
History of the Tesseract OCR Engine:
What Worked and What Didn't

How to Build a World-Class OCR Engine in Less Than 20 Years

Ray Smitha

aGoogle Inc, 1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA.

ABSTRACT

This paper describes the development history of the Tesseract OCR engine, and compares the methods to general
changes in the field over a similar time period. Emphasis is placed on the lessons learned with the goal of providing a
primer for those interested in OCR research.

Keywords: OCR, Machine learning, Structural pattern recognition, Multi-language OCR.

1. INTRODUCTION

The Tesseract OCR Engine is an open-source system that was developed originally at HP between 1985 and 1995,
shelved for 10 years, open-sourced in 2006 and now developed mostly at Google. Its accuracy was among the top 3 in
the 1995 UNLV Test1, and with recent work is is again catching up with the commercial OCR engines. Despite its age,
some of the components of Tesseract are surprisingly similar to more modern approaches. Among other things, the
history of the development of Tesseract is a microcosm of the debate over statistical vs non-statistical classification
methods. This paper provides a historical perspective, with concentration on the important lessons learned during
Tesseract's development, covering both successes and failures, with a view to guiding others how to build an OCR
system. It also compares the methods used with those that have been fashionable in recent times.

Nothing was published on Tesseract during its initial development. The project was run in “stealth mode” as a joint
project between HP Labs in Bristol, and the HP Scanner Division in Colorado, with the aim of creating a differentiating
feature for HP scanners. The resulting technology almost became a product in the early 1990s. It was much more
accurate on poor quality images than the first software-only OCR engines, but a lot slower, so it would require hardware
assist in the scanner itself. Due to various reasons, one of which was the hurdle of internationalization, the HP Scanner
Division decided at the end of 1990 not to develop Tesseract into a product. HP Labs continued development until the
end of 1994, initially with the aim of pushing the limits of accuracy on degraded images, and later with the aim of using
OCR for document compression. Even during the latter development phase, very little was published

The body of this paper is laid out as follows: Sec. 2 describes the overall system architecture of Tesseract, Sec. 3
introduces the feature space by means of how it developed over time, and compares with currently common
methodologies. Likewise, Sec. 4 covers the classifier, placing it in the perspective of some recent publications, and Sec.
5 covers testing. Languages are discussed in Sec. 6, and finally Sec. 7 covers the ad-hoc nature of the word classifier.

2. SYSTEM ARCHITECTURE

The overall architecture, shown in Fig.1, has stayed mostly unchanged over the years, and shows its origin in the
traditional pipelined approach. The actual character recognition component has a two-pass format, being used in both
“Recognize Word Pass 1” and “Recognize Word Pass 2,” which allows an on-the-fly adaptive classifier to be trained and
utilized in the first pass, and to re-visit unsatisfactory words in the second pass.

Figure 1. Block diagram of the overall architecture of Tesseract.

Adaptive
Thresholding

Adaptive
Thresholding

Adaptive
Thresholding

Page
Layout

Analysis

Recognize
Word

Pass 1

Recognize
Word

Pass 2

X-Height
Fix

Fuzzy
Space

Fix

Word
Bigram

Fix

Keynote Paper

Document Recognition and Retrieval XX, edited by Richard Zanibbi, Bertrand Coüasnon,
Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 8658, 865802 · © 2013 SPIE-IS&T

CCC code: 0277-786/13/$18 · doi: 10.1117/12.2010051

SPIE-IS&T/ Vol. 8658 865802-1

Further “fixing” passes have been added to firm-up decisions that were left fuzzy or need correcting from an earlier
step, like spacing, x-heights, or words that need multi-word context to resolve. In many ways, it is these additional
phases that separate the styles of OCR architecture, which can be categorized as follows:

• Traditional, naive. Traditional pipelined “feed forward” systems start as a series of steps that make hard
decisions in one domain, and pass the results on to the next part of the pipeline.

• Traditional, mature. Matured pipelined systems are characterized by additional steps that revisit some of the
earlier decisions with additional information from other parts of the pipeline. Examples include adaptive
character classification, adaptive font spacing/character size models, and document dictionaries.

• Modern, naive. More recent approaches try to avoid premature decision-making by pushing all the hard
problems into a monolithic statistical module, such as a Hidden Markov Model (HMM) and expect it to
resolve everything at once. These systems began with segmentation-free, also-known-as sliding window
classification, in which decisions over character boundaries are made in parallel with character
classification. Between-word spacing falls out naturally from such systems, but it is more difficult to
incorporate knowledge such as words tend to use only a single font. The pioneering work in this area is the
Document Image Decoding(DID) system, and more recently, the BBN system.

• Modern, mature. It would be against the principles of an HMM-based OCR system to patch it with post-
processing modules that re-visit earlier decisions, so mature modern systems will be characterized by
increasingly complex models that take into account all the structure of printed information, much as the
original DID system did, but without requiring a hand-coded model for each type of page layout.

The Tesseract word recognizer, shown in Fig. 2 searches for the optimal segmentation of a word into isolated
characters to feed to the character classifier. In terms of the Casey and Lecolinet survey on segmentation, Tesseract is a
hybrid of the classical approach and recognition-based segmentation, but does not apply the over-segmentation
algorithm described therein. An over-segmenting word recognizer would maximally segment a word (or a text-line) and
then apply a beam search to choose the best few segmentation paths through the resulting lattice. The segmentation
search in Tesseract takes a minimalist approach. Starting with the initial connected-component-based segmentation,
while the word is unsatisfactory, it chops components that have poor confidence from the character classifier. At each
step a beam search combines the character classifier results with the language model, as described in Sec. 7. If chopping
fails to produce a satisfactory result, it then searches the segmentation lattice, by connecting adjacent character
fragments, based on hints from the classifier and language model, such as where in the word the dictionary search dead-
ended. The beam search is re-run for each segmentation hypothesis, again only until a satisfactory word is produced.

