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Abstract
Intensity normalization is an important preprocessing step in magnetic resonance (MR) image
analysis. In MR images (MRI), the observed intensities are primarily dependent on (1) intrinsic
magnetic resonance properties of the tissues such as proton density (PD), longitudinal and
transverse relaxation times (T1 and T2 respectively), and (2) the scanner imaging parameters like
echo time (TE), repeat time (TR), and flip angle (α). We propose a method which utilizes three co-
registered images with different contrast mechanisms (PD-weighted, T2-weighted and T1-
weighted) to first estimate the imaging parameters and then estimate PD, T1, and T2 values. We
then normalize the subject intensities to a reference by simply applying the pulse sequence
equation of the reference image to the subject tissue parameters. Previous approaches to solve this
problem have primarily focused on matching the intensity histograms of the subject image to a
reference histogram by different methods. The fundamental drawback of these methods is their
failure to respect the underlying imaging physics and tissue biology. Our method is validated on
phantoms and we show improvement of normalization on real images of human brains.
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1. INTRODUCTION
MRI is one of the principal modalities used in imaging brain tissue. Brain MRI scans are
collected on many different scanners and at many different sites. The quality of these images
is highly dependent on the imaging parameters and the calibration of the scanners, the
variations of which lead to vastly differing intensity profiles for images. It is a fundamental
problem of MR imaging that the image voxel intensities do not have any specific numeric
meaning, unlike computed tomography (CT). The performance of image analysis routines
like segmentation and registration is dependent on the underlying intensity distribution,1

which can be made consistent through intensity normalization or standardization. Previous
work,1-8 focuses primarily on histogram matching. Histogram matching however suffers
from quantization artifacts. Additionally, forcing a subject image histogram to match a
reference, forces the tissue intensity distribution of the subject to be equal to that of the
reference. This can have unwanted consequences if the subject and the reference brain
anatomies differ by a lot. Landmark-based approaches like 1,3,4,9 result in using linear,4

piece-wise linear1,9 or polynomial3 intensity transforms calculated from landmarks on
intensity histograms. These types of one-to-one transforms are insufficient to model the
highly nonlinear variations introduced in different images by the MR imaging physics.
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Recent work by Weisenfeld et al.5 and Jäger et al.10 uses multiple images and focuses on
matching multidimensional histograms of the subject and the reference. Though these
methods can result in a nonlinear, many-to-many transform, the basic issue of forcing the
subject joint histogram to match a reference joint histogram remains.

All the above mentioned methods overlook a vital point while performing intensity
normalization, the MR imaging physics and its effect on tissue biology. The contrast
obtained in an MR image is dependent on imaging parameters like repetition time TR, single
or multiple echo times TE’s, and flip angle α. It is also dependent on the physical properties
of the underlying tissue such as the proton density PD, and the longitudinal and transverse
relaxation times, T1 and T2 respectively. We propose to use the imaging equations of the
pulse sequences in our data to estimate the aforementioned imaging parameters. Using these,
we intend to use multiple different images obtained by different pulse sequences to estimate
the intrinsic biophysical properties β = [PD, T1, T2]. Normalization entails simply applying
the reference pulse sequence equations, on the subject β properties to generate new
intensities. We show that this approach is feasible using the highly nonlinear pulse sequence
equations and also describe a better performing algorithm using approximations of the actual
pulse sequence equations. This approach shares its principle with a segmentation approach
described by Fischl et al.7 Sec. 2 describes our assumptions and the main algorithm. Sec. 3
describes our results using phantom as well as real data. We describe future avenues of work
and conclusions in Sec. 4.

