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Abstract
Statistical imaging atlases allow for integration of information from multiple patient studies
collected across different image scales and modalities, such as multi-parametric (MP) MRI and
histology, providing population statistics regarding a specific pathology within a single canonical
representation. Such atlases are particularly valuable in the identification and validation of
meaningful imaging signatures for disease characterization in vivo within a population. Despite the
high incidence of prostate cancer, an imaging atlas focused on different anatomic structures of the
prostate, i.e. an anatomic atlas, has yet to be constructed. In this work we introduce a novel
framework for MRI atlas construction that uses an iterative, anatomically constrained registration
(AnCoR) scheme to enable the proper alignment of the prostate (Pr) and central gland (CG)
boundaries. Our current implementation uses endorectal, 1.5T or 3T, T2-weighted MRI from 51
patients with biopsy confirmed cancer; however, the prostate atlas is seamlessly extensible to
include additional MRI parameters. In our cohort, radical prostatectomy is performed following
MP-MR image acquisition; thus ground truth annotations for prostate cancer are available from
the histological specimens. Once mapped onto MP-MRI through elastic registration of histological
slices to corresponding T2-w MRI slices, the annotations are utilized by the AnCoR framework to
characterize the 3D statistical distribution of cancer per anatomic structure. Such distributions are
useful for guiding biopsies toward regions of higher cancer likelihood and understanding imaging
profiles for disease extent in vivo. We evaluate our approach via the Dice similarity coefficient
(DSC) for different anatomic structures (delineated by expert radiologists): Pr, CG and peripheral
zone (PZ). The AnCoR-based atlas had a CG DSC of 90.36%, and Pr DSC of 89.37%. Moreover,
we evaluated the deviation of anatomic landmarks, the urethra and veromontanum, and found 3.64
mm and respectively 4.31 mm. Alternative strategies that use only the T2-w MRI or the prostate
surface to drive the registration were implemented as comparative approaches. The AnCoR
framework outperformed the alternative strategies by providing the lowest landmark deviations.
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1. INTRODUCTION
Population-based descriptions of organ anatomy and pathology are constructed as statistical
atlases by integrating information from multiple patients into a single canonical, 3D
representation.1,2 Imaging atlases are particularly valuable as they integrate multi-modal
data, including non-invasive radiologic imaging such as multi-parametric (MP) MRI or
histological specimens with disease annotation.

Anatomic atlases have been constructed for various organs including the lung,3 heart,4 and
brain.1,2 Despite the high incidence of prostate cancer (CaP),5 an atlas capturing the
different anatomic structures of the prostate (Pr), i.e. a 3D anatomic atlas, has, to the best of
our knowledge, not yet been proposed. Such an atlas is essential as anatomic structures of
the prostate can vary significantly in appearance on MRI. Anatomically, the prostate is
divided into three zones: the central, transitional and peripheral zones. As the separation
between the central and transitional zones is not visible on MRI, we consider them a unique
anatomic region known as the central gland (CG). The peripheral zone (PZ) appears
hyperintense on MRI while the CG and tumor appears hypointense. Furthermore, it has been
showed6 that CaP can have different MRI profiles on multi-parameteric (MP) MRI
depending on the anatomic location of the pathology within the prostate7 hence, prostate
atlases should maintain separation of the anatomic structures.

Various authors8–11 have attempted to generate a cancer probability atlas using a prostate
surface registration on histological data. Yet, no anatomic constraints were considered and
the cancer probability was defined on the ex vivo data. The excision of the prostate induces
additional artifacts through fixation and the lack of adjacent anatomical constraints limits the
usefulness of such atlases for in vivo imaging data.

Similarly, Betrouni et. al. used surface registration to constrain the CG and PZ in building a
region-based model of the prostate.12 In the latter paper, the MRI intensity of the anatomic
structures is treated as a constant and is estimated as an average of MRI intensities, thus
neglecting the information from the individual pixels. Martin et. al.13 defined a probabilistic
atlas of the prostate for automatic segmentation on T2-w MRI, yet distinction is not made
between the different anatomic regions.