The principle behind this minimalist approach is that in most languages, the initial segmentation is close to correct,
so minimal segmentation biases the search in favor of stopping at a state close to the initial segmentation. This reduces
the probability of hallucinating garbage, i.e. chopping a perfectly good character into 'iii' or falsely merging perfectly
good characters into 'm', as well as increasing computational efficiency. The disadvantage is that it can occasionally
miss the correct segmentation due to finding a satisfactory result before it gets there.

Figure 2. Block diagram of the Tesseract word recognizer.

Character
Chopper Done?

Segmentation
SearchDone?Done? Done?

Adapt to
Word

Static Adaptive

Character Classifier

Dictionary Number/
Punctuation

Parser

Language Model

Yes Yes

Try Again
On Pass2

Char n-grams

SPIE-IS&T/ Vol. 8658 865802-2

HP had an independent layout analysis technology that was used in a product, so the only layout analysis component
that was originally required was detecting text lines and words within a previously-identified text block. For this reason,
layout analysis was not part of the open source release. Full layout analysis based on tab-stop detection, that can cope
with non-text, multi-columns, and tables was added to Tesseract recently. The layout analysis and character
segmentation processes make use of outlines of binary connected components, but there is nothing fundamental that says
the classifier has to extract features from the binary outlines. In a recent change, aimed at Chinese and low-resolution
input, the ability to extract features from greyscale was added.

An important component of Tesseract that helps improve accuracy on unseen fonts is the adaptive classifier. It
typically reduces error-rates on a large enough document by 30-60% relative to the static classifier alone. The adaptive
classifier is identical to the static classifier, except for the normalization that is applied to the outlines, (See Sec.3.4) and
the fact that it is trained on-the-fly. The individual characters of each confidently recognized word are presented to the
adaptive classifier as training data, as the words are recognized in Pass 1, and the adaptive classifier starts responding
with answers (still in Pass 1) after it has seen only 3 matching samples of a character. Thus if the word “infinity” were
recognized, the adaptive classifier would start recognizing 'i' on the next word.

3. FEATURE SPACE

Any textbook on machine learning or pattern recognition will discuss feature space as an n-dimensional vector space in
which each training sample and each unknown occupies a single point, represented by a single n-dimensional feature
vector. Conventional machine learning classifier methods either find the nearest training sample in this n-dimensional
space, (e.g. kNN classifiers) or divide the space into regions which correspond to class labels (eg SVMs) and return the
corresponding label for a given unknown. Tesseract took a different approach.

3.1 Early Work – Statistical Beginnings

An unconventional aspect of Tesseract was a consequence of an early choice of feature space. Early work on
Tesseract was strongly influenced by psychological studies that had shown that human perception makes use of
structural or topological features, such as “There is a stick on the left, and a loop at the bottom.” This kind of description
does not map well to a fixed n-dimensional feature space! Thus most published research has abandoned structural
features and used simple pixel-level features or other quantized features that can be expressed as a fixed-dimension
vector. In contrast, Tesseract originally extracted topological features from the skeleton. Character skeletons are
appealing, partly because the skeleton should correspond to the path of the pen in handwriting, and partly because the
aforementioned psychological studies indicated that human perception of characters is based largely on the skeleton.
Unfortunately, in machine print, the ink is not created by pen strokes, and characters contain serifs, making the skeleton
hard to define robustly. This difficulty in definition is reflected in the large number of papers on skeletonization, and
yields the first lesson: If some required process in your system has a large number of published papers describing
different solutions, choose an alternative process, as it probably means that there is no good solution.

The decision was made however, and Tesseract went down the path of classification from a collection of low-
dimensional feature vectors, instead of a single high-dimensional feature vector. The classifier was based on a Bayesian
parametric Gaussian Mixture Model that treats each font/character combination as a separate class. It had to assume
statistical independence in its probability calculations, and there were many discussions in the team over the invalidity of
the independence assumption. Symbolically, in training, sample features, each of n dimensions, of a single font/character
combination, k∈[1, K] , are clustered to Jk cluster means, with models N μijk , σ ijk: i∈[1,n] , j∈[1, J k] .

An unknown with M n-dimensional feature vectors X l={xil : i∈[1,n] ,l∈[1, M]} , was classified using:

argmax k ∏l ,i

1
σ ijk

exp [−
1
2

x il−μijk

σ ijk

2

] , (1)

with the indices being: i=feature dimension, j=cluster, k=font/character class, and l=unknown's feature index defined

such that l and j are matched to minimize x il−μijk
2 .

After dropping skeletonization, features continued to be topological, but were extracted from outlines, until they
showed themselves to be brittle in the presence of degraded images, and lesson 2 emerged: Features must be as
invariant as possible to as many as possible of the expected degradations.

SPIE-IS&T/ Vol. 8658 865802-3

Figure 3. Nanofeatures (left) were segments of a polygonal approximation, and picofeatures (right) cut these into segments of a
fixed length.

