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ABSTRACT

This  paper  describes  the development  history of  the Tesseract  OCR engine,  and compares  the  methods to  general  
changes in the field over a similar time period. Emphasis is placed on the lessons learned with the goal of providing a  
primer for those interested in OCR research. 
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1. INTRODUCTION

The Tesseract  OCR Engine is an open-source system that was developed originally at HP between 1985 and 1995,  
shelved for 10 years, open-sourced in 2006 and now developed mostly at Google. Its accuracy was among the top 3 in  
the 1995 UNLV Test1, and with recent work is is again catching up with the commercial OCR engines. Despite its age,  
some of the components of Tesseract  are surprisingly similar to more modern approaches.  Among other things, the  
history of the development of Tesseract is a microcosm of the debate over statistical vs non-statistical classification  
methods.  This  paper  provides  a  historical  perspective,  with  concentration  on  the  important  lessons  learned  during  
Tesseract's  development,  covering both successes  and failures,  with a view to guiding others how to build an OCR 
system. It also compares the methods used with those that have been fashionable in recent times.

Nothing was published on Tesseract during its initial development. The project was run in “stealth mode” as a joint 
project between HP Labs in Bristol, and the HP Scanner Division in Colorado, with the aim of creating a differentiating  
feature for  HP scanners.  The resulting technology almost became a product in the early 1990s. It  was much more  
accurate on poor quality images than the first software-only OCR engines, but a lot slower, so it would require hardware  
assist in the scanner itself. Due to various reasons, one of which was the hurdle of internationalization, the HP Scanner 
Division decided at the end of 1990 not to develop Tesseract into a product. HP Labs continued development until the  
end of 1994, initially with the aim of pushing the limits of accuracy on degraded images, and later with the aim of using  
OCR for document compression. Even during the latter development phase, very little was published

The body of this paper is laid out as follows: Sec. 2 describes the overall system architecture of Tesseract, Sec. 3  
introduces  the  feature  space  by  means  of  how  it  developed  over  time,  and  compares  with  currently  common 
methodologies. Likewise, Sec. 4 covers the classifier, placing it in the perspective of some recent publications, and Sec.  
5 covers testing. Languages are discussed in Sec. 6, and finally Sec. 7 covers the ad-hoc nature of the word classifier.

2. SYSTEM ARCHITECTURE

The overall  architecture,  shown in Fig.1,  has  stayed  mostly unchanged over the years,  and shows its  origin in  the 
traditional pipelined approach. The actual character recognition component has a two-pass format, being used in both 
“Recognize Word Pass 1” and “Recognize Word Pass 2,” which allows an on-the-fly adaptive classifier to be trained and 
utilized in the first pass, and to re-visit unsatisfactory words in the second pass.

Figure 1. Block diagram of the overall architecture of Tesseract.
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Further “fixing” passes have been added to firm-up decisions that were left fuzzy or need correcting from an earlier 
step, like spacing, x-heights, or words that need multi-word context to resolve. In  many ways,  it is these additional  
phases that separate the styles of OCR architecture, which can be categorized as follows:

• Traditional, naive. Traditional pipelined “feed forward” systems start as a series of steps that make hard  
decisions in one domain, and pass the results on to the next part of the pipeline.

• Traditional, mature. Matured pipelined systems are characterized by additional steps that revisit some of the 
earlier decisions with additional information from other parts of the pipeline. Examples include adaptive 
character classification, adaptive font spacing/character size models, and document dictionaries.

• Modern, naive. More recent approaches try to avoid premature decision-making by pushing all the hard  
problems into a monolithic statistical module, such as a Hidden Markov Model (HMM) and expect it to  
resolve everything at  once. These systems began with segmentation-free,  also-known-as sliding window 
classification,  in  which  decisions  over  character  boundaries  are  made  in  parallel  with  character  
classification.  Between-word  spacing  falls  out  naturally  from such  systems,  but  it  is  more  difficult  to 
incorporate knowledge such as words tend to use only a single font. The pioneering work in this area is the 
Document Image Decoding(DID) system, and more recently, the BBN system.

• Modern, mature. It would be against the principles of an HMM-based OCR system to patch it with post-
processing  modules  that  re-visit  earlier  decisions,  so  mature  modern  systems  will  be  characterized  by 
increasingly complex models that take into account all the structure of printed information, much as the 
original DID system did, but without requiring a hand-coded model for each type of page layout.

The Tesseract  word recognizer,  shown in Fig.  2  searches  for  the optimal  segmentation  of a  word into isolated  
characters to feed to the character classifier. In terms of the Casey and Lecolinet survey on segmentation, Tesseract is a 
hybrid  of  the  classical  approach  and  recognition-based  segmentation,  but  does  not  apply  the  over-segmentation 
algorithm described therein. An over-segmenting word recognizer would maximally segment a word (or a text-line) and 
then apply a beam search to choose the best few segmentation paths through the resulting lattice. The segmentation  
search in Tesseract  takes a  minimalist  approach.  Starting with the initial  connected-component-based segmentation,  
while the word is unsatisfactory, it chops components that have poor confidence from the character classifier. At each 
step a beam search combines the character classifier results with the language model, as described in Sec. 7. If chopping  
fails  to  produce  a  satisfactory  result,  it  then  searches  the  segmentation  lattice,  by  connecting  adjacent  character  
fragments, based on hints from the classifier and language model, such as where in the word the dictionary search dead-
ended. The beam search is re-run for each segmentation hypothesis, again only until a satisfactory word is produced.

