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Abstract
With the rapid development of microscopy for cell imaging, there is a strong and growing demand
for image analysis software to quantitatively study cell morphology. Automatic cell segmentation
is an important step in image analysis. Despite substantial progress, there is still a need to improve
the accuracy, efficiency, and adaptability to different cell morphologies. In this paper, we propose
a fully automatic method for segmenting cells in fluorescence images of confluent cell
monolayers. This method addresses several challenges through a combination of ideas. 1) It
realizes a fully automatic segmentation process by first detecting the cell nuclei as initial seeds and
then using a multi-object geometric deformable model (MGDM) for final segmentation. 2) To
deal with different defects in the fluorescence images, the cell junctions are enhanced by applying
an order-statistic filter and principal curvature based image operator. 3) The final segmentation
using MGDM promotes robust and accurate segmentation results, and guarantees no overlaps and
gaps between neighboring cells. The automatic segmentation results are compared with manually
delineated cells, and the average Dice coefficient over all distinguishable cells is 0.88.
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1. INTRODUCTION
With the rapid development of immunofluorescence microscopy for cell imaging, there is a
strong and growing demand for image analysis software to quantitatively study cell
morphology. Automatic cell segmentation, separating the individual cells from the
background, is the initial step prior to any other automatic image analysis procedures. The
segmentation result determines the quality of all subsequent analysis.

Various segmentation methods have been proposed for different types of cell images. The
watershed algorithm and its many variants1,2 have gained great popularity for their
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simplicity and efficiency in separating clusters of cells. Other more advanced algorithms,
such as active contours3 and level sets4 offer more powerful tools for cell segmentation, as
they offer a high degree of accuracy, robustness to noise and weak boundaries, and have the
ability to incorporate all image features and prior information about the cell shape. Other
promising approaches include the graph-cut methods5 and dynamic programming6.

In an ideal fluorescence image of a confluent monolayer, the cells cover the plane with no
overlaps or gaps and the cell junctions are stained so they appear in a specific color in the
image. One challenge is that the images often appear noisy due to various defects. Baggett7

and Mucllough6 used dynamic programming with user interactions to achieve accurate
results on this kind of cell image. Frolkovic8 presented an automatic approach by first
detecting the centers of nuclei as starting points and then using level set methods to segment
individual cells. Since cells were segmented separately in this approach, it cannot guarantee
that there’s no overlaps or gaps between multiple cells.

In this work, we propose a fully automatic whole cell segmentation method for the
fluorescence images of confluent cell monolayers. First, cell nuclei are automatically
detected as initial seeds for subsequent segmentation. To deal with different defects, the cell
junctions are enhanced by applying an order-statistic filter and a principal curvature-based
image operator. The multi-object geometric deformable model (MGDM)9 is used for the
final segmentation, which promotes robust and accurate segmentation of the whole cells,
and guarantees no overlaps and gaps between multiple cells.

The rest of the paper is organized as follows. Section 2 describes the proposed segmentation
method, which includes three main steps: cell nucleus detection, cell junction enhancement,
and final segmentation using MGDM. Section 3 shows qualitative and quantitative
evaluation of the segmentation results. Section 4 gives the conclusion and a discussion of
future work.

2. METHOD
The cells studied in this work are the human umbilical vein endothelial cells (HUVECs).
The cells are immunostained for DAPI and VE-cadherin, so that the cell nuclei appear blue
and cell junctions appear green in the fluorescence images. Fig. 1 shows an example of the
fluorescence images and the individual green and blue channels. The following sections
describe the three main steps of our method: 1) Cell nucleus detection, which provides an
initial segmentation; 2) Cell junction enhancement; 3) Final segmentation using MGDM.

2.1 Cell Nucleus Detection
In order to localize each cell in the image, the cell nuclei (see Fig. 1) are automatically
detected and used as initial seeds for subsequent segmentation. The main challenge for cell
nucleus detection is overlap due to clustering or multiple nuclei. The popular watershed
methods often involve careful seed finding before (or region merging after) the watershed
operation to prevent over-segmentation. To avoid this, we present a different approach by
analyzing the contour of the nuclei cluster and separating the touching nuclei using the
shape characteristic of nuclei. First, a connected region R representing a nucleus or a cluster
of nuclei is detected by region growing. ∂R, the boundary of R, is represented by an ordered
set of points {pi}, i ∈ I = {1, 2, … , NR}. Candidate cuts between touching nuclei are
generated by detecting local minima in the contour distance map. The contour distance map
DR of a region R is a NR × NR matrix expressing the pair-wise distances between points in
{pi}, e.g. DR(i, j) is the distance between pi and pj. As shown in Fig. 2, the true cut between
two touching cells is one of the local minimas in DR. Then the true cuts are identified by
checking the similarity of the segmented contours to an ellipse shape. For a segmented
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contour c, represented by a set of points {pik}, ik ∈ Ic ⊂ I, an ellipse Ec is fitted to the point
set {pik}. The similarity of c to an ellipse is quantified by the mean distance from {pik} to
Ec:

where dist(p,Ec) is the shortest distance from a point p to the ellipse Ec.