3.2 Shrinking Features – Statistics Abandoned

After discovering that topological features were too brittle, features became smaller and smaller fragments of outlines,
(they were even named microfeatures, nanofeatures, and finally picofeatures!) at one point being 4-dimensional, (hence
the name Tesseract) but eventually reducing to just 3-dimensions: x, y position and direction in the range [0, 2pi). The
fourth dimension, which had been length, was reduced to a small constant. The last two steps of this process are shown
in Fig. 3. The nanofeatures are just the segments of a polygonal approximation of the outline, and the picofeatures cut
these segments down further into pieces of a constant length. In the current (v.3.02) implementation of Tesseract, only
picofeatures are extracted from the unknown, but nanofeatures are clustered during training. This asymmetric
arrangement provides better clustering during training, and the desired robustness to noise. Since a nanofeature is
equivalent to one or more collinear picofeatures, the difference is ignored in the rest of the description.

This reduction in size of the features mirrors the changes in OCR research over the last twenty years or so, in which
structural features have largely been abandoned in favor of simpler features, like pixels. A notable exception to this trend
is the emergence of Deep Belief Nets as systems that derive their own higher-level/structural features from pixel-level
input through multiple levels of convolution.

In Tesseract, the number of features had increased by an order of magnitude over the original topological features,
and the assumption of statistical independence had become completely untenable as a result. Failure of the independence
assumption was blamed for the “probabilities” being unrelated within a single classification, making the ranking of
alternate answers unreliable. The pretense that Tesseract was dealing with probabilities was therefore dropped, and
replaced with simple Euclidean distance. Upon re-casting the distance as spatial distance of a fragment of the outline of
the unknown from a fragment of the outline of a training character, it quickly became obvious that the distance needed to
be symmetrized, i.e. that it was also necessary to measure the distance of each fragment of the training character from
the unknown character. As an equation, the classification had become:

argmin k
1

MJ k

∑l ,i
 x il−μijk

2
∑ j , i

x il−μijk
2
 . (2)

Using the same index notation as for Eq (1), the matching condition in the first sum, becomes best j for each l, and in
the second sum, best l for each j. The classifier thus finds for each feature in the unknown the nearest cluster mean and
vice-versa, summing all the distances and dividing by the total number of features in the unknown and the training
sample, analogous to the Hausdorff distance, except that Eq (2) computes the mean distance instead of the maximum.
The key difference from Eq (1) is the symmetrization in finding the nearest matching feature both ways instead of one-
way. This is extremely important for a couple of reasons.

Firstly, the concept that 'e' has “more features” than 'c' exists in Tesseract and is encoded in this symmetrized
distance metric. Conventional approaches have to somehow encode this difference in the many dimensions of their fixed
dimension feature space.

Secondly, dropping the probability pretense does not make the problem of statistical independence go away! Because
the features are so small, groups of them are likely to occur together, and move together as characters change shape. This
makes it as difficult to make judgments about the absolute distances, as it is make inferences using the probabilities. The
big advantage of the symmetrization though is that it mitigates the problem of statistical independence in the second
summation, which specifies a collection of features that are required, whereas the first summation specifies features that
are allowed. Continuing with the 'c'/'e' example, (almost) all the features in 'c' are allowed by 'e' so using Eq (1) an
unknown of 'c' could get an almost equal score for 'c' or 'e', but in Eq (2), 'e' requires a cross-bar, so an unknown 'c'
would get a worse match (greater distance) for 'e' than for 'c'. Statistical independence bites when the position of the

SPIE-IS&T/ Vol. 8658 865802-4

cross-bar of an unknown 'e' is different to any seen in training, and multiple features are penalized for being out of
position, when in reality these features are connected so they are destined to move together with statistical dependence.

3.3 Variable Dimensions or Fixed? – A Comparison with Conventional Methods

Conventional (some would say modern) classifiers, for example SVMs, require a fixed-dimension feature space. A
conventional way to convert from a structural feature set, as with Tesseract, to a fixed dimension space, is to quantize the
feature space to a space of binary features in high dimensions, where each bit represents the presence of a feature in each
quantum cell. Thus n Tesseract features would give rise to a sparse high-dimension binary feature vector with n set bits.
This method is employed in the Tesseract Class Pruner (See Sec. 4), but it has its disadvantages. The biggest problem is
that Euclidean distance in feature space becomes Hamming distance when each dimension is binary, so a single feature
that has changed its value slightly to move from one quantum cell to the next has a hamming distance of 2, which is the
same as if the feature had disappeared and been replaced by one anywhere in feature space. Features that were proximate
in the original space thus have no special connection in the quantized space, which means that the generalization power
is greatly reduced.

Another approach to mapping a structural space to a fixed-dimension feature space is by computing histograms on a
coarser quantization grid. (e.g. Histogram of Gradients.) This approach has the problem of handling features that
naturally sit near a quantum boundary. Recent work has been done to address this problem by optimizing the coarse
quantum boundaries.

The modern approach to solving the problem of reduced generalization is to throw more training data at the classifier
during training. Theoretical analysis and experimental tests in this area have concluded that discriminative models
asymptotically beat generative models, (or the naïve Bayes generative model at least) but that more training data is
usually required. This is another way of saying that discriminative models have less generalization power, but are better
at learning more complex spaces than generative models.

Hidden Markov Model (HMM) classifiers, if anything, are the closest conventional systems to Tesseract. Their state
transitions with self-loops are analogous to handling multiple variable numbers of features, albeit with the severe
limitation of sequence, and usually with an order of magnitude less states than the number of features in a typical
character in Tesseract. The main advantage of HMM classifiers is that the internal state transitions contain finer-grained
detail of the required features, and thus a better solution for statistical independence than can be expressed by Eq (2).

