[84] J. H. Hur, S. Cho and Y. L. Lee, ”Adaptive Local Illumination Change Com-

pensation Method for H.264/AVC-Based Multiview Video Coding,” IEEE Trans.

Circuits and Syst. for Video Technol., vol. 17, no. 11, pp. 1496-1505, November

2007.

[85] P. Merkle, A. Smolic, K. Muller and T. Wiegand, ”Efficient Prediction Structures

for Multiview Video Coding,” IEEE Trans. Circuits and Syst. for Video Technol.,

vol. 17, no. 11, pp. 1461-1473, November 2007.

[86] X. San, H. Cai, J. G. Lou and J. Li, ”Multiview Image Coding Based on Geometric

Prediction,” IEEE Trans. Circuits and Syst. for Video Technol., vol. 17, no. 11,

pp. 1536-1548, November 2007.

[87] E. Kurutepe, M. R. Civanlar and A. M. Teklap, ”Client-Driven Selective Streaming

of Multiview Video for Interactive 3DTV,” IEEE Trans. Circuits and Syst. for

Video Technol., vol. 17, no. 11, pp. 1558-1565, November 2007.

[88] R. Hartley, ”In defense of the 8-point algorithm,” IEEE trans. Pattern Analysis

and Machine Intelligence, vol. 19, no. 6, pp. 580-593, June 1997.

[89] A. Zakhor and F. Lari, ”Edge-Based 3-D Camera Motion Estimation with Appli-

cation to Video Coding,” IEEE Trans. Image Processing, vol. 2, no. 4, pp. 481-498,

Oct. 1993.

[90] T. S. Huang and A. N. Netravali, ”Motion and Structure from Feature Correspon-

dences: A Review,” Proc. IEEE, vol. 82, no. 2, pp. 252-268, Feb. 1994.

[91] J. J. Weng and T. S. Huang, ”3-D Motion Analysis from Image Sequences Using

Point Correspondences,” Handbook of Pattern Recognition and Computer Vision,

pp. 395-441, World Scientific Publishing Co., 1993.



References 149

[92] J. Weng, T. S. Huang and N. Ahuja, ”Motion and Structure from Two Perspective

Views: Algorithms, Error Analysis, and Error Estimation,” IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 11, no. 5, pp. 451-476, May 1989.

[93] S. Salehi and E. Dubois ”Alignment of Cubic-Panorama Image Datasets Using

Epipolar Geometry,” Proceedings, Intl. Conf. on Acoustics, Speech and Signal Pro-

cessing, 22-27 May 2011, Prague, pp. 1545-1548.

[94] J. R. Ohm, ”Advances in Scalable Video Coding,” Proceedings of the IEEE, vol.

93, no. 1, pp. 42-56, Jan. 2005.

[95] T. Halbach, ”Comparison of Open and Free Video Compression Systems,” Proc.

International Conference on Imaging Theory and Applications (IMAGAPP), Lis-

boa (Portugal), Feb. 2009.

[96] A. Ravi, ”Performance Analysis and Comparison of Dirac Video Codec With H.264

/ MPEG-4 Part 10 AVC,”MSc Thesis, University of Texas at Arlington, Aug. 2009.

[97] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, ”Image quality assess-

ment: From error visibility to structural similarity,” IEEE Transactions on Image

Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.

[98] S. Salehi and E. Dubois ”Cubic-Panorama Image Dataset Compression,” Proc.

SPIE Electronic Imaging Symp., Conf. on Visual Information Processing and Com-

munication III, 22-26 January 2012, San Francisco, vol. 8305.

[99] T. Shanableh and M. Ghanbari, ”Heterogeneous Video Transcoding to Lower

Spatio-Temporal Resolutions and Different Encoding Formats,” IEEE Trans. Mul-

timedia, vol. 2, no. 2, pp.101-110, 2000.

[100] F. Dufaux and J. Konrad, ”Efficient, Robust, and Fast Global Motion Estimation

for Video Coding,” IEEE Trans. Image Processing, vol. 9, no. 3, pp. 497-501, Mar.

2000.

[101] S. Salehi and E. Dubois ”Cubic-Panorama Image Dataset Analysis for Storage and

Transmission,” Proc. SPIE Electronic Imaging Symp., Conf. on Visual Information

Processing and Communication IV, 3-7 Februrary 2013, San Francisco. vol. 8666.


