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ABSTRACT
The design of both steganography and steganalysis methods for digital images heavily relies on empirically
justified principles. In steganography, the domain in which the embedding changes are executed is usually
the preferred domain in which to measure the statistical impact of embedding (to construct the distortion
function). Another principle almost exclusively used in steganalysis states that the most accurate detection
is obtained when extracting the steganalysis features from the embedding domain. While a substantial body
of prior art seems to support these two doctrines, this article challenges both principles when applied to the
JPEG format. Through a series of targeted experiments on numerous older as well as current steganographic
algorithms, we lay out arguments for why measuring the embedding distortion in the spatial domain can be
highly beneficial for JPEG steganography. Moreover, as modern embedding algorithms avoid introducing easily
detectable artifacts in the statistics of quantized DCT coefficients, we demonstrate that more accurate detection
is obtained when constructing the steganalysis features in the spatial domain where the distortion function is
minimized, challenging thus both established doctrines.
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1. INTRODUCTION
It is an obvious fact that if the sender executes the embedding changes uniformly pseudo-randomly across
the cover image, a scheme that on average introduces the fewest number of embedding changes ought to be
more secure than its competitors. This reasoning provided a bridge between the theory of covering codes and
steganography2, 3, 10 responsible for an avalanche of papers on matrix embedding and a suite of more secure
steganographic algorithms, such as the F5 algorithm24 and its improved version called nsF5.9

Measuring the embedding distortion by counting the embedding changes, however, fails to take into account
the fact that modifications of quantized DCT coefficients from the same 8 × 8 block strongly interact and
that the embedding changes may have different “costs” depending on the associated quantization step and the
local image content. Moreover, DCT coefficients that are adjacent either in the frequency or spatial domain
exhibit complex dependencies that are not well understood. While discernible objects and their orientation are
easily identifiable in the spatial domain, it is harder to determine them by inspecting DCT coefficients. From
this perspective, it appears that it might be advantageous to abandon the doctrine that requires measuring
distortion in the embedding domain as it is more manageable to design distortion functions that correlate with
statistical detectability in the spatial domain. This thesis seems to be in agreement with recent developments in
steganography that we discuss below.

The authors of BCHopt20 were the first to recognize that a good distortion measure needs to consider the
effect of the quantization step associated with the modified coefficients. Barring some unimportant details, the
distortion function was basically designed to minimize the embedding distortion w.r.t. the uncompressed cover
image (the precover). The minimized quantity was the square of the product of the quantization step and the
change in the DCT coefficient w.r.t. the precover. Such an embedding distortion, however, could equivalently
be defined as an L2 norm in the spatial domain due to Parseval equality because the DCT is orthonormal.
The more recent Entropy Block Steganography (EBS)23 improved significantly upon BCHopt using a similar
distortion function by replacing the BCH codes with the much more powerful Syndrome–Trellis Codes (STCs).6

Viewing both algorithms from the perspective of the current state of the art, both BCHopt and EBS hinted
at a trend to embed in JPEG images by minimizing an embedding distortion defined in the spatial domain. This
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development culminated in the design of the recently proposed UNIWARD distortion function,12, 14 which pro-
vides a universal method for measuring the embedding distortion independently of where the embedding changes
are executed. Schemes based on UNIWARD were shown to significantly outperform prior art for steganography
in JPEG images (both with and without side information at the sender). In UNIWARD, the distortion is com-
puted as a sum of relative changes of directional residuals obtained using a Daubechies 8-tap filter bank. As
shown later in this paper using experiments with the JPEG rich model,17 minimizing a spatial-domain-based
UNIWARD seems to minimize the impact on the statistics of DCT coefficients as well. UNIWARD also natu-
rally incorporates the effect of the quantization step that other schemes need to build in, usually in some ad hoc
manner (see, e.g., NPQ15 and its improved version4).