Principled is a word that is often associated with the statistical methods, particularly those with HMMs, and non-
statistical methods, such as Tesseract are described as ad-hoc, yet these so-called principled methods often use the log-
linear model to combine probabilities, which are derived from a Gaussian Mixture Model. In a log-linear model, the
classification is based on tuning a set of weights αi:

argmax k ∑i
αi log p x i∣k , (3)

for a collection over i of some feature functions xi , using k as the class as before, and the Gaussian Mixture Model
provides probabilities based on the Normal distribution:

p xi∣k =
1

σ ik 2π
exp [−

1
2

x i−μik

σ ik

2

] . (4)

Substituting Eq(4) into Eq(3) gives:

argmax k ∑i
αi[log

1
σ ik 2π

−
1
2

x i−μ ik

σ ik

2

] , (5)

which looks rather like Eq. (2), with the addition of an additive and a multiplicative constant, but the loss of the
symmetry, which is made up by the combinations of states that are allowed in a character. This is a particularly
interesting result, as it shows just how closely related are the ad-hoc, statistics-free approach of Tesseract and the models
used by the so-called principled statistical methods. The addition of the standard deviation is hardly of rigorous
importance, with a learned parameter that overrules it. The real difference here is the additional set of learned
parameters, (the αi) but it should be noted that these are not derived from a rigorous statistical model.

SPIE-IS&T/ Vol. 8658 865802-5

3.4 Adaption and Generalization via Normalization

Sec. 2 mentioned that Tesseract uses an adaptive classifier. The only real difference between the adaptive classifier and
the static classifier is the type of normalization that is applied to the outline at feature extraction. In the static classifier,
the centroid of the outline of the unknown is centered in feature space, and scaled anisotropically to normalize the
second moments of the outlines. This centering and scaling aims to eliminate some font differences, such as aspect ratio,
and allows sub/superscripts to be recognized as normal characters, but also introduces some ambiguities. The adaptive
classifier normalizes the unknown by centering the horizontal centroid of the outline, but the vertical center of the text-
line. The scaling is isotropic to normalize the x-height of the character. This normalization retains font differences, and
improves immunity to pepper noise, but makes sub/superscript differ from normal text. The combination of the different
normalizations helps improve overall accuracy.

4. CLASSIFIER

The classifier is essentially an optimized k-Nearest Neighbor (kNN) classifier. It returns the closest matching training
sample, at the level of granularity of the grapheme-cluster, font pair, nominally using Eq.(2) to compute the distances.
The brute-force time is O(JkKMn). While the features were topological, this was not so computationally intensive, but
with the features shrunk down there are 50-100 present in most characters, just for English, with Jk,,M ~ 50-100, K =
3520, (32 training fonts * 110 character-set), and n = 3, makes for O(108) distance calculations, per character
classification, which was prohibitively expensive on the machines of the time.

The primary solution to reduce the squared-order feature matching to linear is quantization, as described in Sec. 3.3,
and the inverted index. This is combined with two-stage classification to reduce the total CPU load dramatically. The
first stage classifier, called the Class Pruner, shown in Fig. 4, indexes the quantized value of each feature vector in the
unknown to obtain a set of classes that allow the feature. The number of such feature hits for each class is summed over
the features and the best few matching classes become a short-list of classes for the second stage. This process is
identical to a linear classifier, except that no multiplication need be performed. Symbolically, given a quantization
function f :ℝn{1, ...n ' } the quantization process can be described by:

X l={x il : i∈[1,n] ,l∈[1, M]} Q={qi ,i∈[1,n '] , q i=1 if ∃ l : f X l=i , qi=0 otherwise } .

In the Tesseract Class Pruner each of the 3-dimensions is quantized to 24 cells, so n'=243=13824. The linear classifier in

the class pruner is then easily described by: argmax k ∑
i=1

n '

wik q i
, where the weights wik, take on 2-bit values. The 2-

bit weights define the acceptance neighborhood in the inverted index around the mean of each feature cluster and are
computed using arbitrary constants of distance rather than the standard deviation. With sufficient training data, there is
no particular reason not to use the standard deviation to define the neighborhoods.

The secondary classifier computes the distance as in Eq (2), using a second inverted index to match features in the
unknown to the features of the training samples, known as prototypes. Computation time is thus reduced to O(KM) for
the Class Pruner and O(Mn) for the second stage for each class proposed by the Class Pruner. In English, the Class
Pruner takes about 10% of total CPU (about 60μs per classification), and the secondary classifier about 45%. In Chinese,
these roles are reversed, since the class pruner is linear in the number of classes, and the class pruner takes around 60%,
with the secondary classifier at about 30%. Even these speed improvements left Tesseract about 10x slower than the
commercial engines of the mid 1990s, but in the intervening years, in improving accuracy, the commercial engines have
slowed down to match it, making Tesseract's speed comparable today

Figure 4. The Tesseract Class Pruner uses quantization and an inverted index for speed.
x

y θ
Feature Vector
(150, 40, 25)
Quantized to cell

0 0 0 0 3 0 0 1 0 0 0 0 0 0 3 2
a b c d e f g h i j k l m n o p ...