2. METHOD
Consider a set of co-registered subject images , which we intend to
normalize using a set of co-registered reference images, . Each Si, as well
as the corresponding Ri, is produced by a pulse sequence Γi. In our case, Γ1 and Γ2 denote
the PD-weighted (PD-w) and T2-weighted (T2-w) outputs of a double spin echo sequence,
respectively. Γ3 denotes T1-weighted (T1-w) spoiled gradient recalled echo (SPGR)
sequence. The goal is to normalize S3 to R3 with the help of the other two acquisitions. Fig.
1 shows the three input images. These sequences use imaging parameters like repetition time
(TR), echo time (TE), flip angle (α) and a scalar gain (A). Let the set of imaging parameters
of Γi for the subject be denoted as ϴSi, i ∈ {1, 2, 3}. In our case, for the double spin echo
sequences Γ1 and Γ2, ϴSi = {TRi, TE1i, TE2i, Ai}, i ∈ 1, 2. For the T1-w SPGR sequence Γ3,
ϴS3 = {TR3, TE3, α3, A3}. We also denote the intrinsic tissue MR properties at a voxel
location x in the subject as β(x) = [PD(x), T1(x), T2(x)]. The set of imaging parameters for
reference images Ri is denoted by ϴRi. To keep the notation compact, we refrain from using
the subscripts “S” and “R” in the parameter names TRi, TEi αi, and Ai. Instead we will refer
to their collection using ϴSi for the subject and ϴRi for the reference, where i ∈ {1, 2, 3}.
Using this notation, we can describe the intensity at a voxel x in the subject image for a
sequence ϴi with imaging parameters ϴSi in Eq. (1).

(1)

The human brain tissue primarily consists of three major tissue classes, cerebrospinal uid
(CSF), gray matter (GM) and white matter (WM). We assume that the mean β values for

these three major tissues are known for 1.5T scanners,13 as ,

, and , respectively. T1 and T2 are in milliseconds
while PD is relative. Additionally, for a subject image Si generated by the pulse sequence Γi,
i ∈ {1, 2, 3}, let s̄C,i, s ̄G,i, and s̄W,i represent the mean intensities of CSF, GM, and WM
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respectively. Our key assumption is that the mean tissue β values give rise the mean tissue
intensities when the imaging equation for Γi is applied.

2.1 Normalization Algorithm
(a) Estimating ϴSi and ϴRi—Our key assumption is that for a pulse sequence Γi, the

average MR tissue properties i.e. , , and  give rise to the average tissue intensities
s̄C,i, s̄G,i, and s̄W,i respectively. This is represented as,

(2)

We solve this system to estimate ϴSi and a corresponding equivalent system for the
reference set to estimate ϴRi. Since we have three equations, in principle we can solve this

system if ϴSi has three or fewer parameters. We denote  as the estimate of ϴSi, i ∈ {1, 2,

3} which we get as a solution. We also estimate  for the reference images in
an analogous fashion.

(b) Estimating β(x)—We know the relationship between β(x) and the recorded intensity
from Eq. 1. For a particular subject voxel x, we have three intensities si(x), i ∈ {1, 2, 3}
from the three images. Thus we have a system of equations to solve for β(x) in Eq. 3

(3)

This system has three equations and three unknowns since β = [PD, T1, T2]. So in principle it

can be solved to estimate β(x); ∀x in the subject image. Let  be the solution estimate of
β(x).

(c) Applying Reference Pulse Sequence—To normalize voxel intensities of subject
image S3 to the reference image R3, we only have to apply the pulse sequence Γ3 using

imaging parameters  estimated in (a) to  estimated in (b) to generate a normalized

subject image .

(4)

In essence, we are extracting the subject’s biology and applying the reference’s imaging
physics to generate a subject image as it would have looked, had we imaged it with the same
pulse sequence parameters as that of the reference. We have described here a general
algorithm to normalize S3 to R3. The implementation of this algorithm depends on how Γi is
modeled. We describe two ways of using this algorithm. The first one (denoted by M1),
described in Sec. 2.2 uses the actual pulse sequence equations derived for the sequences we
have used.12 We show that this approach is feasible subject to certain assumptions. Despite
its feasibility, M1 has its limitations, which are reected in its performance. In Sec. 2.3 we
describe an approach, M2, where Γi are modeled as approximate forms of the imaging
equations used in M1.