The automatic cell nucleus detection algorithm can be summarized as follows:

Fig. 3 shows the cell nuclei sequentially detected by running the above procedures. Fig. 3(g)
is an image with zero in the background and the region of each cell nucleus labeled with a
different color. This labeled image is used as the initialization for the final segmentation
using the geometric deformable model in Sec 2.3.

2.2 Cell Junction Enhancement
The image of the cell junction network is the main input for final segmentation. The quality
of the cell junction network directly affects the segmentation results. Ideally, we expect the
cell junctions to have a dark background and a bright curvilinear structure. However, real
images have various kinds of defects. As shown in Fig. 4, there are bright spots scattered
throughout the image and smooth intensity peaks around the cell nuclei. Cell junctions have
an irregular appearance and are very weak or even indistinguishable in some areas. In our
method, we suppress the defects and enhance the curvilinear structure by first applying an
order-statistic filter and then computing the principal curvature of the image intensity
surface.

1) Order-statistic filtering—Order-statistic filtering replaces each pixel p in an image by
the k-th largest intensity value in a certain neighborhood of p. Here we use a 3 × 3
neighborhood and choose k = [0.2n], where n is the number of pixels in the neighborhood.
The bright spots are eliminated since they often have high intensities but small areas. On the
other hand, the curvilinear structure is not affected much since the high intensity area can
cover substantial area in the neighborhood of p. Fig. 4(b) shows a typical image of cell
junction network after order-statistic filtering.

2) Curvilinear structure enhancement—Second derivatives of image intensity are
often used for the detection and enhancement of curvilinear structures10,11. The differential
structure of the intensity surface at a point p = (x, y) is captured by the Hessian matrix,
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(1)

where r..(x, y) are second order derivatives of a smooth version of the original image.

The two eigenvectors indicate the directions along which the local surface has the greatest
and least curvature, and the corresponding eigenvalues, κ1(x, y) and κ2(x, y) (κ1(x, y) ≥ κ2(x,
y)), are the respective curvature values, called the principal curvatures. For a point on the
cell junction, the largest principal curvature κ1(x, y) should be negative with large absolute
value. As a result, κ1(x, y) can be used to identify the curvilinear structure in the image and
suppress other structures such as low frequency intensity variations. We define an image
operator C o I(x, y) = max(−κ1(x, y), 0), which will have a big value for a convex curvilinear
structure. Fig. 4(c) shows the image of cell junctions after applying the operator C. The
smooth intensity peaks at the cell nuclei are effectively suppressed, and the cell junction
becomes a nice curvilinear structure and weak cell junctions are enhanced.

2.3 Final segmentation by MGDM
Geometric deformable models using the level set representations4 have gained great
popularity in segmentation problems. Most of these methods have been proposed for single
objects, however, which makes them unsuitable for the multiple cell segmentation task here.
Various extensions of level set techniques to multiple objects have been proposed9,12,13. The
Multi-object Geometric Deformable Model (MGDM)9 is ideally suited for our problem
because it is computationally efficient even with large numbers of objects and can apply
different forces (called speeds in the level set segmentation literature) to different
boundaries between objects. In our model, MGDM has N + 1 objects, with N cell objects
and one background object. In the final segmentation, we would like: 1) the boundary of cell
objects to coincide with the cell junction in the image; 2) no overlaps and gaps between
neighboring cells ; 3) the boundary to be smooth and robust to noise in the image. In the
following, we describe the external and internal forces used in MGDM to achieve these
goals.

External force—Gradient vector flow (GVF)14 has been widely adopted in the active
contour and level set methods to drive an object boundary to desired edges. It is computed as
a diffusion of the gradient vectors of the edge map derived from the image. GVF has the
advantages of large capture range compared to traditional gradient field, and can force
object contours into boundary concavities. In our method, we use a weighted sum of GVF
and the gradient field as the external forces. As shown in Fig. 5, the external force is a
smoothly changing vector field pointing to the cell junction, with small magnitude in the
middle of the cell and large magnitude near the cell junction.