Each cell yields an array of character
weights

SPIE-IS&T/ Vol. 8658 865802-6

5. TESTING

The importance of testing to the development of Tesseract and other OCR systems cannot be over-emphasized. The
initial development was done on a set of 30 page images that were scanned at 250 pixels per inch with 4-bits of grey per
pixel. The scanner was custom-built using a linear CCD array attached to the drawing head of a small HP Pen Plotter. At
3MB per image, there wasn't even room for a single whole image in a 4MB machine. Accuracy development really took
off after the development set was expanded to 400 pages at 8 bits of grey and 300 pixels per inch, and a compute-server
system was built consisting of around 20 obsoleted machines built from scrap parts left over from system upgrades. The
system was trained on a separate set of images that were printed in a selection of fonts and scanned to obtain realistic
image degradation. Several important lessons emerged from the testing of Tesseract over the years:

• Small test sets are meaningless. It is easy to demonstrate accurate OCR on a small test set, but to demonstrate
“industrial strength” takes a significant size of test set with a realistic variation in material. Taking an example
from thresholding, which itself is an example of lesson 1, Minimum Error Thresholding uses a statistical
model of the foreground and background pixels of an image to construct a thresholding solution, and then
tests the solution using a small number of images that were artificially generated using the same model. Not
surprisingly, it works well on this small test set, but the solution fails miserably on many real images of text
because the model itself is flawed. Real images of thin text do not fit the model at all, due to the foreground
pixels being heavily out-numbered by pixels on the edges of the characters, which makes the foreground peak
much wider than it really should be.

• Test on different data to the training data. Recognizing data like the training data, for either single or multi-
font OCR is easy. Shrink-wrapped commercial OCR engines are called “omni-font” because they could be
asked to recognize anything printed in any font and are designed to do so. Omni-font OCR is hard, so if you
want to demonstrate industrial strength OCR you have to test on completely different data to the training data.
This makes the common methodology of randomly dividing a data set into training and test/validation sets
flawed. Such a random division will place similar or even the same fonts in training and test sets, which in
(omni-font) OCR terms is cheating. Even the commonly used cross-validation methods only serve to
minimize the over-training and don't evaluate generalization beyond the data set from which the samples are
drawn. Tesseract is now trained on synthetic data and tested on real data, so there is no doubt that the test
results show some generalization. The development test set is different from the blind test set.

• Test every change. Any code change is capable of causing a regression, so the more often it is tested, the
easier it is to identify what caused a problem. At a finer-grained level, unit tests provide confidence that
changes do not break assumptions or cause regressions on previously-fixed problems.

• What you measure improves. The more dimensions of both test data and metrics that you have, the more
readily you can identify what module is to blame for a particular error. For example, just measuring character
error-rate doesn't show whether errors are due to the character classifier, language model or layout analysis,
but add in a bag-of-words word error-rate as well as a longest-common-substring (edit distance) word error-
rate, and the difference between them gives an indication of the layout analysis error-rate. On the data side,
just looking at scanned printed material tells little about how well a system will perform on camera imagery.

• If it can break it will. Software as complex as a full OCR system must be tested very thoroughly. One of the
successes of Tesseract at the UNLV test of 1995 was zero crashes. This robustness was obtained by testing on
over 80000 images generated by thresholding the 400 page set at 200 different thresholds, which created a lot
of badly degraded images. Every resulting crash was fixed.

• Generous compute power helps a lot. Fast turn-around leads to more rapid development. The 80000 pages
above took the order of 400 cpu-days, which was only possible with a distributed test environment. We now
regularly test on around 1500 books in about 30 minutes.

• If you can write faster code in the time it takes a test to run, do so! The commonly-held belief that premature
optimization is wasteful or somehow narrows the research direction needs to be balanced with the fact that a
faster train/test cycle leads to more rapid progress. One of the benefits of avoiding iterative training algorithms
is that the core shape training for Tesseract takes just a few minutes instead of the hours or days that it
commonly takes to train, for example, a neural network-based classifier.

SPIE-IS&T/ Vol. 8658 865802-7

6. LANGUAGES

Right up until 2007, Tesseract was designed only for English. It was more by luck than good judgment that Tesseract
turned out to be fairly simple to upgrade to handle most of the world's languages. The upgrade path started with
extension to the Western European languages, followed by the East Asian languages, then Indic, and finally Hebrew. A
key lesson from this section is: A language-specific OCR system doesn't contribute much to OCRing the world's
languages, as there are very many languages in use even before including historical variants.

The first design decision in developing a multi-lingual OCR system is internal representation of Recognition Units
(RU). An RU is an individual shape that the OCR engine recognizes. RU is used here as a generalization of alphabet,
character set and grapheme cluster, each of which already has a specific meaning. A different term is needed, as, by
design, one OCR system may choose to recognize different sets of shapes from another. For instance, one OCR system,
like Tesseract, may choose to recognize whole Chinese characters, where another may recognize the individual radicals
within each character. It is important to realize at this early stage of design that for some languages, most notably the
Indic group, a single Unicode character is not an adequate representation of an RU. In the Indic languages, multiple
consonants can combine with an optional vowel to make a grapheme cluster (representing a syllable) in either a ligature
or a group of isolated connected components that may take a different shape from the individual Unicodes. Some of the
Indic languages use as many different grapheme clusters as there are characters in use in Chinese, with the additional
complexity that they can take 6 or more Unicodes to represent, and they are not all the same size and shape.

 In the spirit of providing guidance to future OCR practitioners, the following languages provide in some sense a
spanning set that covers most of the orthogonal difficulties:

• English: Believe it or not, English is on this list because it is the most difficult language on which to
achieve state-of-the-art. It is easy to obtain 90% or greater character accuracy on English, but the
commercial engines achieve 99%+ due to decades of work on the “long tail” of formatting issues: Drop-
caps, small-caps, pair kerning (eg. Of goods vs. 11), foreign words (with foreign characters), multi-language
documents, double single quote vs. single double quote, em-dash vs. hyphen, soft hyphen vs. hard hyphen,
curly quotes vs straight quotes, bullets and in-line logos, bracket matching, Helvetica/Arial I vs. l, Times
Roman 1 vs l, difficult fonts (especially italics and script-like), multiple sizes on one line, text on image,
vertical text, inverse text, non-rectangular blocks, line numbers, tables, equations, sub and superscript,
underline, strike-through. To achieve such accuracy, the language model has to be throttled back, and the
model of the document, whether part of the functional code, a hand-crafted Markov Model, or somehow
learned, has to attend to these issues.