2.2 Using Exact Imaging Equations: M1
For each Si, we use the imaging equations described in12 directly. Eqns. 5, 6, 7 describe the
Γi we use in this approach.
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(5)

(6)

(7)

Here, the imaging parameters are ϴSi = [TRi, TEi1, TEi2, Ai] for i ∈ {1, 2} and ϴSi = [TRi,
TEi, αi, Ai] for i = 3 where TRi are repeat times, TEi are echo times, Ai are scalar factors and
αi are flip angles. Note that there are four unknowns in ϴSi and as described in Sec. 2.1, we
can estimate ϴSi only if we have three unknowns. To simplify, we constrain the parameters
which are least variable while acquiring images in practice. Specifically for our dataset, we
use TR3 = 15 ms in ϴS3, TE11 = 17 ms, and TE22 = 80 ms in ϴS1 and ϴS2, respectively. We

also approximate  in Eq. 7 by , where k is estimated to be 0.02 for CSF using

values observed in the literature.13 We solve the equations as shown in Eq. 2 to estimate 

and  using Newton’s nonlinear least squares method. The reference pulse sequence is

next applied to the estimated  to produce a normalized  as per Eq. 4. Figs. 2(d)-(f)
show the maps of PD, T2 and T1 values produced by this method.

2.3 Solving Approximate Imaging Equations: M2
The method described in Sec. 2.2, although being the theoretically correct way, leads to non-
convergent solutions, especially for CSF voxels. This can be attributed to the highly non-
linear nature of the pulse sequence equations, imperfect  approximation, assumptions on
one of the imaging parameters or low signal-to-noise ratio in the CSF intensities in PD-w
and T2-w images. The average  value of CSF is considerably different from its average T2
value, unlike GM and WM, which leads to another problem, the estimation of k. It is also
computationally expensive since the nonlinear simultaneous system of equations is to be
solved for each voxel. To address these issues, we approximated the pulse sequence
equations by a first order Taylor series approximation, that does not need any information
about the pulse sequence parameters.

Eqn. 7 is simplified using the fact that TR3 is usually smaller than the T1 for all the tissues,

(8)

where ϴS3 = {θ31, θ32, θ33}. This is a first order approximation assuming TR3 < T1(x), ∀x.
Any residual part of the approximation is absorbed into the additive constant θ31. This
additive term also absorbs any differences in T2 and . Thus we model Γ1 as in Eqn. 9.
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(9)

To approximate the PD-w and T2-w imaging equations, we follow a slightly different
strategy. In these sequences, the repetition times, TR1, TR2 ≈ 2000ms, which is comparable
to the T1’s of CSF. Thus we cannot use the same approximation used for SPGR. Using the
fact that TE11 and TE22 are small compared to TR1 and TR2, we can approximate Eqn. 5-
Eqn. 6 as,

(10)

The middle term, , is a sharply decreasing function of T1(x), We can
approximate it with a linearly decreasing function in T1(x) within the range of values that we
are interested in (i.e. T1 ∈ (0, 6000) ms in the human brain at 1.5T). Thus we can write a
more compact form of the approximations in Eqns. 11 12

(11)

(12)

where ϴSi = {θi1, θi2, θi3}, i ∈ {1, 2}.

Thus we have Γ1 modeled in Eqn. 11, Γ2 in Eqn. 12 and Γ3 in Eqn. 9. We carry out the steps

described in Sec. 2.1(a) to estimate  and  . Next, we estimate . This step is easier
and faster as it involves solving a quadratic equation. Thus, this approach does not face
convergence issues. Normalization is as described in Sec. 2.1(c).