The principle behind this minimalist approach is that in most languages, the initial segmentation is close to correct,  
so minimal segmentation biases the search in favor of stopping at a state close to the initial segmentation. This reduces 
the probability of hallucinating garbage, i.e. chopping a perfectly good character into 'iii' or falsely merging perfectly 
good characters into 'm', as well as increasing computational efficiency. The  disadvantage is that it can occasionally  
miss the correct segmentation due to finding a satisfactory result before it gets there.

Figure 2. Block diagram of the Tesseract word recognizer.
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HP had an independent layout analysis technology that was used in a product, so the only layout analysis component  
that was originally required was detecting text lines and words within a previously-identified text block. For this reason,  
layout analysis was not part of the open source release. Full layout analysis  based on tab-stop detection, that can cope 
with  non-text,  multi-columns,  and  tables  was  added  to  Tesseract  recently.  The  layout  analysis  and  character  
segmentation processes make use of outlines of binary connected components, but there is nothing fundamental that says  
the classifier has to extract features from the binary outlines. In a recent change, aimed at Chinese and low-resolution  
input, the ability to extract features from greyscale was added.

An important  component of Tesseract  that  helps improve accuracy on unseen fonts is  the adaptive classifier.  It  
typically reduces error-rates on a large enough document by 30-60% relative to the static classifier alone. The adaptive  
classifier is identical to the static classifier, except for the normalization that is applied to the outlines, (See Sec.3.4) and  
the fact that it is trained on-the-fly. The individual characters of each confidently recognized word are presented to the 
adaptive classifier as training data, as the words are recognized in Pass 1, and the adaptive classifier starts responding 
with answers (still in Pass 1) after it has seen only 3 matching samples of a character. Thus if the word “infinity” were  
recognized, the adaptive classifier would start recognizing 'i' on the next word.

3. FEATURE SPACE

Any textbook on machine learning or pattern recognition will discuss feature space as an n-dimensional vector space in 
which each training sample and each unknown occupies a single point, represented by a single n-dimensional feature  
vector. Conventional machine learning classifier methods either find the nearest training sample in this n-dimensional 
space, (e.g. kNN classifiers) or divide the space into regions which correspond to class labels (eg SVMs) and return the  
corresponding label for a given unknown. Tesseract took a different approach.

3.1  Early Work – Statistical Beginnings

An unconventional  aspect  of  Tesseract  was  a  consequence  of  an  early  choice  of  feature  space.  Early  work  on 
Tesseract was  strongly  influenced  by  psychological  studies that  had  shown  that  human  perception  makes  use  of 
structural or topological features, such as “There is a stick on the left, and a loop at the bottom.” This kind of description  
does not map well  to a  fixed n-dimensional feature  space!  Thus most published research  has abandoned structural 
features and used simple pixel-level features or other quantized features that can be expressed as a fixed-dimension 
vector.  In  contrast,  Tesseract  originally  extracted  topological  features  from  the  skeleton.  Character  skeletons  are 
appealing, partly because the skeleton should correspond to the path of the pen in handwriting, and partly because the  
aforementioned psychological studies indicated that human perception of characters is based largely on the skeleton. 
Unfortunately, in machine print, the ink is not created by pen strokes, and characters contain  serifs, making the skeleton  
hard to define robustly. This difficulty in definition is reflected in the large number of papers on skeletonization, and  
yields the first lesson:  If some required process in your system has a large number of published papers describing  
different solutions, choose an alternative process, as it probably means that there is no good solution.

The decision was made however,  and Tesseract  went down the path of classification from a collection of  low-
dimensional feature vectors, instead of a single high-dimensional feature vector.  The classifier was based on a Bayesian 
parametric Gaussian Mixture Model that treats each font/character combination as a separate class. It  had to assume 
statistical independence in its probability calculations, and there were many discussions in the team over the invalidity of 
the independence assumption. Symbolically, in training, sample features, each of n dimensions, of a single font/character 
combination, k∈[1, K ] , are clustered to Jk cluster means, with models N  μijk , σ ijk: i∈[1,n ] , j∈[1, J k ] . 

An unknown with M n-dimensional feature vectors X l={xil : i∈[1,n] ,l∈[1, M ]} , was classified using:

argmax k ∏l ,i

1
σ ijk

exp [−
1
2


x il−μijk

σ ijk


2

] , (1)

with the indices being:  i=feature dimension,  j=cluster,  k=font/character class, and  l=unknown's feature index defined 

such that l and j are matched to minimize x il−μijk 
2 .