We now take a closer look at the opposite problem, which is the detection of steganography (steganalysis). A
doctrine has been formulated in 2004 [7] claiming that the most accurate steganalysis will naturally be achieved
in the embedding domain because this is where the embedding changes are lumped and isolated. This doctrine
seemed to hold true for embedding algorithms available at that time. This was mostly due to the fact that the
early JPEG-domain stego algorithms, e.g., Jsteg,22 F5, and OutGuess,19 introduced quite detectable artifacts
into the distribution of DCT coefficients (both their first-order and higher-order statistics). Furthermore, this
doctrine was engraved even deeper in the minds of researchers after the BOSS competition1 when all successful
participants used steganalysis features constructed in the spatial (embedding) domain.

The fact that features computed in other domains can be useful for steganalysis is not new and it appeared
already in the first papers on feature-based blind steganalysis5 as well as in [7] (the “blockiness” feature is defined
in the spatial domain). For a long time it remained true, though, that features constructed in the embedding
domain provided the most accurate steganalysis results. The authors of [16] proposed the so-called Cross-Domain
Features (CDFs) to improve the attack on YASS.21 This was not surprising as YASS embeds in a key-dependent
domain and thus one cannot construct features in the embedding domain. With the development of rich image
models for both the spatial (SRM)8 and DCT (JRM)17 domains it was shown in [17] that virtually all JPEG-
domain algorithms can be detected more reliably with the union of the SRM and JRM called JSRM. The size
of the improvement was dependent on the algorithm and was generally larger for those embedding algorithms
that were harder to detect, which were exactly those that somehow utilized the spatial domain representation in
computing their distortion function. Using selected experiments, we demonstrate in this paper that the current
most advanced JPEG-domain stego algorithms are better detected in the domain in which the distortion is
minimized rather than the domain where the embedding changes are executed.

In the next section, we introduce the common core of all experiments and briefly describe the steganalysis
features and steganographic algorithms utilized in experiments. Section 3 contains the results of all experiments
and their interpretation that challenges both doctrines discussed above. Section 4 contains a brief summary.

Even though parts of this work have appeared in a scattered form in other papers, the authors believe that
clearly spelling out the main message (the challenge of both doctrines) in a stand-alone paper supported with
dedicated experiments is valuable for the steganographic community.

2. PRELIMINARIES
2.1 Common core of all experiments
All experiments in this paper were run on the standard database BOSSbase 1.01.1 This source contains 10, 000
images acquired by seven digital cameras in the RAW format (CR2 or DNG) and subsequently processed by
converting them to 8-bit grayscale, resizing, and central-cropping to 512×512 pixels. The script for this processing
is also available from the BOSS competition web site. For JPEG experiments, the database is JPEG-compressed
using the Matlab’s ’dct2’ command with standard quantization tables corresponding to quality factors 75 and
95.

The classifiers we use are all instances of the ensemble proposed in [18] and are available from
http://dde.binghamton.edu/download/ensemble. They employ Fisher linear discriminants as base learners
trained on random subspaces of the feature space. The out-of-bag (OOB) estimate of the testing error, EOOB,
on bootstrap samples of the training set is used to automatically determine the random subspace dimensionality
and the number of base learners as described in [18]. The OOB error is an unbiased estimate of the minimal
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total detection error under equal priors, PE = min
PFA

1
2 (PFA + PMD(PFA)). The EOOB is also used to report the

detection performance. Finally, we note that a separate classifier was trained for each quality factor, embedding
method, and payload.

2.2 Feature sets
The feature sets used in this paper are high dimensional rich models previously developed separately for each
embedding domain. To the best knowledge of the authors, these feature sets currently provide the most accurate
detection across many embedding algorithms in their corresponding domains, provided the cover source is known
to the Warden.

The JPEG-domain rich model (JRM)17 with a dimensionality of 22, 510 is formed by higher-order statistics
of quantized DCT coefficients. The JRM features are also Cartesian-calibrated,16 which means that the features
computed from the image are supplemented with the same features computed by decompressing the image,
cropping by 4 pixels, and recompressing using the same quantization table.