2. BRIEF OVERVIEW
In this work we introduce an iterative, constrained registration (AnCoR) scheme for the
construction of a population-based atlas of the anatomic structures of the prostate.
Moreover, the approach allows us to characterize the CaP spatial distribution. The MP-MRI
data considered in our study was collected prior to radical prostatectomy. Also ex vivo
histological specimens with ground truth CaP annotations are available from 23 subjects.
Histology-MRI fusion allowed the mapping of the cancer annotation to MP-MRI.14 While
not explicitly addressed in this work, the precise mapping of tumor extent onto preoperative
imaging and the resulting imaging atlas will allow for determination of imaging markers for
CaP appearance in vivo.6

Although atlases are often used for segmentation13 of the prostate, the newly presented
prostate atlas serves to characterize 3D spatial extent of cancer within different spatial
regions in the prostate. Previous prostate atlases8–12 either ignore image intensities or lack
anatomic constraints and therefore are not true anatomic atlases. Unlike previous work15

that defined a 2D distribution, our cancer probability distribution characterizes the 3D
spatial location of cancer and explicitly considers multiple anatomic regions.
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The remainder of the paper is organized as following. First we discuss the novel
contributions of this paper. Then follows the materials and methods section, where the
methodology of the AnCoR framework is described along with the metrics used to evaluate
the atlas framework. In our results section we provide quantitative evaluation of the prostate
imaging atlas and the 3D extent of the cancer located within the volume. The article
concludes with a discussion of the findings in the context of image-guided biopsy and future
directions.

3. NOVEL CONTRIBUTIONS
Our work brings the following novel contributions:

1. To our knowledge, the anatomic prostate atlas presented in this paper is the first of
its kind, in that the anatomy of the prostatic zones are explicitly considered in an
MRI atlas.

2. In order to model the anatomic constraints, we implemented and identified optimal
parameters for a novel scoring function that incorporates both MRI intensity and a
regularization constraint on the surface of anatomic regions.

3. The atlas allows for resolvability of the spatial distribution of cancer relative to the
anatomic structures in the prostate.

4. METHODS
4.1 Atlas building framework

The anatomic constrained registration (AnCoR) framework uses an iterative procedure that
progressively updates the atlas as the datasets become more accurately aligned. The
procedure starts with simple centering of the individual glands and are finalized by a
deformable registration (Figure 1). As the various steps are executed, different performance
metrics are used to assess the accuracy of the registration (Section 5.5). A summary of the
notations and abbreviations used in this paper are presented in Table 1.

4.2 Inter-subject Registration
Inter-subject registration is at the core of the framework and ensures that a subject’s imaging
dataset is aligned to the reference template, which can be either another subject’s dataset, or,
as presented here, the statistical atlas representing an average of multiple datasets. In
general, a registration technique seeks to identify the transformation that aligns two datasets

 and  while optimizing a cost function ψ. Hence, the optimal transformation is calculated
as

where  represents the transformed image of the dataset ,  is the reference template and
quantifies the similarity between the  and . In the AnCoR framework, the transform T
progressively encodes more complex transformations, ranging from centering and scaling to
deformable transformation.

In general, an affine transform is defined by 9 parameters representing the 3D translation,
3D rotation and 3D scaling. Centering and scaling, which are particular cases of affine
transformations are applied first; this is followed by a general affine transformation.
Moreover, free form deformation (FFD)16 is employed to elastically align the datasets
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subsequent to the affine transformation step. FFD optimizes the location of control points
that are initially distributed uniformly on a 3D grid, while 3D B-splines are used to
interpolate between these control points.

4.3 Modeling Anatomic Constraints
The cost function optimized by the AnCoR framework incorporates an image intensity
similarity term and surface alignment term

where ψI( , ) assesses the similarity of image intensities between  and  while

 quantifies the alignment of the anatomic structure r = 1..n in the datasets  and
, and wr is the empirical weight of the anatomic structure r. In this work, we consider n = 2

anatomic regions, the Pr and CG. More specifically ψS may also be estimated based on the
mean squared error:

where N is the number of voxels, and c represents the cth voxel of the grid  in the volume
, . The goal of the metric is to maximize the image intensity while maximizing the

alignment of the anatomic structures.