After dropping skeletonization, features continued to be topological,  but were extracted from outlines, until they  
showed themselves  to  be brittle  in the presence  of  degraded  images,  and lesson 2 emerged:  Features  must  be as  
invariant as possible to as many as possible of the expected degradations.  
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Figure 3. Nanofeatures (left) were segments of a polygonal approximation, and picofeatures (right) cut these into segments of a 
fixed length.

3.2  Shrinking Features – Statistics Abandoned

After discovering that topological features were too brittle, features became smaller and smaller fragments of outlines,  
(they were even named microfeatures, nanofeatures, and finally picofeatures!) at one point being 4-dimensional, (hence  
the name Tesseract) but eventually reducing to just 3-dimensions: x, y position and direction in the range [0, 2pi). The 
fourth dimension, which had been length, was reduced to a small constant. The last two steps of this process are shown 
in Fig. 3. The nanofeatures are just the segments of a polygonal approximation of the outline, and the picofeatures cut 
these segments down further into pieces of a constant length. In the current (v.3.02) implementation  of Tesseract, only 
picofeatures  are  extracted  from  the  unknown,  but  nanofeatures  are  clustered  during  training.  This  asymmetric  
arrangement  provides  better  clustering  during  training,  and  the  desired  robustness  to  noise.  Since  a  nanofeature  is 
equivalent to one or more collinear picofeatures, the difference is ignored in the rest of the description.

This reduction in size of the features mirrors the changes in OCR research over the last twenty years or so, in which  
structural features have largely been abandoned in favor of simpler features, like pixels. A notable exception to this trend 
is the emergence of Deep Belief Nets as systems that derive their own higher-level/structural features from pixel-level 
input through multiple levels of convolution.

In Tesseract, the number of features had increased by an order of magnitude over the original topological features,  
and the assumption of statistical independence had become completely untenable as a result. Failure of the independence 
assumption was blamed for the “probabilities” being unrelated within a single classification, making the ranking of 
alternate answers  unreliable.  The pretense that  Tesseract  was dealing with probabilities was therefore  dropped, and 
replaced with simple Euclidean distance. Upon re-casting the distance as spatial distance of a fragment of the outline of 
the unknown from a fragment of the outline of a training character, it quickly became obvious that the distance needed to  
be symmetrized, i.e. that it was also necessary to measure the distance of each fragment of the training character from 
the unknown character. As an equation, the classification had become:

argmin k 
1

MJ k

∑l ,i
 x il−μijk 

2
∑ j , i

x il−μijk
2
 . (2)

Using the same index notation as for Eq (1), the matching condition in the first sum, becomes best j for each l, and in 
the second sum, best l for each j. The classifier thus finds for each feature in the unknown the nearest cluster mean and 
vice-versa, summing all the distances and dividing by the total number of features in the unknown and the training 
sample, analogous to the Hausdorff distance, except that Eq (2) computes the mean distance instead of the maximum. 
The key difference from Eq (1) is the symmetrization in finding the nearest matching feature both ways instead of one-
way. This is extremely important for a couple of reasons.

Firstly,  the concept  that  'e'  has “more features”  than 'c'  exists  in Tesseract  and is encoded in this  symmetrized  
distance metric. Conventional approaches have to somehow encode this difference in the many dimensions of their fixed 
dimension feature space.

Secondly, dropping the probability pretense does not make the problem of statistical independence go away! Because  
the features are so small, groups of them are likely to occur together, and move together as characters change shape. This  
makes it as difficult to make judgments about the absolute distances, as it is make inferences using the probabilities. The 
big advantage of the symmetrization though is that it mitigates the problem of statistical independence in the second 
summation, which specifies a collection of features that are required, whereas the first summation specifies features that 
are  allowed. Continuing with the 'c'/'e'  example, (almost) all the features in 'c' are allowed by 'e' so using Eq (1) an 
unknown of 'c' could get an almost equal score for 'c' or 'e', but in Eq (2), 'e'  requires a cross-bar, so an unknown 'c' 
would get a worse match (greater distance) for 'e' than for 'c'. Statistical independence bites when the position of the  
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cross-bar of an unknown 'e'  is different to any seen in training, and multiple features are penalized for being out of 
position, when in reality these features are connected so they are destined to move together with statistical dependence.

3.3  Variable Dimensions or Fixed? – A Comparison with Conventional Methods

Conventional  (some would say modern) classifiers,  for  example SVMs, require  a fixed-dimension feature space.  A 
conventional way to convert from a structural feature set, as with Tesseract, to a fixed dimension space, is to quantize the 
feature space to a space of binary features in high dimensions, where each bit represents the presence of a feature in each 
quantum cell. Thus n Tesseract features would give rise to a sparse high-dimension binary feature vector with n set bits. 
This method is employed in the Tesseract Class Pruner (See Sec. 4), but it has its disadvantages. The biggest problem is  
that Euclidean distance in feature space becomes Hamming distance when each dimension is binary, so a single feature  
that has changed its value slightly to move from one quantum cell to the next has a hamming distance of 2, which is the 
same as if the feature had disappeared and been replaced by one anywhere in feature space. Features that were proximate 
in the original space thus have no special connection in the quantized space, which means that the generalization power 
is greatly reduced.