Internal force—The internal force includes a balloon force15 and a curvature smoothing
force16. In our method, we assume that each cell contains only one nucleus, and the nucleus
is completely contained within the cell border. The outward balloon force, in the form

, makes each cell object expand from the initial nucleus region. It should be
noted that, the balloon force is only applied to the cell objects (not to the background
object). Therefore, the cell boundary will expand over the background, but once it touches
the boundary of a neighboring cell, the touching boundary stops the expansion because the
balloon forces from the two cell objects offset, and the boundary is then driven by other
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forces (external force and curvature force). The curvature smoothing force 
preserves the smoothness of the boundary and is applied to all objects.

Considering both internal and external forces, the total force applied to the level set ϕi can
be written as,

(2)

Figs. 5 (b)–(f) show the evolution of the segmented regions. For the initial iterations, the cell
objects expand under the balloon forces. As the cell boundary gets close to the cell junction
in the image, the GVF field dominates and drives the boundary to the cell junctions. Since
there is no balloon force applied to the background object, it shrinks so that at convergence,
there are no gaps between neighboring cells.

3. EXPERIMENT
The automatic segmentation algorithm is tested on six representative images, containing
over 1300 cells in total. The “ground truth” segmentation was obtained by manual
delineation of the boundaries of individual cells. Only the cells with no ambiguity and a
distinguishable boundary are delineated and evaluated. We also exclude those cells having
multiple nuclei, since our algorithm assumes that each cell has only one nucleus. In all,
about 900 cells are manually delineated. As shown in Fig. 6, the automatically segmented
boundary coincides with the manually delineated boundary in most places. The manual
delineation may have gaps between neighboring cells, while the automatic segmentation
does not have this problem. In order to quantitatively evaluate the segmentation result, for
each manually delineated cell, we first identify the corresponding automatically segmented
region, and then compute the Dice coefficient between the automatic segmented region and
the manually delineated region. Let , i = 1, 2, … , M be the region of a manually

delineated cell. Let , j = 1, 2, … , L be the region of a detected nuclei in the automatic

segmentation and  the corresponding whole cell region growing from . For each
manually delineated cell , we assign

as the automatically segmented cell region, and the Dice coefficient between Ui and Wki is
computed as

where | · | indicates the area of a region.

Fig. 7 shows the histogram of the Dice coefficients computed from the M delineated cells.
We can see that there is a peak in the Dice distribution around 0.95 and 81% of the cells had
Dice over 0.80. The average Dice is 0.88. The errors are mainly due to the irregular
appearance of the cell junctions. The resulting boundary at a weak or broken cell junction is
somewhat arbitrary. It may stop at where the growing boundaries of the two neighboring
cells touched, or may be driven to a strong junction nearby under the GVF force. In a few
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extreme cases, the whole cell object shrink and disappear, resulting in a Dice of zero. This
problem can be alleviated by further improving the cell junction enhancement and
incorporating prior knowledge about the region and shape of each cell in MGDM, e.g., the
final segmented cell region should always contain the cell nucleus.

4. CONCLUSION
We propose a fully automatic whole cell segmentation method for the fluorescence images
of confluent cell monolayers, addressing several challenging problems. First the cell nuclei
are automatically detected and used as initial seeds for segmentation. The cell junction is
enhanced by order-statistic filtering and a principal curvature based image operator. The
multi-object geometric deformable model is used for the final segmentation that promotes
robust, accurate segmentation, and guarantees no overlaps and gaps between neighboring
cells. Experiments show promising results of the automatic algorithm. Future work would
involve: 1) incorporating region and shape prior of cells in MGDM to further improve the
robustness and accuracy of the algorithm; 2) introduce a belief measure for each segmented
cell quantifying to what degree the segmentation can be trusted; 3) making the algorithm
adaptable to other types of cells or cell images.
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Figure 1.
Fluorescence images of HUVECs. (a) Merged DAPI (blue) and VE-cadherin (green)
channel. (b) Cell nuclei. (c) Cell junction network.

Yang et al. Page 8

Proc SPIE. Author manuscript; available in PMC 2013 December 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
The cut between two touching cells and the corresponding local minima in the contour
distance map DR(i, j).
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Figure 3.
Cell nucleus detection and initial segmentation. (a) Image of cell nuclei. (b) First contour
generated by region growing. (c) Possible cut. (d) First nucleus labeled. (e) Second nucleus
labeled. (f) Second contour by region growing. (g) Third nucleus labeled. (h) The labeled
image as an initial segmentation.
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Figure 4.
Cell junction enhancement. (a) Original image of cell junction network. (b) After order-
statistic filtering; (c) After applying image operator C.
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Figure 5.
(a) The external force field and (b)–(f) the MGDM evolution.
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Figure 6.
Comparison between automatically segmented and manually delineated cell boundaries in
one image.
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Figure 7.
Histogram of the Dice coefficients computed from the delineated cells in all test images.
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