The AnCoR framework is developed as an iterative registration procedure comprised of
several steps (Figure 1):

1. Segmentation of anatomic structures (Pr, CG, PZ, vrethra and verumontanum) was
done by an expert radiologist based on the T2-w MRI while the cancer extend was
delineated by an expert pathologist on the H&E stained histology slices.

2. Preprocessing of the image intensities is performed to remove bias field artifacts17

and outliers in MRI intensity.

3. Create atlas by centering and scaling all subjects in the cohort. The centering was
performed to bring all datasets to a common center, while the scaling was needed to
correct for the large variations in Pr size in the population. For the scaling, the
volume of the bounding box surrounding the prostate was computed and restrained
to a constant 90cm3 which is a reasonable upper bound of maximal prostate sizes,
and an identical scaling factor was applied on the X, Y and Z axes.

This simple affine transform is performed to bring all datasets into a common
reference frame without performing a registration to a particular subject, which
may potentially bias the reference. This initial transformation allows for the
creation of a first reference template by averaging all datasets in the cohort and
thereby generating an initial approximate statistical atlas.

4. Affine registration with anatomic constraints is then performed between the
datasets in the cohort and the reference template obtained during the previous step.
Datasets in the cohort are averaged following affine registration to create the new
reference template and an updated statistical atlas.
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5. The deformable registration attempts to elastically align the different anatomic
regions. Similarly to the previous step, the statistical atlas is updated by averaging
the aligned datasets.

6. Anatomic structure and landmarks, other than the constrained terms, are updated
with each additional optimized transformation.

5. EXPERIMENTAL DESIGN
The AnCoR framework is applied to create an anatomic statistical atlas of the prostate, in
which we constrain Pr and CG, and use the anatomic structures (Pr, CG and PZ) and
anatomic landmarks (urethra, verumontanum) to evaluate the performance of the atlas
building framework.

5.1 Data
The current atlas was built based on endorectal T2-w MRI from 51 subjects with biopsy
confirmed CaP diagnosis; however, the prostate atlas is seamlessly extensible to include
additional modalities, such as dynamic contrast enhanced MRI. The datasets have M′ × M′ ×
M voxels, where M′ ∈ {400, 512} and M ranges between 32 and 56, with dimensions of
0.27–0.40 mm in the XY plane and 2.2–3.0 mm in the Z plane. The datasets were collected at
two different institutions, at 1.5 Tesla for 7 subjects and 3.0 Tesla for the remaining 43
subjects. Figure 1 shows the MRI from different subjects, for which the CG, Pr and CaP are
highlighted. The illustrated datasets are representative of the natural variation of the prostate
in the cohort in terms of gland size, shape, and MRI intensity in the different anatomic
regions.

An expert radiologist manually annotated the Pr, CG and PZ for 51 patients, as well as the
urethra and verumontanum for 11 subjects. The annotations were done based on the T2-w
MRI using 3D Slicer.18

5.2 Mapping CaP from histology onto MRI
The cancer extent was delineated by an expert pathologist on digitalized ex vivo whole
mount sections from 23 patient studies. The CaP delineation was then mapped through the
registration of histology slices and MRI using an approach originally introduced by
Chappelow et al.14 The latter used deformable registration based on B-splines in order to
register corresponding histological 2D images and the MRI slices in which the prostate was
segmented. Such correspondences were obtained from an expert radiologist by judicious
inspection of two different data types for similar anatomic landmarks. For instance,
anatomic feature such as the location of the urethra/veromontanum or benign prostatic
hyperplasia (BPH) were considered. In the next step, the segmented prostates from both
MRI and histology are automatically aligned using free form deformation (FFD)16 with MI
as a scoring function.

5.3 AnCoR framework for the construction of the prostate atlas
The scoring function ψ is defined as

, where  represents the 3D T2-w MRI of the subject while  represents the reference
template, i.e. the altas constructed at the previous step. In this current work, we choose MI to
assess the MRI intensity similarity and mean squared error (MSE) to evaluate the surface
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alignment. We set wCG = wPr = w to ensure an equal influence of the surface boundary
terms. This choice was made through empirical testing that suggested that having
differential weights was not necessary.