Another approach to mapping a structural space to a fixed-dimension feature space is by computing histograms on a  
coarser  quantization  grid.  (e.g.  Histogram of  Gradients.)  This  approach  has  the  problem of  handling  features  that 
naturally sit near a quantum boundary. Recent work has been done to address this problem by optimizing the coarse 
quantum boundaries.

The modern approach to solving the problem of reduced generalization is to throw more training data at the classifier  
during training.  Theoretical  analysis  and experimental  tests in  this  area  have concluded that  discriminative models 
asymptotically beat generative models, (or the naïve Bayes generative model at least) but that more training data is  
usually required. This is another way of saying that discriminative models have less generalization power, but are better  
at learning more complex spaces than generative models.

Hidden Markov Model (HMM) classifiers, if anything, are the closest conventional systems to Tesseract. Their state 
transitions  with  self-loops  are  analogous  to  handling  multiple  variable  numbers  of  features,  albeit  with  the  severe 
limitation of sequence,  and usually with an order  of magnitude less states than the number of features  in a typical  
character in Tesseract. The main advantage of HMM classifiers is that the internal state transitions contain finer-grained  
detail of the required features, and thus a better solution for statistical independence than can be expressed by Eq (2).

Principled is a word that is often associated with the statistical methods, particularly those with HMMs, and non-
statistical methods, such as Tesseract are described as ad-hoc, yet these so-called principled methods often use the log-
linear model to combine probabilities, which are derived from a Gaussian Mixture Model. In a log-linear model, the  
classification is based on tuning a set of weights αi:

argmax k ∑i
αi log  p x i∣k  , (3)

for a collection over  i of some  feature functions xi  , using  k as the class as before, and the Gaussian Mixture Model 
provides probabilities based on the Normal distribution:

p xi∣k =
1

σ ik 2π
exp [−

1
2


x i−μik

σ ik


2

] . (4)

Substituting Eq(4) into Eq(3) gives:

argmax k ∑i
αi[ log 

1
σ ik 2π

−
1
2


x i−μ ik

σ ik


2

] , (5)

which looks rather  like Eq.  (2),  with the addition of  an additive and a multiplicative constant,  but  the loss  of the 
symmetry,  which  is  made up by the  combinations of  states  that  are  allowed in a  character.  This  is  a  particularly  
interesting result, as it shows just how closely related are the ad-hoc, statistics-free approach of Tesseract and the models  
used  by  the  so-called  principled  statistical  methods.  The  addition  of  the  standard  deviation  is  hardly  of  rigorous 
importance,  with  a  learned  parameter  that  overrules  it.  The  real  difference  here  is  the  additional  set  of  learned  
parameters, (the αi) but it should be noted that these are not derived from a rigorous statistical model.
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3.4  Adaption and Generalization via Normalization

Sec. 2 mentioned that Tesseract uses an adaptive classifier. The only real difference between the adaptive classifier and 
the static classifier is the type of normalization that is applied to the outline at feature extraction. In the static classifier,  
the centroid of the outline of the unknown is centered in feature space,  and scaled anisotropically to normalize the  
second moments of the outlines. This centering and scaling aims to eliminate some font differences, such as aspect ratio,  
and allows sub/superscripts to be recognized as normal characters, but also introduces some ambiguities. The adaptive  
classifier normalizes the unknown by centering the horizontal centroid of the outline, but the vertical center of the text-
line. The scaling is isotropic to normalize the x-height of the character. This normalization retains font differences, and 
improves immunity to pepper noise, but makes sub/superscript differ from normal text. The combination of the different  
normalizations helps improve overall accuracy.

4. CLASSIFIER

The classifier is essentially an optimized k-Nearest Neighbor (kNN) classifier. It returns the closest matching training  
sample, at the level of granularity of the grapheme-cluster, font pair, nominally using Eq.(2) to compute the distances.  
The brute-force time is O(JkKMn). While the features were topological, this was not so computationally intensive, but 
with the features shrunk down there are 50-100 present in most characters,  just for English, with Jk,,M ~ 50-100, K = 
3520,  (32  training  fonts  *  110  character-set),  and  n  =  3,  makes  for  O(108)  distance  calculations,  per  character 
classification, which was prohibitively expensive on the machines of the time.

The primary solution to reduce the squared-order feature matching to linear is quantization, as described in Sec. 3.3,  
and the inverted index. This is combined with two-stage classification to reduce the total CPU load dramatically. The 
first stage classifier, called the Class Pruner, shown in Fig. 4, indexes the quantized value of each feature vector in the 
unknown to obtain a set of classes that allow the feature. The number of such feature hits for each class is summed over  
the features  and the best  few matching classes  become a short-list  of classes  for  the second stage.  This process  is  
identical  to a linear  classifier,  except that  no multiplication need be performed.  Symbolically,  given  a quantization  
function f :ℝn{1, ...n ' } the quantization process can be described by:

X l={x il : i∈[1,n] ,l∈[1, M ]} Q={qi ,i∈[1,n ' ] , q i=1 if ∃ l : f  X l=i , qi=0 otherwise } .