The spatial-domain rich model we use in this paper is the recently proposed Projection Spatial Rich Model
(PSRM) with the quantization step equal to 3 (PSRMQ3)13 of dimensionality 12, 870. The PSRM uses the same
set of image residuals as the SRM but it represents them in a different manner. Instead of four-dimensional
co-occurrences used in the SRM, the PSRM projects a set of randomly selected adjacent residual samples onto
a random direction and uses the first-order statistics of the projections as features. The PSRM enjoys a much
improved detection-performance vs. dimensionality trade off – the PSRM can achieve the same detection accuracy
with a dimensionality lower by an order of magnitude. Moreover, at the same dimensionality, the PSRM
achieves a lower detection error. This improvement is generally larger for hard-to-detect highly content adaptive
embedding schemes. This is primarily because, in order to control the feature dimensionality, the co-occurrences
require a quite harsh truncation of the residuals and a low co-occurrence order. On the other hand, the projections
can capture dependencies among a large number of adjacent residual samples and can work with non-truncated
versions of the residuals.

Finally, we note that the acronym JPSRM will be used for the 35, 380-dimensional merger of JRM and PSRM.

2.3 Steganographic algorithms
In our experiments, we included both older algorithms and current state-of-the-art schemes. We also cover both
algorithms that do not use any side information at the sender (no uncompressed precover available) as well as
side-informed embedding schemes. The following is the list of all non side-informed algorithms:

• OutGuess as published in [19];

• Jsteg22 with simulated optimal binary coding;

• nsF59 with simulated optimal binary coding;

• UED11 with simulated optimal ternary coding;

• J-UNIWARD as published in [12] simulated at its payload–distortion bound.

The side-informed stego algorithms evaluated in this paper are:

• BCHopt as published in [20];

• NPQ as published in [15] simulated at its payload–distortion bound;

• Square cost simulated at its payload–distortion bound with the embedding cost of changing the ij-th DCT
coefficient corresponding to a DCT mode k, l by ±1: ρ(kl)

ij = (qkl(1− 2|eij |))2. Here, qkl is the quantization
step of the kl-th mode and eij is the quantization error when rounding the DCT coefficient obtained from
the precover image during JPEG compression;



• SI-UNIWARD as published in [12] simulated at its payload–distortion bound.

With the exception of BCHopt, all side-informed embedding algorithms avoid making embedding changes to
DCT coefficients with rounding error eij = 1/2 in DCT modes (k, l) ∈ {(0, 0), (0, 4), (4, 0), (4, 4)} to avoid a
singular behavior for small payloads that is especially apparent for large quality factors (see Section 5.3 in [12]
for details).

We wish remark that the J-UNIWARD version published in [12] differs slightly from the newer version that
will appear in [14]. The only difference is a different value of the stabilizing constant σ, which makes the newer
version slightly more secure. The differences between both versions are, however, small, and the conclusions of
this paper remain valid for both versions.

3. EXPERIMENTS
In this section, we interpret the results of experiments shown in Table 1. By doing so, we challenge the doctrines
mentioned in the introduction. The table shows the EOOB detection error obtained using the JRM, the spatial
domain PSRMQ3, and the combined JPSRM on the steganographic algorithms listed in Section 2.3. The results
are presented for two quality factors and one small and one large relative payload expressed in bits per non-zero
AC DCT coefficient (bpnzAC). Since the coding in BCHopt does not allow embedding 0.4 bpnzAC in all images,
we tested it for 0.3 bpnzAC.

Figure 1 displays the same results in a graphical form for the quality factor 75. In the figure, the algorithms are
ordered by their statistical detectability obtained using the JPSRM. To give the reader a sense of the statistical
significance of small changes in the EOOB, we measured this error over ten runs of the ensemble classifier with
different seeds for its random number generator that drives the selection of random subspaces as well as the
bootstrapping for the training sets. The standard deviation of EOOB was rather stable across the payloads,
quality factors, as well as embedding algorithms, and it was always below 0.003. For better readability, we
refrain from including this spread in the table.