5.4 Experimental strategy
Table 2 summarizes the experiments performed here. The framework was used to build 
by setting w = 0 to enable the registration based solely on T2-w MRI intensities (Experiment
E1). Such experiment was considered as a comparative strategy to test whether a
combination of intensity and surface constrains in needed. Moreover, as part of the
experiment E1, we also compute the spatial extend of the CaP within the population.

In experiment E2, the AnCoR framework was employed to construct  where both MRI
intensity and surface constraints are optimally weighted through the exploration of the
parameter range in a sub-cohort(data not shown).

5.5 Evaluation measures
The constructed atlases,  and , are evaluated through two performance metrics, the
deviation between landmarks and overlap between anatomic regions. As the core component
of the atlas construction is inter-subject registration, our metrics are estimated on landmarks
and regions that are consistently discernible across different subjects. Benign prostatic
hyperplasia (BPH) nodules and calcification are typically used as landmarks for intra-subject
registration. However these are usually not consistent between different subjects and thus
cannot be employed here. Thus we choose the urethra and verumontanum as landmarks, and
we expect that these landmarks will be well aligned in . Note that the urethra shows up as
a tubular curved shape that crosses the prostate from base to apex while the verumontanum
has a v-like shape visible on a few axial slices that are located in mid-gland.

In order to compute the deviation between these anatomical landmarks, the 3D medial
axes19 were first computed and then the deviation between the medial axis points was
estimated. The medial axis is defined on a per slice basis, as the points at the interior of the
annotated region, furthest away from the surface. For two subjects  and , we estimated
the deviation ||M1, M2|| of their medial axes M1 and M2 as the average Euclidean distance
between axial proximal points. The point Pi ∈ M1 is considered proximal to Pj ∈ M (X2) if ||
Pi, Pj||2 < ||Pi, Pk||2 where Pk is any point in M2 where j ≠ k. Note, that if Pi is considered
proximal to Pj it does not imply that Pj is proximal to Pi. Thus, we estimate the deviation
between the anatomic landmarks, either the urethra or the verumontanum, of the subject 
and  as

The average deviation of the landmark within the cohort is estimated following each
registration step as the averaged inter-subject deviations for any possible pair-wise
combination. For the n subjects , …, :
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The Dice similarity coefficient (DSC) estimate the degree of overlap between two masks:

, where | | represents the cardinality of set .

To estimate the degree of overlap following the registration step, we computed the averaged
DSC between the subjects , i = 1..n and the reference template  as

The DSC is quantified from the binary mask of each anatomic region relative to the
reference template  for Pr, CG and PZ.

The scheme to build the atlas was implemented using the ITK framework20 and an
evolutionary optimizer. The cohort of 11 subjects with landmark annotations was utilized to
perform an exhaustive exploration of the parameter space (data not shown). Following this
parameterization step, we choose w = 0.5 for the affine stage, which allows for the
contribution of the surfaces to be weighted significantly higher compared to just the image
intensities. It was found that the value of w = 0.05 yielded a reasonable tradeoff between
landmark deviation and optimal overlap for the deformable registration step.

6. EXPERIMENTAL RESULTS AND DISCUSSION
6.1 Experiment E1: AnCoR Atlas

The AnCoR Atlas  is constructed based on the 51 subject cohort. Figures 2(d)–2(f) show
the sections in  at the level of the prostate base. As expected, hypointense regions are
observable in CG, while the PZ shows as a hyperintense region. The outline of the urethra is
more obviously discernible as well particularly in the midgland and apex regions. Moreover,

 also includes a statistical shape model for the Pr, CG and Pz as indicated in Figures 3.

The spacial distribution of cancer was estimated from the 23 subjects for which we have
radical prostatectomy specimens with annotated cancer. As expected, the highest frequency
of cancer is present in the PZ rather close to the neurovascular bundles.5 Yet, cancer is also
often observed in CG towards the apex of the prostate (Figure 3). The distribution of cancer
is not symmetric, as already observed by Donohue and Miller.21

We were able to build not only a shape atlas of the prostatic regions (Figure 3(a)) as
described by Betrouni et. al.,12 but also an MRI intensity atlas (Figures 2(d)–2(f)).