In the Tesseract Class Pruner each of the 3-dimensions is quantized to 24 cells, so n'=243=13824. The linear classifier in 

the class pruner is then easily described by: argmax k ∑
i=1

n '

wik q i
, where the weights wik, take on 2-bit values. The 2-

bit weights define the acceptance neighborhood in the inverted index around the mean of each feature cluster and are  
computed using arbitrary constants of distance rather than the standard deviation. With sufficient training data, there is 
no particular reason not to use the standard deviation to define the neighborhoods.

The secondary classifier computes the distance as in Eq (2), using a second inverted index to match features in the  
unknown to the features of the training samples, known as prototypes. Computation time is thus reduced to O( KM) for 
the Class Pruner and O(Mn) for the second stage for each class proposed by the Class Pruner. In English, the Class 
Pruner takes about 10% of total CPU (about 60μs per classification), and the secondary classifier about 45%. In Chinese,  
these roles are reversed, since the class pruner is linear in the number of classes, and the class pruner takes around 60%,  
with the secondary classifier at about 30%. Even these speed improvements left Tesseract about 10x slower than the 
commercial engines of the mid 1990s, but in the intervening years, in improving accuracy, the commercial engines have 
slowed down to match it, making Tesseract's speed comparable today

Figure 4. The Tesseract Class Pruner uses quantization and an inverted index for speed.
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5. TESTING

The importance of testing to the development of Tesseract and other OCR systems cannot be over-emphasized. The 
initial development was done on a set of 30 page images that were scanned at 250 pixels per inch with 4-bits of grey per 
pixel. The scanner was custom-built using a linear CCD array attached to the drawing head of a small HP Pen Plotter. At  
3MB per image, there wasn't even room for a single whole image in a 4MB machine. Accuracy development really took 
off after the development set was expanded to 400 pages at 8 bits of grey and 300 pixels per inch, and a compute-server  
system was built consisting of around 20 obsoleted machines built from scrap parts left over from system upgrades. The  
system was trained on a separate set of images that were printed in a selection of fonts and scanned to obtain realistic 
image degradation. Several important lessons emerged from the testing of Tesseract over the years:

• Small test sets are meaningless. It is easy to demonstrate accurate OCR on a small test set, but to demonstrate  
“industrial strength” takes a significant size of test set with a realistic variation in material. Taking an example  
from thresholding,  which itself is an example of lesson 1, Minimum Error Thresholding uses a statistical 
model of the foreground and background pixels of an image to construct a thresholding solution, and then 
tests the solution using a small number of images that were artificially generated using the same model. Not  
surprisingly, it works well on this small test set, but the solution fails miserably on many real images of text  
because the model itself is flawed. Real images of thin text do not fit the model at all, due to the foreground  
pixels being heavily out-numbered by pixels on the edges of the characters, which makes the foreground peak 
much wider than it really should be.

• Test on different data to the training data. Recognizing data like the training data, for either single or multi-
font OCR is easy. Shrink-wrapped commercial OCR engines are called “omni-font” because they could be 
asked to recognize anything printed in any font and are designed to do so. Omni-font OCR is hard, so if you 
want to demonstrate industrial strength OCR you have to test on completely different data to the training data. 
This makes the common methodology of randomly dividing a data set into training and test/validation sets  
flawed. Such a random division will place similar or even the same fonts in training and test sets, which in 
(omni-font)  OCR  terms  is  cheating.  Even  the  commonly  used  cross-validation  methods  only  serve  to 
minimize the over-training and don't evaluate generalization beyond the data set from which the samples are  
drawn.  Tesseract is now trained on synthetic data and tested on real data, so there is no doubt that the test  
results show some generalization. The development test set is different from the blind test set.

• Test every change. Any code change is capable of causing a regression, so the more often it is tested, the 
easier  it  is to identify what caused a problem. At a finer-grained level,  unit tests provide confidence that  
changes do not break assumptions or cause regressions on previously-fixed problems.

• What you measure improves. The more dimensions of both test data and metrics that you have, the more 
readily you can identify what module is to blame for a particular error. For example, just measuring character 
error-rate doesn't show whether errors are due to the character classifier, language model or layout analysis,  
but add in a bag-of-words word error-rate as well as a longest-common-substring (edit distance) word error-
rate, and the difference between them gives an indication of the layout analysis error-rate. On the data side,  
just looking at scanned printed material tells little about how well a system will perform on camera imagery.

• If it can break it will. Software as complex as a full OCR system must be tested very thoroughly. One of the 
successes of Tesseract at the UNLV test of 1995 was zero crashes. This robustness was obtained by testing on 
over 80000 images generated by thresholding the 400 page set at 200 different thresholds, which created a lot  
of badly degraded images. Every resulting crash was fixed.

• Generous compute power helps a lot. Fast turn-around leads to more rapid development. The 80000 pages 
above took the order of 400 cpu-days, which was only possible with a distributed test environment. We now  
regularly test on around 1500 books in about 30 minutes.