3. RESULTS
We performed two sets of experiments, with phantom and real images respectively. To show
the biological correctness of our procedure we used simulated images with known imaging
parameters from Brainweb13 where we know the ground truth for tissue classes at each

voxel and the mean values of , , and .

3.1 Brainweb Phantom Experiments
For this experiment, we used a number of simulated T1-w SPGR images of the normal
anatomical model with varying TR3, TE3 and flip angles α3 and 0% noise. For reference
images we used a simulated PD-w image R1 and a T2-w image R2 with TR1 = TR2 = 3000ms,
TE11 = TE21 = 17ms and TE12 = TE22 = 80ms. We fixed the SPGR as the reference image,
R3, with TR3 = 15 ms, TE3 = 2ms, and α3 = 30°. Fig. 3 shows the normalization result for
the given reference and a subject image with TR3 = 100ms, TE3 = 2ms, and α3 = 30°. The
scale factor (A) is different for all the simulated images. The reference images are shown in
Fig. 2(a)-(c) and served as the reference set of images . For the subject set,
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, we set S1 = R1 and S2 = R2. S3 is chosen to vary with TR, TE, and α. Since
all the images come from a single subject with common biological properties, a perfect
normalization scheme will convert the subject SPGR image into an exact replica of the
reference SPGR image. We measured image similarity between the reference and the
normalized subject image using metrics like mean squared error (MSE) in Table 1, visual
information fidelity (VIF)14 in Table 2. We compared M1 and M2, with histogram matching
(HM), white matter peak scaling (WMP),4 and a landmark-based method piece-wise linear
method (UPL).1 VIF is an image quality metric based on the perception of the human visual
system of comparing two images. A value equal to 1 indicates visually identical images. We
also tested the similarity between the reference and normalized subject image histograms by
calculating the Kullback-Leibler (KL) distance. Results are shown in Table 3. Since KL
distance is asymmetric, we calculated KL(subject, ref) for all cases.

3.2 Real Data Experiments
To test our methods on real image data, we chose to use the Baltimore Longitudinal Study of
Aging (BLSA).15 For nine subjects, we chose two consecutive scans per subject. In general
these scans are a year apart of each other. We assume that the anatomical change in the brain
is negligible within these two scans, as the subjects are healthy. The SPGR images are
0.9375×0.9375×1.5 mm3 in resolution while the PD-w and T2-w images are of
0.9375×0.9375×5 mm3 resolution. Initial preprocessing involved isotropic resampling,
removal of non-brain tissue using SPECTRE,16 removing intensity inhomogeneities using
N3,17 affine registration of the PD-w and T2-w images to the corresponding SPGR. The
second year images were affine registered to the first, so as to carry out pixel-wise
comparisons between the two. Table 4 describes the average MSE and KL distances
between year one and normalized year two scan across all subjects. WMP and M2 are
comparable since the pulse sequence used in both years is identical with possibly only a
scale difference in the intensities. Fig. 4 shows the normalization result on a sample year 1 -
year 2 pair of images.

4. CONCLUSIONS AND FUTURE WORK
We have presented a novel paradigm for performing intensity normalization, which stays
true to the underlying intrinsic biological MR properties. We have validated its performance
using phantom and real brain images. An additional benefit of this method is the ability to
characterize complex pulse sequences using three parameter pulse sequence approximate
equations. Estimation of the tissue properties allows us to synthesize any desired MR
contrast. This opens up avenues into the design of optimal pulse sequences for the best
tissue contrast as well. We are interested in characterizing the underlying biological
parameter space and reducing the number of images required, so that this approach can be
applied more generally.
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Figure 1.
Example input images
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Figure 2.
Estimated β maps for a Brainweb phantom using M1 (2nd row)
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Figure 3.
Normalization of Brainweb phantom with M2
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Figure 4.
Normalizing year 2 image to a year 1 image using M2. We show the difference image
between the normalized year 2 image and the year 1 image along with the histograms on the
right.
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