• German: The difficulty with German is arbitrary noun compounding, e.g. “Straßenbahnhaltestelle,” made
from “Straße,” “Bahn,” “Halt,” “Stelle.” Note the inserted compounding letters and the dropped capitals.
Tesseract manages to get by in German without any special treatment for noun compounding.

• Hungarian: Language model complexity is prominent in Hungarian, Polish, and Russian. A simple word-
list dictionary is not sufficient for a language that has 1200 variants of the word “Table,” with prepositions
and other grammatical elements added in combination as prefixes and suffixes to the base word. Tesseract
doesn't lean too heavily on its language model, so the simple word-list has remained sufficient for now.

• Russian: The most common example from the group of languages that use the Cyrillic alphabet. Severe
problems with case errors abound due to upper-case and lower-case looking the same in most of the
alphabet. Documents that contain mixed Russian and English, add the difficulty that some Cyrillic letters
look exactly like Latin equivalents. Cyrillic lower-case looks just like small-caps in Latin, but Russian also
uses small-caps. Tesseract's treatment of small-caps and x-height finding is still an area for improvement.

• Japanese/Traditional Chinese: Both introduce the problems of vertical text-lines, large character-set,
highly detailed characters with little difference between them, and no space between words. Traditional
Chinese has a larger character-set, but Japanese has the additional problem of some of the character-set
occurring in two sizes. Since Tesseract's internal representation of a page is entirely vector outlines, a trivial
rotation about the origin of blocks of vertical text-lines is sufficient to allow code written for horizontal text-
lines to operate on vertical text-lines using negative coordinates. When an individual character is to be
classified, it is rotated upright. The classifier works well for Simplified Chinese, but starts to struggle with
ambiguities for Traditional Chinese.

SPIE-IS&T/ Vol. 8658 865802-8

• Hindi: There are many languages used in India and the surrounding countries, but from an OCR
perspective, they can be broken into three groups. A representative of the Northern Indic group, Hindi has
the difficulties of a header line running through all the letters in a word, a large set of Grapheme clusters,
and a lot of ligatures. Tesseract cuts the header line of Hindi words for the benefit of page layout analysis,
but relies on its normal character segmentation system to separate the characters during actual recognition.

• Kannada/Telugu: Representatives of the Southern Indic group, and very similar, Kannada and Telugu
grapheme clusters are formed from several isolated connected components, which typically change shape
when in combination. Some of the individual letters have a very similar appearance.

• Tamil: Without such a high combinatorial explosion of grapheme clusters, Tamil is really in a separate
category, but has the additional problem of vowels in two components that appear to both the left and right
of the consonant. Together with Myanmar, this brings the problem that the sequence on the text-line does
not match the sequence of the Unicode representation.

• Thai/Vietnamese: Large numbers of stacking diacritics are common in both Thai and Vietnamese. Thai
poses significant challenges to page layout analysis because the text-lines tend to be widely spaced, with the
diacritics sitting between them.

• Hebrew: Hebrew is in this list to highlight the fact that right-to-left writing is not unique to the Arabic
family of connected-script languages. Tesseract handles right-to-left with a relatively small code change. In
layout analysis, the coordinate space is briefly reflected in the y-axis, so that columns are extracted in the
correct reading order (right-to-left). In recognition, there is no change. Everything is still processed left-to-
right, but the language model is reversed during training. This approach enables Hebrew to be mixed with
English and recognized correctly. On output, Hebrew words are reversed, (both letters in the word and
words on a line), and English are not, so that down-stream applications see the output text in the correct
sequence. In addition, this bi-directional text output requires that some characters, like '(' are stored with
their mirror and switched around according to whether the context of the current word is left-to-right or
right-to-left, which itself is dependent on the script of the characters in the word, and may be undefined.

• Arabic: Well documented, the difficulties with Arabic are mainly the boundaries between letters, and the
fact that letters change shape according to their position within a connected component. Farsi and Urdu are
more challenging than Standard Arabic, with Urdu in particular having ligatures that are not handled by
most computer typesetting systems, which makes training from synthetic data rather difficult. Tesseract
currently handles Arabic with an add-on word recognizer, called Cube. Cube uses a convolutional neural
network character classifier and a maximal segment-and-classify approach with a beam search. Although
Cube does well for Arabic and Hindi, it has disappointing accuracy and speed for the European languages.

Some examples of non-latin scripts are shown in Fig. 5.

Figure 5. Some samples of non-Latin scripts, and some of the languages that use them.

Simplified Chinese,
Traditional Chinese,
Japanese.

Korean

Russian, Bulgarian,
Serbian, Slovenian,
Ukrainian.

Thai

Arabic, Urdu,
Persian.

Hebrew

Greek

Hindi, Sanskrit,
Marathi.

Tamil

Kannada

SPIE-IS&T/ Vol. 8658 865802-9

7. THE AD-HOC UNDERBELLY: LANGUAGE MODEL AND WORD RECOGNITION

A severely ad-hoc component of Tesseract is the word recognition module. This module is responsible for searching the
segmentation space (of a word into characters), and combining information from the static and adaptive classifiers,
together with the language model to form the optimal interpretation of each word. The language model began as a simple
state machine that would accept certain sequences of character types, such as upper-case, lower, lower, but not upper,
lower, upper.

