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Abstract

Longitudinal analysis of medical imaging data has become central to the study of many disorders. 

Unfortunately, various constraints (study design, patient availability, technological limitations) 

restrict the acquisition of data to only a few time points, limiting the study of continuous disease/

treatment progression. Having the ability to produce a sensible time interpolation of the data can 

lead to improved analysis, such as intuitive visualizations of anatomical changes, or the creation of 

more samples to improve statistical analysis. In this work, we model interpolation of medical 

image data, in particular shape data, using the theory of optimal mass transport (OMT), which can 

construct a continuous transition from two time points while preserving “mass” (e.g., image 

intensity, shape volume) during the transition. The theory even allows a short extrapolation in time 

and may help predict short-term treatment impact or disease progression on anatomical structure. 

We apply the proposed method to the hippocampus-amygdala complex in schizophrenia, the heart 

in atrial fibrillation, and full head MR images in traumatic brain injury.

1. Description of Purpose

In most longitudinal study design of medical imaging, the temporal resolution is very coarse. 

For example, one might scan a schizophrenic patient at the first psychotic episode, a year 

later and yet a few years later at the chronic stage. The reasons for this coarse sampling are 

numerous, stemming from the difficulty of following study subjects regularly, the cost of 

acquiring images, or the risk of radiation exposure. While the exact information between 

time point is not known, we propose in this paper a formulation to interpolate imaging data 

from existing samples in order to provide a more continuous view of a disease/treatment 

progression.

While longitudinal shape and image analysis have been extensively studied,1–9 shape and 

image are often treated differently and few methods provide temporal interpolation.10–13 In 

this work, we propose a general framework using optimal mass transport (OMT) theory to 

extract diffeomorphic mapping and interpolate shapes and images through this mapping. 

OMT has been used in the context of image registration,14 although the strong constraint of 

“mass” preservation (i.e. image intensity) can be problematic when registering images from 
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different subjects. In contrast, in shape analysis or mesh generation,15 preserving mass (i.e. 

volume) between time points is a desirable feature, and OMT is well suited for this 

application. This is also true between images of the same subject at different time points, 

provided image changes are not drastic. In addition to performing “interpolation” between 

discrete time points, the proposed framework can also “extrapolate”, for a short time, 

beyond the last time point (OMT was used to study the evolution of the early universe16), 

providing short-term predictions of disease/treatment progression.

2. Method

2.1 OMT formulation

Originally formalized by the French civil engineer Gaspard Monge in 1781 and given a 

modern measure-theoretic formulation by Kantorovich in 1948, the OMT problem has now 

become used in a wide range of field including geometry, economics, shape optimization, 

probability theory, control, statistics, and imaging science. See17 and the many references 

therein for extensive treatments. It is also noted that the discrete model of OMT has also 

been employed,18,19 however, in this work we adopt the continuous formulation, which is 

briefly described below.

Let Ω0 and Ω1 be two diffeomorphic subdomains of ℝd with smooth boundaries, each 

equipped with a positive density function, μ0 and μ1, respectively, and which satisfy the 

“equal total mass requirement”: ∫Ω0μ0(x)dx=∫Ω1μ1(x)dx. We call a diffeomorphism u : 

Ω0→Ω1 mass preserving (MP) if ∫u-1 (D)μ0(ξ)dξ=∫Dμ1(x)dx,∀D⊆ Ω1, with x = u(ξ). Via 

change of variables, this can be rewritten as det (J(u(x)))μ1(u(x)) = μ0(x),∀x∈ Ω0 where 

J(u(x)) is the Jacobian of u at x. This is referred to as the Jacobian equation. The latter 

equation is highly nonlinear, and may have many solutions. The objective of OMT is to 

compute the following distance and find the corresponding optimal transportation map (if it 

exists), defined in terms of the Lp Kantorovich-Wasserstein functional:

(1)