6.2 Experiment E2: Comparative strategies
As a comparative strategy, we also evaluated the outcome of our framework in , where w
= 0 and only the T2-w MRI intensities drive the registration (Figure 2(a)–2(c)). As expected,
the unconstrained atlas becomes misaligned with the different anatomic regions as
quantified by the lower DSC values for each region (Table 3). Misalignment is also apparent
qualitatively in Figure 2(b) when compared to Figure 2(e) (see arrows). Such misalignment
can be observed as a blurring effect, especially visible at the CG and PZ boundary and at the
region adjacent to the endorectal coil. Moreover such misalignments can also be visible
close to the urethra as indicated by arrows in Figures 2(f) and 2(c).
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7. CONCLUDING REMARKS
We presented a novel anatomic atlas of the prostate from multi-parametric MRI. In this
implementation we constructed the atlas based on T2-w MRI, using an iterative registration
scheme based on affine and elastic registration. The registration was developed to ensure the
proper central gland (CG) alignment with the goal of generating an anatomically correct
representation of the prostate. However, such an alignment of the CG can only be achieved
with anatomical constraints, suggesting the need for a novel anatomically constrained cost
function to drive the registration. The atlas was built on a 51 subject cohort, from which
only a subset (23 patients) had ex vivo histology specimens with cancer annotations that
allowed us to characterize the distribution of cancer within the different anatomic regions of
the prostate. A registration based on MRI intensity alone had difficulty aligning the
anatomic regions as their boundaries are subtle, causing a blurring effect at the edges of the
anatomic regions in Figure 2.

Furthermore, our AnCoR framework provides a platform for the fusion of multi-modal data
into a single canonical representation. While not explicitly addressed in this work, the
precise mapping of tumor extent onto preoperative imaging should also allow for
determination of imaging markers for CaP appearance in vivo and might provide grounds for
future localized treatment options. In fact this framework could be used to integrate multi-
modal, multi-scale imaging and molecular data by including additional MP-MRI protocols
and complementary proteomic and genomic marker information. Such a comprehensive
atlas would allow for the identification and validation of in vivo imaging markers for
aggressive disease based on co-expression with other molecular and histologic
measurements. In the future, we plan to increase the cohort size to augment the statistical
power of the atlas.
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Figure 1.
AnCoR Flowchart. (1) Manually segment anatomic regions: prostate (white, yellow), and
central gland (red, pink); (2) Map cancer (blue) from histology to MP-MRI14; (3) Perform
affine registration constraining Pr and CG boundaries; (4) Update atlas by averaging T2-w
MRI from (3) and use as registration fixed image; perform FFD registration, constraining
both Pr and CG using equal weights; (5) Identify cancer spatial distribution.
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Figure 2.
Intensity statistical atlas as obtained in (a)–(c) , T2-w MRI intensity based registration
without Pr and CG constraints; (d)–(f) , AnCoR framework with equal contributions from
CG and Pr; (a), (d) base; (b), (e) midgland region; (c), (f) apex. The CG and Pr boundaries
are more readily identifiable in  compared to  (see arrows in (b) and (e)). Moreover, the
urethra is more clearly discernible in  relative to  (see arrow in (c) and (f)).
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Figure 3.
(a) 3D representation of the AnCoR atlas ; CG, PZ and Pr are outlined in red, yellow, and
respectively transparent pink; (b)–(c) Cancer distribution in the prostate; Higher frequency
of cancer is depicted in blue, while lower frequency are shown in green.
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Table 1

Symbols and notations employed in this paper.

Symbol Definition

Atlas construction through AnCoR framework

Atlas construction through MRI intensity registration

Reference template in registration

Subject dataset

X with applied transform T

ψ Scoring function

ψS Surface term of the scoring function

ψI Image intensity term of the scoring function

I2 Mutual information (MI)

w weight of the surface misalignment terms
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Table 2

Subject cohorts used for the different experiments).

Experiment Cohort size Description

E1. 51 Pr, Cg, PZ annotations

23 Ground truth CaP annotation from H&E slices

E2. 51 Pr, Cg, PZ annotations
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