A word-list was quickly added using a Directed Acyclic Word Graph (DAWG) as a compact representation, but how
should a dictionary word be compared to a non-dictionary word? How should two words of different length be
compared? If we had not abandoned the pretense that the classifier returns a probability, we could have somehow
combined the word frequency with the classifier probability to obtain some overall probability with which to compare
candidate words, but even that would have been fraught with ad-hoc hacks. A non-dictionary word would have required
some arbitrary out-of-dictionary probability. A 4-letter word would have multiplied 4 not-statistically-independent
probabilities together, and might have to be compared to the product of 3 not-statistically-independent probabilities for a
3-letter word.

So in this section is another debate over the value of non-rigorously applied statistics. There is no sound theory of
probability and statistics that can be applied rigorously here. Is it more or less principled to abandon the pretense and use
machine learning? Although Tesseract's word recognizer is not built around statistics, its principles can be clearly and
succinctly stated:

1. Character classifier distances for a word are combined by weighting according to the amount of material in the
character – in this case the length of the outline. In a word of n RUs, with classifier distances di, and the outline
length in each RU of length li, the overall word distance (known as rating,) r is:

r=∑
1

n

l i d i .

This allows words of different length to be compared fairly without the use of arbitrary constants that would
have to be derived from a-priori probabilities that may not be truly constant.

2. There are several word sources, including the top choice word, the dictionaries: system, frequent word, user
words, document and number parser. Each word source has a weight. If word source j has weight wj and
produces a word with rating rj, then the result word is the word from the source given by:

argmin j w j r j .

3. The weights wj should be trained from data.

4. The final result is the word that is found with the minimum weighted rating during segmentation search

 Ideally the weights should be trained by machine learning. Prior to the UNLV trial, the weights were optimized
using a simple genetic algorithm. Since then the weights have been tuned by hand, but a new machine learning scheme is
also being applied now to these weights to improve language-specific accuracy and to allow easy inclusion of new
character classifiers.

Back to the issue of whether a system based on statistics could be any better, depends on the language and the quality
of input. If the language presents problems for OCR, and/or the input image quality is poor, then a more complex
language model and a heavier weight on language model frequency can be of significant benefit. In the case of English
with high quality input, the language model has to be used carefully to obtain optimal accuracy, which leads to the final
lesson: Rigorously applied statistics beats rigorously applied data-driven machine learning beats inappropriate use of
statistics beats non-data-driven methods. Unfortunately, there are very few circumstances in which statistics can be
applied rigorously, and therefore it is difficult to find examples that show the full inequality. Taking thresholding as an
example, inappropriate use of statistics (Minimum Error Thresholding) can be worse than non-data-driven methods
(fixed threshold at 50% of the gray-scale), and a proprietary thresholding algorithm that used rigorously applied
statistical classification beats everything else. Tesseract's accuracy certainly improved after the switch from
inappropriate statistics to data-driven machine learning, but as a counterpoint HMM-based systems with their dubious
use of statistics do quite well.

SPIE-IS&T/ Vol. 8658 865802-10

8. RESULTS

Tesseract is regularly tested on around 30 languages, using test sets created by various means. Most of the Latin-based
languages and Russian have test data that was created from parallel scans of books and PDF text layers. Most of the non-
Latin test data was created by humans typing the text from 10 consecutive pages chosen randomly from books scanned
under the Google Books project. None of the ground-truth text is perfect, least of all the PDF-originated text, which
contains a large number of errors in whitespace (broken and merged words). These errors cause the reported word error
rates reported in Table 1 to be significantly higher than would be expected given the character error rate, which excludes
added/dropped spaces. Word error rates for Simplified Chinese and Japanese are calculated using a word segmentation
system that itself is affected by character errors. The word error-rate for Thai is particularly high due to it not being a
space-delimited language, and the word segmentation system is not applied in calculating the word error-rate. Another
factor that makes word error rates unexpectedly high is that page segmentation errors are included in the word error rate,
but the character error rate excludes these errors.

Table 1. Current error rates on various languages. Columns show the size of the test set in characters and words,

and the character-level substitution rate, as well as the word-level error-rate.

Language No. of Chars (million) No. of Words (million) Char error rate (%) Word error rate (%)

English 271 44 0.47 6.4

Italian 59 10 0.54 5.41

Russian 23 3.5 0.67 5.57

Simplified Chinese 0.25 0.17 2.52 6.29

Hebrew 0.16 0.03 3.2 10.58

Japanese 10 4.1 4.26 18.72

Vietnamese 0.41 0.09 5.06 19.39

Hindi 2.1 0.41 6.43 28.62

Thai 0.19 0.01 21.31 80.53

9. CONCLUSION

Industrial strength, high-accuracy, generic OCR is incredibly difficult to achieve, as there are many components that all
have to be world-class to compete with the best commercial systems. Over the last twenty years or so, traditional OCR
approaches have gained the label “ad-hoc” as the more statistical systems have attempted to distance themselves by
using the label “principled.” This paper has described how Tesseract moved away from statistics explicitly in an attempt
to base its classifier on a more rigorous foundation than poorly applied statistics. In some respects this makes Tesseract's
“ad-hoc” approach more principled than the “principled” methods, yet the end-result is remarkably similar. The ad-hoc
nature of Tesseract and the commercial OCR systems really comes from the list of “long tail” issues in Sec. 6 that have
to be dealt with, to achieve competitive accuracy on English. In contrast, statistics-based translation systems have beaten
grammar-based translation because of their sheer scalability, but these systems have yet to reach an accuracy level where
a long list of exceptions needs to be addressed. Taking these points into consideration, alternative terms for “ad-hoc” and
“principled” might be “mature” and “naive.”