The quadratic version of this problem (p = 2 in Eq.(1)) has been extensively studied, and in 

this case one can show that there exists a unique convex function Ψ̃ : Ω → Ω such that the 

optimal mapping ũ is the gradient of Ψ ˜, i.e., ũ =▽Ψ̃.20 The MK problem for p = 2 has a 

number of approaches devoted to its numerical solution; see14,18,21,22 and the references 

therein. In this study, we use the method recently developed by Haber et al. which expresses 

Eq. (1) as a variational problem solved via sequential quadratic programming.23 From now 

on, OMT will refer to the L2 Monge-Kantorovich problem. One particular important feature 

of OMT is that its inverse transformation can be computed analytically. In fact, the inverse 

transformation ũ-1 (x) it is given by the gradient of the convex function Θ via ũ-1(x)=▽x 

Θ(x)=maxq[q·x-Ψ ˜ (q)]. Finally, since we will be dealing with images and 3D shapes, for 

simplicity we will take Ω0 = Ω1 = ℝd (d = 2, 3) in the sequel, since anyway the densities 

will always have compact support.
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2.2 Longitudinal interpolation of image and shape analysis

Given two images scanned at two distinct time points t = T0 and t = T1(> T0), we aim to 

generate image samples at times t ∈ [T0,T1] by first solving the OMT for the two images, 

and then use the resulting transport mapping to interpolate between the samples. First, we 

define the densities as the normalized intensities of the images μ0 := I(x, T0)/‖I(T0)‖2 and 

μ1 := I(x,T1)/‖I(T1) ‖2. Then the optimal transport mapping ũ is computed by minimizing the 

Kantorovich-Wasserstein functional equation (1) via the method given in.23

Furthermore, setting v := (ũ-(x) - x)/(T1 - T0), define w : ℝd × [T0, T1] → ℝd : w(x, t) := x + 

(t - T0)v and then define the image sequence:

(2)

Note that I(x, t) |t=T0 = μ0(x) and I(x, t) |t=T1 = μ1(x). Hence, a smooth evolution trajectory is 

reconstructed from T0 to T1. It turns out from the results of,22,24 the sequence defined in (2) 

gives the optimal warp (elastic deformation) from μ0 to μ1 in the OMT sense. Indeed, it 

defines a geodesic path in the space of densities with respect to the Wasserstein 2-

metric.17,25 The Wasserstein metric imparts a natural Riemannian structure to the space of 

densities.

In addition, such reconstructions can be extrapolated (slightly) into the future since the 

property of being a diffeomorphism is an open condition. More precisely, by letting t go 

beyond T1, we obtain the estimated density at time after the scan time T1. Note that since u 
is diffeomorphism, so is w for all t ∈ [T0,T1]. However, for t > T1, the diffeomorphic 

property of w may only exist for a small increment, i.e., for t ∈ [T0,T1 + ε]. As a result, the 

prediction into the future can only be performed for a relative short periods.

One particularly interesting application is the interpolation of shape structures. The image 

I(x) above can also be a binary volume representation of an anatomical shape, and statistical 

shape analysis can then be “interpolated” to any time point between T0 and T1. More 

explicitly, denote a set of shapes at times T0 and T1 as  and 

. Similarly, denote a second group of shapes as 

 and . Note that M can be 

different from N.

Using the optimal mass transport, a continuous shape trajectory betweenT0 and T1 can be 

computed as . Then, at time t ∈[T0, T1], in order to compute the 

regions where the two groups are statistically different, we first register the two groups 

 and . This can be done by arbitrarily picking 

one of the shapes,  and registering all the others to it by minimizing the energy  with 

respect to each similarity transformation , where  is defined as 

. After 
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registration, we denote the registered shapes as  and 

. The mean shape  is then computed simply 

as the arithmetic average of  and . 

Correspondingly the mean shape surface S(t) ⊂ ℝ3 is computed as the 0.5-isosurface of 

M(x, t).