• If you can write faster code in the time it takes a test to run, do so!  The commonly-held belief that premature 
optimization is wasteful or somehow narrows the research direction needs to be balanced with the fact that a 
faster train/test cycle leads to more rapid progress. One of the benefits of avoiding iterative training algorithms 
is that the core shape training for Tesseract  takes just  a few minutes instead of the hours or days  that  it  
commonly takes to train, for example, a neural network-based classifier.
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6. LANGUAGES

Right up until 2007, Tesseract was designed only for English. It was more by luck than good judgment that Tesseract 
turned out  to  be fairly  simple  to  upgrade  to  handle  most  of  the  world's  languages.  The upgrade  path started  with  
extension to the Western European languages, followed by the East Asian languages, then Indic, and finally Hebrew. A 
key lesson from this section is:  A language-specific OCR system doesn't contribute much to OCRing the world's  
languages, as there are very many languages in use even before including historical variants. 

The first design decision in developing a multi-lingual OCR system is internal representation of Recognition Units 
(RU). An RU is an individual shape that the OCR engine recognizes. RU is used here as a generalization of alphabet,  
character set and grapheme cluster, each of which already has a specific meaning. A different term is needed, as, by  
design, one OCR system may choose to recognize different sets of shapes from another. For instance, one OCR system, 
like Tesseract, may choose to recognize whole Chinese characters, where another may recognize the individual radicals 
within each character. It is important to realize at this early stage of design that for some languages, most notably the  
Indic group, a single Unicode character is not an adequate representation of an RU. In the Indic languages, multiple  
consonants can combine with an optional vowel to make a grapheme cluster (representing a syllable) in either a ligature  
or a group of isolated connected components that may take a different shape from the individual Unicodes. Some of the  
Indic languages use as many different grapheme clusters as there are characters in use in Chinese, with the additional  
complexity that they can take 6 or more Unicodes to represent, and they are not all the same size and shape.

 In the spirit of providing guidance to future OCR practitioners, the following languages provide in some sense a  
spanning set that covers most of the orthogonal difficulties:

• English: Believe it  or not,  English is  on this list  because it  is  the most difficult language on which to  
achieve  state-of-the-art. It  is  easy  to  obtain  90%  or  greater  character  accuracy  on  English,  but  the 
commercial engines achieve 99%+ due to decades of work on the “long tail” of formatting issues: Drop-
caps, small-caps, pair kerning (eg. Of goods vs. 11), foreign words (with foreign characters), multi-language 
documents, double single quote vs. single double quote, em-dash vs. hyphen, soft hyphen vs. hard hyphen,  
curly quotes vs straight quotes, bullets and in-line logos, bracket matching, Helvetica/Arial I vs. l, Times 
Roman 1 vs l, difficult fonts (especially italics and script-like), multiple sizes on one line, text on image, 
vertical  text,  inverse  text,  non-rectangular  blocks,  line  numbers,  tables,  equations,  sub  and  superscript,  
underline, strike-through. To achieve such accuracy, the language model has to be throttled back, and the 
model of the document, whether part of the functional code, a hand-crafted Markov Model, or somehow 
learned, has to attend to these issues.

• German: The difficulty with German is arbitrary noun compounding, e.g. “Straßenbahnhaltestelle,” made 
from “Straße,” “Bahn,” “Halt,” “Stelle.” Note the inserted compounding letters and the dropped capitals. 
Tesseract manages to get by in German without any special treatment for noun compounding.

• Hungarian: Language model complexity is prominent in Hungarian, Polish, and Russian. A simple word-
list dictionary is not sufficient for a language that has 1200 variants of the word “Table,” with prepositions 
and other grammatical elements added in combination as prefixes and suffixes to the base word. Tesseract  
doesn't lean too heavily on its language model, so the simple word-list has remained sufficient for now.

• Russian: The most common example from the group of languages that use the Cyrillic alphabet. Severe 
problems with  case  errors  abound  due  to  upper-case  and  lower-case  looking  the  same  in  most  of  the  
alphabet. Documents that contain mixed Russian and English, add the difficulty that some Cyrillic letters 
look exactly like Latin equivalents. Cyrillic lower-case looks just like small-caps in Latin, but Russian also  
uses small-caps. Tesseract's treatment of small-caps and x-height finding is still an area for improvement.

• Japanese/Traditional  Chinese: Both  introduce  the  problems  of  vertical  text-lines,  large  character-set, 
highly detailed characters with little difference between them, and no space between words. Traditional  
Chinese has a larger character-set, but Japanese has the additional problem of some of the character-set 
occurring in two sizes. Since Tesseract's internal representation of a page is entirely vector outlines, a trivial  
rotation about the origin of blocks of vertical text-lines is sufficient to allow code written for horizontal text-
lines to operate on vertical  text-lines using negative coordinates.  When an individual character  is to be 
classified, it is rotated upright. The classifier works well for Simplified Chinese, but starts to struggle with  
ambiguities for Traditional Chinese.
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• Hindi: There  are  many  languages  used  in  India  and  the  surrounding  countries,  but  from  an  OCR 
perspective, they can be broken into three groups. A representative of the Northern Indic group, Hindi has 
the difficulties of a header line running through all the letters in a word, a large set of Grapheme clusters,  
and a lot of ligatures. Tesseract cuts the header line of Hindi words for the benefit of page layout analysis,  
but relies on its normal character segmentation system to separate the characters during actual recognition.

