Classification of microscopy images of Langerhans islets
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ABSTRACT

Evaluation of images of Langerhans islets is a crucial procedure for planning an islet transplantation, which
is a promising diabetes treatment. This paper deals with segmentation of microscopy images of Langerhans
islets and evaluation of islet parameters such as area, diameter, or volume (IE). For all the available images, the
ground truth and the islet parameters were independently evaluated by four medical experts. We use a pixelwise
linear classifier (perceptron algorithm) and SVM (support vector machine) for image segmentation. The volume
is estimated based on circle or ellipse fitting to individual islets. The segmentations were compared with the
corresponding ground truth. Quantitative islet parameters were also evaluated and compared with parameters
given by medical experts. We can conclude that accuracy of the presented fully automatic algorithm is fully
comparable with medical experts.
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1. INTRODUCTION

In the Czech Republic, there is an advanced transplantation program for diabetic patients. While the trans-
plantation of pancreas usually results in a longterm cure of diabetes, it has some associated risks and is not
available to all patients due to a lack of suitable donors. The alternative and successfully developing method
is the microorgan transplantation of isolated islets of Langerhans (Ricordi,® 1990). This program was initiated
at IKEM in 2006. A laboratory has to isolate the islets from a donor. Before offering it for clinical trans-
plantation, the graft suspension has to meet certain quantitative and qualitative criteria. The basic criterion
is the total amount of islets tissue. The graft represents suspension of tissue particles, which is considerably
heterogeneous as to the size (25 - 700 pm) and shape (e.g. spheroid, rotational ellipsoid, irregular). For this
reason a volumetric unit has been designed and termed the islet equivalent (IE), which is the volume an ideal
islet of 150 pm diameter. The additional measures include the isolation index (islet volume in islet equivalents
divided by the islet number), the islet size distribution histogram and the graft purity expressed as a percentage
of the remaining nonislet tissue. Obtaining a representative sample for islet counting is complicated by the fact
that the particles of different sizes, shapes and composition sediment with different velocities. Multiple samples
therefore need to be evaluated. However, the time consumption prevents evaluating multiple samples even when
assisted by digital image processing. In our laboratory, single sample evaluation takes about 15 minutes whether
done manually or assisted by an image analysis software, depending on the number of islets in the sample, their
purity and the extent of overlay of individual islets. After extensive training the interoperator variance among
four operators using our software dropped to CV 0.08 (Habart,? 2013). Other groups reported variation ranging
CV 0.02-0.09 among 3-35 persons (Lehman,? 1998, Niclauss,* 2008, Kissler,® 2010, Friberg,5 2011). The other
problem is that digital image analysis methods are not standardized between laboratories. An example of the
acquired image of Langerhans islets could be seen in Fig. 1. The task is to determine the number, area, volume
(in islet equivalents), purity and other parameters of the islets, in order to determine the suitability of the graft
for transplantation.
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Figure 1. Example of images of Langerhans islets, 2048 x 1536 pixels

2. STATE-OF-THE-ART

The gold standard for islet quantification is to use microscope with calibrated grid for islet diameter measurement
(Ricordi,! 1990) and to estimate their volume from the histogram of the islet diameters. This visual determination
is considerably operator dependent (see Fig. 5). The measured diameters of islets are divided into classes with
50 pm increment (Ricordi,! 1990). From a distribution of islet diameters, islet equivalents (IE) are evaluated.
IE corresponds to islets of an average size of 150 pm. The islets size distribution can be fitted by a probability
density function (PDF) model (Buchwald,” 2009) such as Weibull and lognormal models. To overcome the
problems with manual counting method based on microscope operators, a number of methods utilizing digital
image analysis were proposed. The one of the first image analysis approaches (Wile,® 1994) exploits analog
camera with a grabber and image processing software. The method was to identify islets, eliminate all islets
smaller than 20 ym in diameter, and calculate the volumes per islet from pixel area (spherical islet is considered).
In (Stegenmann et al, 1998), under bright field illumination, the image was thresholded and the total islet area
determined from the binarized image data. Other methods are based on fitting a circle or an ellipse to the islets
(Girman,” 2003). In most cases, the spherical and ellipsoidal shape of islets are assumed (Stegenmann,'® 1998),
which increases the islet volume estimation error. Then, the ellipse is transformed into a 3D ellipsoid (authors
consider prolate ellipsoid, i.e. ellipsoid generated by rotation about the major axis of an ellipse). In (Niclauss et
al,* 2008), authors utilize prolate volume for 3D islet approximation. In medical literature, the algorithms are
mentioned very briefly or not at all (Friberg et al,% 2011).

It is possible to directly evaluate the content of extractable insulin or the content of zinc (Stegenmann et al,
1998). However, these techniques turn out to perform poorly in predicting the transplantation success, because
the content of the mentioned substances varies from donor to donor. Pisania et al.,!'! 2010, evaluated the number
of islet nuclei taking advantage of their homogeneity. Other methods are based on estimation of the amount of
tissue from the extracted DNA (Stegenmann et al, 1998) or the total protein contents.