In parallel, for each of the registered shapes, 's, a signed distance function 

 is constructed as:

(3)

At this point, all the shapes can be converted to scalar functions defined on the same domain 

S by restricting 's to S. Then, for each point s onS, two groups of numbers  and 

 can be extracted. Under the null hypothesis that the means of the two groups are 

the same, we perform the student t-test, and the corresponding p-value is recorded for the 

point s. Due to the fact that the t-test is performed multiple times, the multiple comparison 

effect is corrected using the false discovery rate algorithm.26 The final corrected p-values 

give a scalar p- value map P : S × [T0, T1] → [0, 1] defined on the mean shape surface.

3. Results

3.1 Longitudinal shape analysis in schizophrenia

We applied our technique to a set of amygdala hippocampal complex (AHC) manual 

segmentations outlined from T1 weighted MR images, acquired in patients with 

schizophrenia and matched controls. 17 normal subjects and 17 patients are studied where 

the patients were evaluated at first episode and scanned thirteen months later to study the 

disease progression. The results of the analysis are shown in Figure 1(a), where the numbers 

in subfigures indicate the time variable. Note that only the shapes at time 0 and 1 are 

obtained from MR images. All the others are computed using the proposed method. From 

Figure 1(a). we can see that the significantly different regions gradually change their 

locations as time elapses. This may be correlated with the disease progression and provide 

some useful information to the physicians.

3.2 Longitudinal shape analysis for the atrial fibrillation patients

Among patients who undergo radio-frequency ablation treatment for left atrial fibrillation 

(AFib), a significant number (variously estimated to be about 30%) have AFib recurrence.27 

21 cured patients and 11 patients with AFib recurrence were scanned (late gadolinium 

enhanced MR imaging) pre-ablation and three months postablation. Studying the shapes of 

the left atrium of the cured patients versus the recurrent patients reveals the significantly 

different regions shown by the colormap in Figure 1(b). The proposed method provides a 

continuous profile between the two time points (pre-ablation and post-ablation).
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3.3 Traumatic brain injury (TBI) image study

In Figure 2, only times 0 and 1 are real FLAIR MR images, and all the others are computed 

using the proposed method. The injured region is indicated by the arrow. The healing 

process is better illustrated with the gradual progression provided by OMT, rather than with 

only the two physically acquired images. In the bottom-right corner, we predict the image in 

the near future. It can be seen that the dark edema region is getting larger. This could 

provide a useful suggestion for the physicians for future treatment. It is also noted that the 

test is performed in 3D but only the axial view is shown for clarity.

4. Conclusion and New Work to be Presented

OMT leads to a natural Riemannian metric on the space of images and shapes as described 

in this work. Since the geodesic paths are easy to compute once one has the optimal 

transport map, one can derive a simple method of interpolating shapes and images. This 

observation is the basis of our technique for longitudinal analysis. Indeed, using OMT, we 

have indicated how we may provide a dynamical approach for longitudinal image and shape 

analysis. The method is applied in the context of shape analysis and image interpolation. In 

continuous disease progression, the interpolation might provide a very realistic 

approximation of the actual biological phenomenon, although this needs to be further 

validated. A number of future directions could lead to some very interesting work. For 

example one could generate a dense temporal sampling of shapes and “normalize” 

acquisition time via spatiotemporal registration. Another application would be to incorporate 

tissue density as a shape feature and use OMT to create a mapping taking this “density” into 

account. Moreover, we plan to incorporate biological evolution rules into the OMT 

framework to attempt to better model disease progression for the three scenarios considered 

in this work. We also plan to use OMT for the modeling of cancer tumor growth. Indeed, the 

continuous models derived via OMT may be useful in setting certain parameters of various 

differential equation models of tumor progression, which up until now had to rely on a small 

number of images taken at several widely separated time intervals.
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Figure 1. 
The gray color indicates those regions that are not significantly different between: (a) 

healthy and schizophrenia subjects and (b) cured and recurrent AFib patients. The red color 

indicates regions that are significantly different between the two groups.
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Figure 2. 
Healing of TBI. The number below each image indicates “time.” Only times 0 and 1 are real 

images, and all the others are computed using the proposed OMT method. The healing 

process of the injured region pointed to the arrow is better illustrated by the gradual 

progression than simply having the two original images at time 0 and 1. The prediction in 

the near future is shown on the bottom-right.
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