When the JRM can detect a stego algorithm efficiently, one can say that the embedding disturbs important
statistics of DCT coefficients. We view such algorithms as “faulty.” Depending on the stego algorithm, the
problem is either in the embedding operation or in the design of the distortion function that is supposed to
measure the statistical detectability of embedding changes. Both the LSB replacement embedding operation of
Jsteg and the operation of nsF5, which always decreases the absolute value of the DCT coefficient, predictably
modify the first-order (and higher-order) statistics of coefficients. Such artifacts are understandably better
detected by the JRM than the PSRM. The same is true for OutGuess, which turned out as the most detectable
out of all tested algorithms. Even though it preserves the global histogram, it does so at the expense of introducing
additional changes, and, in the end, disturbs the statistics of DCT coefficients even more. (Recall, that the JRM
uses statistics of individual pairs of DCT modes, which are not necessarily preserved by OutGuess.)

While the ternary coded UED algorithm is markedly better than the older non side-informed algorithms, it
is clearly outperformed by J-UNIWARD, which minimizes a distortion function defined in the spatial domain.
This experimental fact challenges the first doctrine from Section 1 that claims that one should always minimize
distortion defined in the embedding domain. The distortion function of J-UNIWARD seems to capture the
impact on the statistics of DCT coefficients rather well. This finding should be taken “with a grain of salt” as
it is entirely possible that better, more sophisticated distortion functions can be built in the DCT domain. The
authors, however, believe that designing such functions will be rather challenging for the reasons mentioned in
the introduction.

Two of the distortion-based side-informed steganographic schemes, BCHopt and NPQ, are also better de-
tectable by the JRM than the PSRM. Their embedding operation is LSB matching, which introduces less strong
artifacts in the statistics of coefficients than LSB replacement or the operation of nsF5. However, since all
algorithms with the exception of nsF5, Jsteg, and OutGuess use LSB matching, the increased detectability of
BCHopt and NPQ by JRM is most likely due to weaknesses in their distortion function, which does not capture
the statistical dependencies among DCT coefficients well.



Payload SI 0.1 bpnzAC 0.4 bpnzAC
Features JRM PSRMQ3 JPSRM JRM PSRMQ3 JPSRM
Dimension 22, 510 12, 870 35, 380 22, 510 12, 870 35, 380

Quality factor 75
OutGuess 0.0010 0.0011 0.0005 0.0001 0.0003 0.0001
Jsteg 0.0578 0.1159 0.0372 0.0004 0.0007 0.0003
nsF5 0.2115 0.2609 0.1631 0.0036 0.0057 0.0008
UED ternary 0.3968 0.3369 0.3393 0.0488 0.0390 0.0202
J-UNIWARD 0.4632 0.4319 0.4350 0.2376 0.1294 0.1228
BCHopt • 0.4122 0.4228 0.3941 0.0830∗ 0.1039∗ 0.0546∗

NPQ • 0.4139 0.4613 0.4076 0.0654 0.0760 0.0345
Square loss • 0.4908 0.4880 0.4914 0.3656 0.3246 0.3246
SI-UNIWARD • 0.5004 0.4952 0.4970 0.4470 0.3744 0.3755

Quality factor 95
OutGuess 0.0006 0.0015 0.0005 0.0001 0.0012 0.0002
Jsteg 0.0429 0.2033 0.0352 0.0001 0.0054 0.0003
nsF5 0.1354 0.3401 0.1220 0.0005 0.0252 0.0005
UED ternary 0.4750 0.4785 0.4727 0.2604 0.2759 0.2180
J-UNIWARD 0.4923 0.4943 0.4920 0.3951 0.3256 0.3246
BCHopt • 0.3600 0.4715 0.3582 0.1172∗ 0.3491∗ 0.1144∗