• Kannada/Telugu: Representatives  of  the Southern Indic group,  and very similar,  Kannada and Telugu 
grapheme clusters are formed from several isolated connected components, which typically change shape 
when in combination. Some of the individual letters have a very similar appearance.

• Tamil: Without such a high combinatorial explosion of grapheme clusters, Tamil is really in a separate  
category, but has the additional problem of vowels in two components that appear to both the left and right  
of the consonant. Together with Myanmar, this brings the problem that the sequence on the text-line does 
not match the sequence of the Unicode representation.

• Thai/Vietnamese: Large numbers of stacking diacritics are common in both Thai and Vietnamese. Thai 
poses significant challenges to page layout analysis because the text-lines tend to be widely spaced, with the  
diacritics sitting between them.

• Hebrew: Hebrew is in this list to highlight the fact that right-to-left writing is not unique to the Arabic  
family of connected-script languages. Tesseract handles right-to-left with a relatively small code change. In  
layout analysis, the coordinate space is briefly reflected in the y-axis, so that columns are extracted in the 
correct reading order (right-to-left). In recognition, there is no change. Everything is still processed left-to-
right, but the language model is reversed during training. This approach enables Hebrew to be mixed with 
English and recognized correctly.  On output, Hebrew words are reversed, (both letters in the word and  
words on a line), and English are not, so that down-stream applications see the output text in the correct  
sequence. In addition, this bi-directional text output requires that some characters, like '(' are stored with  
their mirror and switched around according to whether the context of the current word is left-to-right or  
right-to-left, which itself is dependent on the script of the characters in the word, and may be undefined.

• Arabic: Well documented, the difficulties with Arabic are mainly the boundaries between letters, and the 
fact that letters change shape according to their position within a connected component. Farsi and Urdu are 
more challenging than Standard Arabic, with Urdu in particular having ligatures that are not handled by 
most computer typesetting systems,  which makes training from synthetic  data rather difficult.  Tesseract  
currently handles Arabic with an add-on word recognizer, called Cube. Cube uses a convolutional neural  
network character classifier and a maximal segment-and-classify approach with a beam search. Although 
Cube does well for Arabic and Hindi, it has disappointing accuracy and speed for the European languages.

Some examples of non-latin scripts are shown in Fig. 5.

Figure 5. Some samples of non-Latin scripts, and some of the languages that use them.

Simplified Chinese, 
Traditional Chinese, 
Japanese.

Korean

Russian, Bulgarian, 
Serbian, Slovenian, 
Ukrainian.

Thai

Arabic, Urdu, 
Persian.

Hebrew

Greek

Hindi, Sanskrit, 
Marathi.

Tamil

Kannada
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7. THE AD-HOC UNDERBELLY: LANGUAGE MODEL AND WORD RECOGNITION

A severely ad-hoc component of Tesseract is the word recognition module. This module is responsible for searching the  
segmentation space (of a word into characters),  and combining information from the static and adaptive classifiers,  
together with the language model to form the optimal interpretation of each word. The language model began as a simple 
state machine that would accept certain sequences of character types, such as upper-case, lower, lower, but not upper,  
lower, upper.

A word-list was quickly added using a Directed Acyclic Word Graph (DAWG) as a compact representation, but how 
should  a  dictionary  word  be  compared  to  a  non-dictionary  word?  How  should  two  words  of  different  length  be 
compared?  If  we had not abandoned the pretense that  the classifier  returns  a  probability,  we could have somehow 
combined the word frequency with the classifier probability to obtain some overall probability with which to compare  
candidate words, but even that would have been fraught with ad-hoc hacks. A non-dictionary word would have required 
some  arbitrary  out-of-dictionary  probability.  A  4-letter  word  would  have  multiplied  4  not-statistically-independent 
probabilities together, and might have to be compared to the product of 3 not-statistically-independent probabilities for a  
3-letter word.

So in this section is another debate over the value of non-rigorously applied statistics. There is no sound theory of 
probability and statistics that can be applied rigorously here. Is it more or less principled to abandon the pretense and use  
machine learning? Although Tesseract's word recognizer is not built around statistics, its principles can be clearly and 
succinctly stated:

1. Character classifier distances for a word are combined by weighting according to the amount of material in the  
character – in this case the length of the outline. In a word of n RUs, with classifier distances di, and the outline 
length in each RU of length li, the overall word distance (known as rating,) r is:

r=∑
1

n

l i d i .

This allows words of different length to be compared fairly without the use of arbitrary constants that would 
have to be derived from a-priori probabilities that may not be truly constant.