Although Tesseract has evolved over time, its direction has been towards the mature traditional architecture:
Evolution, not Revolution. Further advances might be achieved through significant changes in the character and/or word
classifier. Of the most promising recent (revolutionary) approaches, applying Hidden Markov Models as character
classifiers (in addition to their long-established use in language models) have the advantage over conventional machine
learning of doing a better job of matching variable length feature descriptions. Deep Belief Nets have the additional
advantage of automatically deriving higher-level features (in 2-dimensions, unlike HMMs) from unsupervised training
data.

SPIE-IS&T/ Vol. 8658 865802-11

ACKNOWLEDGMENTS

The author would like to thank all those who have ever worked on Tesseract, and contributed so much to the system
described herein. Major contributors number about 25, and several more have contributed bug fixes or minor extensions.

REFERENCES

[1] Rice, S. V. Jenkins, F.R. Nartker, T.A., “The Fourth Annual Test of OCR Accuracy,” Technical Report 95-03,
Information Science Research Institute, University of Nevada, Las Vegas, July (1995).

[2] Smith, R., “A Simple and Efficient Skew Detection Algorithm via Text Row Accumulation,” Proc. of the 3rd Int.
Conf. on Document Analysis and Recognition 2, 1145-1148, IEEE (1995).

[3] Kopec, G. E. Chou, P. A., “Document image decoding using Markov source models,” IEEE trans. Pattern
Analysis and Machine Intelligence 16, 602-617, IEEE (1994).

[4] Schwartz, R. LaPre, C.Makhoul, J. Raphael, C. Zhao, Y., “Language-independent OCR using a continuous
speech recognition system,” Proc. 13th int. conf. on Pattern Recognition, 3, 99-103, IEEE (1996).

[5] Casey, R. G. Lecolinet, E., “A Survey of Methods and Strategies in Character Segmentation,” IEEE trans. Pattern
Analysis and Machine Intelligence 18, 690-706, IEEE (1996).

[6] Smith, R., “Hybrid Page Layout Analysis via Tab-Stop Detection,” Proc. of the 10th Int. Conf. on Document
Analysis and Recognition, 241-245, IEEE (2009).

[7] Marsland, S., [Machine learning: An Algorithmic Perspective], CRC Press, (2009).
[8] Duda, R. O. Hart, P. E. Stork, D. G., [Pattern Classification], Wiley, (2001).
[9] Smith, R. W., The Extraction and Recognition of Text from Multimedia Document Images, PhD Thesis, University

of Bristol, November (1987).
[10] Shillman, R. J., Character Recognition Based on Phenomenological Attributes: Theory and Methods, PhD. Thesis,

Massachusetts Institute of Technology. (1974).
[11] Blesser, B. A. Kuklinski, T. T. Shillman, R. J., “Empirical Tests for Feature Selection Based on a Pscychological

Theory of Character Recognition,” Pattern Recognition 8(2), Elsevier, New York, (1976).
[12] Tesseract open source site: http://code.google.com/p/tesseract-ocr (2012).
[13] Coates, A. Carpenter, B. Case, C. Satheesh, S. Suresh, B. Wang, T. Wu, D. J. Ng, A.Y., “Text Detection and

Character Recognition in Scene Images with Unsupervised Feature Learning,” Proc. of the 11th Int. Conf. on
Document Analysis and Recognition, 440-445, IEEE (2011).

[14] Kahan, S. Pavlidis, T. Baird, H. S., “On the Recognition of Printed Characters of Any Font and Size,” IEEE
Trans. Pattern Analysis and Machine Intelligence, 9(2), 274-288, IEEE (1987).

[15] Impedovo, S. Pirlo, G. “Tuning between Exponential Functions and Zones for Membership Functions Selection in
Voronoi-Based Zoning for Handwritten Character Recognition,” Proc. of the 11th Int. Conf. on Document Analysis
and Recognition, 997-1001, IEEE (2011).

[16] Ng, A. Y. Jordan, M. I., “On Discriminative vs. Generative classifiers: A comparison of logistic regression and
naïve Bayes,” Advances in Neural Information Processing Systems 14: Proc. 2002 Conference, 2, 841-848, MIT
Press, (2002).

[17] Rabiner, L., “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” Proc.
IEEE, 77(2), 257-286, IEEE (1989).

[18] Och, F. J., “Minimum error rate training in statistical machine translation,” Proc. 41st Annual Meeting on
Association for Computational Linguistics, 160-167, ACL (2003).

[19] Kittler, J. Illingworth, J., “Minimum error thresholding,” Pattern Recognition, 19, 41-47, Elsevier (1986).
[20] Shi, D. Damper, R. I. Gunn, S. R., “Offline handwritten Chinese character recognition by radical decomposition,”

ACM trans. on Asian Language Information Processing (TALIP) 2(1), 27-48, (2003).
[21] Smith, R., “Limits on the application of frequency-based language models to OCR,” Proc. of the 11th Int. Conf. on

Document Analysis and Recognition, 538-542, IEEE (2011).
[22] Menasri, F., “Shape-based Alphabet for Off-line Arabic Handwriting Recognition,” Proc. 9th Int. Conf. on

Document Analysis and Recognition, 969-973, IEEE (2007).
[23] Smith, R. Newton, C. Cheatle, P., “Adaptive Thresholding for OCR: A Significant Test,” HPL-93-22 HP

Laboratories Technical Report, March (1993).

SPIE-IS&T/ Vol. 8658 865802-12