NPQ • 0.4295 0.4950 0.4308 0.1471 0.3358 0.1342
Square loss • 0.4556 0.4865 0.4554 0.3664 0.3952 0.3442
SI-UNIWARD • 0.4654 0.4955 0.4672 0.4418 0.3909 0.3790

Table 1. Detection error EOOB achieved using three different rich models for two JPEG quality factors and two payloads.
The dot in the column labeled “SI” highlights those JPEG algorithms that use side information in the form of the
uncompressed image. The asterisk highlights the fact that BCHopt was tested for payload 0.3 bpnzAC instead of 0.4
because its coding does not allow embedding payloads of this size in all images.

On the other hand, the most secure JPEG-domain algorithms, J-UNIWARD, and the side-informed Square
Loss and SI-UNIWARD, are better detectable by the spatial-domain PSRM than by the JRM.∗ In fact, for the
UNIWARD family the entire detection power seems to be coming from the PSRMQ3 as adding the JRM does not
lead to any statistically significant improvement. This seems to point to two interesting facts. Reiterating and
strengthening what has already been said about J-UNIWARD, since the distortion functions of the UNIWARD
family are designed in the spatial domain, they naturally incorporate the effect of the quantization step and can
better evaluate the impact of embedding on blockiness. What is more remarkable is that the schemes minimizing
the impact in the spatial domain also seem to avoid introducing artifacts in the JPEG domain.

Moreover, with more sophisticated JPEG-domain algorithms that avoid disturbing the statistics of DCT
coefficients it becomes more advantageous to steganalyze by representing the images in the domain in which the
distortion is designed rather than in the embedding domain.

∗For the small payload of 0.1 bpnzAC, they are essentially undetectable using any of the rich models.
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Figure 1. Detection error EOOB using JPSRM, JRM, and PSRM on all tested steganographic algorithms for quality
factor 75 with payloads 0.1 (left) and 0.4 (right ) bits per non-zero AC coefficients. Note especially the cases when the
spatial-domain features detect better than JPEG-domain features (when the brown bar is smaller than the red bar). Note
that the merged JPSRM always provides the smallest detection error. This figure also nicely shows the progress made in
JPEG steganography over the years.

4. CONCLUSION
Throughout the history, researchers have converged to a few empirical principles widely used when designing both
steganography and steganalysis algorithms. The two most prominent doctrines concern the role of the embedding
domain as the preferred domain in which to measure the impact of embedding as well as extract steganalysis
features. In this paper, we provide experimental evidence that these doctrines may not be valid for embedding
in JPEG images. This is mainly because the quantized DCT coefficients form 64 parallel channels that exhibit
complex dependencies that are not easily quantified. On the contrary, in the spatial domain, elements that form
typical objects, such as edges, segments, and textures, are easily identifiable, which allows for a simpler and more
transparent design of distortion functions as well as extraction of good steganalysis features.

Experiments on older as well as modern steganographic algorithms for JPEG images point to several inter-
esting findings:

1. Embedding algorithms that introduce easily identifiable artifacts in the statistics of DCT coefficients are
better detected using features constructed in the embedding domain. This applies to older algorithms,
such as OutGuess, nsF5, Jsteg, and Model-based steganography.

2. JPEG algorithms whose distortion function takes into account the impact of embedding in the spatial
domain tend to exhibit higher security and avoid introducing artifacts that can be captured using the
JPEG rich model.

3. Modern embedding algorithms that minimize the embedding impact computed in the spatial domain are
generally better detected using the spatial rich model rather than the JPEG rich model.

These findings pose some intriguing open questions pertaining to both steganography design and detection. In
particular, with modern and more secure steganographic algorithms, the domain of choice for steganalysis might
shift from the embedding domain to the domain in which the distortion is minimized.
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