2. There are several word sources, including the top choice word, the dictionaries: system, frequent word, user 
words,  document  and number parser.  Each word source  has a weight.  If  word source  j has  weight  wj and 
produces a word with rating rj, then the result word is the word from the source given by:

argmin  j w j r j .

3. The weights wj should be trained from data.

4. The final result is the word that is found with the minimum weighted rating during segmentation search

 Ideally the weights should be trained by machine learning. Prior to the UNLV trial, the weights were optimized  
using a simple genetic algorithm. Since then the weights have been tuned by hand, but a new machine learning scheme is 
also being applied now to these weights to improve language-specific accuracy and to allow easy inclusion of new 
character classifiers.

Back to the issue of whether a system based on statistics could be any better, depends on the language and the quality 
of input. If  the language presents problems for OCR, and/or the input image quality is poor, then a more complex  
language model and a heavier weight on language model frequency can be of significant benefit. In the case of English  
with high quality input, the language model has to be used carefully to obtain optimal accuracy, which leads to the final 
lesson: Rigorously applied statistics beats rigorously applied data-driven machine learning beats inappropriate use of  
statistics beats non-data-driven methods.  Unfortunately,  there are very few circumstances in which statistics can be 
applied rigorously, and therefore it is difficult to find examples that show the full inequality. Taking thresholding  as an 
example,  inappropriate  use of statistics  (Minimum Error  Thresholding)  can be worse than non-data-driven methods 
(fixed  threshold  at  50%  of  the  gray-scale),  and  a  proprietary  thresholding  algorithm  that  used  rigorously  applied 
statistical  classification  beats  everything  else.  Tesseract's  accuracy  certainly  improved  after  the  switch  from 
inappropriate statistics to data-driven machine learning, but as a counterpoint HMM-based systems with their dubious 
use of statistics do quite well.
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8. RESULTS

Tesseract is regularly tested on around 30 languages, using test sets created by various means. Most of the Latin-based 
languages and Russian have test data that was created from parallel scans of books and PDF text layers. Most of the non-
Latin test data was created by humans typing the text from 10 consecutive pages chosen randomly from books scanned 
under the Google Books project. None of the ground-truth text is perfect, least of all the PDF-originated text, which  
contains a large number of errors in whitespace (broken and merged words). These errors cause the reported word error 
rates reported in Table 1 to be significantly higher than would be expected given the character error rate, which excludes  
added/dropped spaces. Word error rates for Simplified Chinese and Japanese are calculated using a word segmentation 
system that itself is affected by character errors. The word error-rate for Thai is particularly high due to it not being a 
space-delimited language, and the word segmentation system is not applied in calculating the word error-rate. Another 
factor that makes word error rates unexpectedly high is that page segmentation errors are included in the word error rate,  
but the character error rate excludes these errors.

Table 1. Current error rates on various languages. Columns show the size of the test set in characters and words,

and the character-level substitution rate, as well as the word-level error-rate.

Language No. of Chars (million) No. of Words (million) Char error rate (%) Word error rate (%)

English 271 44 0.47 6.4

Italian 59 10 0.54 5.41

Russian 23 3.5 0.67 5.57

Simplified Chinese 0.25 0.17 2.52 6.29

Hebrew 0.16 0.03 3.2 10.58

Japanese 10 4.1 4.26 18.72

Vietnamese 0.41 0.09 5.06 19.39

Hindi 2.1 0.41 6.43 28.62

Thai 0.19 0.01 21.31 80.53

9. CONCLUSION

Industrial strength, high-accuracy, generic OCR is incredibly difficult to achieve, as there are many components that all  
have to be world-class to compete with the best commercial systems. Over the last twenty years or so, traditional OCR 
approaches have gained the label “ad-hoc” as the more statistical systems have attempted to distance themselves by 
using the label “principled.” This paper has described how Tesseract moved away from statistics explicitly in an attempt 
to base its classifier on a more rigorous foundation than poorly applied statistics. In some respects this makes Tesseract's  
“ad-hoc” approach more principled than the “principled” methods, yet the end-result is remarkably similar. The ad-hoc 
nature of Tesseract and the commercial OCR systems really comes from the list of “long tail” issues in Sec. 6 that have  
to be dealt with, to achieve competitive accuracy on English. In contrast, statistics-based translation systems have beaten 
grammar-based translation because of their sheer scalability, but these systems have yet to reach an accuracy level where 
a long list of exceptions needs to be addressed. Taking these points into consideration, alternative terms for “ad-hoc” and 
“principled” might be “mature” and “naive.”

Although  Tesseract  has  evolved  over  time,  its  direction  has  been  towards  the  mature  traditional  architecture: 
Evolution, not Revolution. Further advances might be achieved through significant changes in the character and/or word 
classifier.  Of  the  most  promising  recent  (revolutionary)  approaches,  applying  Hidden Markov Models  as  character  
classifiers (in addition to their long-established use in language models) have the advantage over conventional machine  
learning of doing a better job of matching variable length feature descriptions. Deep Belief Nets have the additional  
advantage of automatically deriving higher-level features (in 2-dimensions, unlike HMMs) from unsupervised training 
data.
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