3. METHOD
3.1 Segmentation

We use a pixelwise linear classifier'? (perceptron algorithm) and a linear SVM (support vector machine)!? trained
using 2420 training samples. Training samples were selected (20 selection for both classes: islet, background) by
user in the images using a rectangular selection frames pointed by mouse, see Fig. 2. We used RGB and Lab
color space. The vectors of RG, RGB and Lab channels were served as the features. Each rectangular selection
contains 11 x 11 pixels, which are transformed to the vector of 121 training samples. For the sake of simplicity,
we trained classifiers on one randomly chosen image only. The rest of the images was then segmented.
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Figure 2. Rectangles used for manual selection of training samples
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Table 1. Conversion factors of the corresponding bins of Ricordi’s histogram

3.2 Object detection and counting

To identify individual pixels, we applied method for object labeling and counting to the binary segmentations.
The used method is based on the algorithm published in.'® This algorithm gives the same results as the imple-
mented plugin for FIJI, see section 3.3.1. Every object is labeled using successive integer numbers, background
is denoted as 70”. We consider 8-connected objects. The areas of islets correspond to the number of constant
value labels. The example of image, corresponding segmentation, image overlayed by segmentation and labeled
segmentation can be seen in Fig. 3.

3.3 Islet equivalent estimation and ellipse fitting

Islets with diameter smaller than 50 um were ignored (i.e. substituted islets for background). In accordance
with Ricordi method,” we calculated diameter from islet areas, whereas the circular shape of islet is assumed.
Hence, let A; be the islet area in pixels and let p be the size of pixel side in image then the islet diameter d; is
given by dy = 24/p?A;/m [pm].

Two approaches for the calculation of IE were applied. The first approach is based on the method proposed by
Ricordi.! In this method the islets are considered to be circular, therefore the area of every islet is evaluated and
then the diameter is derived. These calculated diameters of islets are divided into classes with 50 ym increment,
see Tab. 1. From a distribution of islet diameters, islet equivalents (IE) are evaluated. Let N be the frequencies
in the Ricordi’s bins then the I E;,; can be written as

IE,; :ZNkAk, k=1,2,...K, (1)
k
where A denotes conversion factor for bin N and K is a number of bins. Parameter A\ is given by
N3 3
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where V150 is volume of sphere of diameter 150 pm, Vi denotes mean of volumes, where the first volume V, min)

is computed using the minimum diameter d,gmm) and the second volume Vk(mm) using the maximum diameter

d,(cmaw) of the bin range. For the last bin (350, 00) of Ricordi’s histogram it is assumed that d,gm(n) = 400. The
second approach is based on ellipse fitting,? where the ellipse is fitted using method based on moments.'* Every
islet we consider to be ellipse with one-half major axis a and one-half minor axis b then its area is given by
A, = mab. Instead of diameter in the case of circle, we use Ricordi’s histogram of average length of ellipse’s axes
Lavg = a+b. The islet equivalents are then calculated using the same equation (1) as in the previous approach.
Correctly, it should be used geometric mean Ly, g = Vab. However, arithmetic mean is implemented in software
used by our medical experts.
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Figure 3. (a) Image, (b) segmentation, (c) image overlayed by segmentation, (d) labeled segmentation

3.3.1 Plugin for FIJI

The plugin for FIJI'® was programmed in Jython language and it allows to analyze of segmented microscopic
images of Langerhans islets. The circles and ellipses are fitted!* to islets and their estimated parameters are
used to evaluate volumes of spheres and ellipsoids. Islet equivalents (IE) are estimated using three approaches
(two approaches were used in this paper). The plugin is available at*.

4. RESULTS
4.1 Segmentation accuracy

We tested proposed algorithm on the set of 12 microscopy images acquired by camera Bresser: 3.0 MP, CMOS
1/27, 2048 x 1536 pixels. To evaluate the performance of segmentation algorithm, all images of Langerhans
islets with ground truth segmentation were segmented and the obtained results were compared with ground truth
created by four medical experts. We used the statistical characteristics typical for binary classification, e.g. TP
(true positive), FP (false positive), TN (true negative), FN (false negative) and related measures: speci ficity

*https://sites.google.com/site/svihlikja/codes
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Figure 4. Comparison of segmentation with ground truth segmentation, linear classifier (a) RG features, (b) Lab features,
True Positive (RED), True Negative (BLUE), False Positive (WHITE), False Negative (GREEN)
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Figure 5. ROC curve computed for all testing images (linear classifier). We show the performance of the automatic system
and performance of individual experts

and sensitivity. Each of four experts created 3 ground truth segmentations for each image using own software.”

The ground truth segmentations were obtained via major vote rule.' We evaluate expert performance, so that
each expert segmentation was compared with major vote rule of the segmentation of others. This shows us if our
algorithm has a comparable performance with medical experts. Comparison of segmentation with ground truth
segmentation can be seen in Fig. 4. The results presented in this chapter were obtained with linear classifier.
ROC curve computed for all testing images, RG, RGB, Lab features and experts can be seen in Fig. 5.

4.1.1 Testing of algorithm robustness: noise contamination

In this section we present the results of segmentation of images of Langerhans islet contaminated by zero mean
additive white Gaussian noise with increasing standard deviation (¢ = 2 — 12). ROC curve computed for all
testing images, RG, RGB and Lab features can be seen in Fig. 6. From the ROC curves we can concluded that
utilization of Lab features causes that the algorithm is less robust in comparison with RG and RGB features
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Figure 6. Contamination of zero mean additive white Gaussian noise, ROC curve computed for all testing images, linear
classifier, (a) RG features, (b) RGB features, (c) Lab features

4.2 Comparison of islet parameters
The results obtained with proposed algorithm we compared with results created by four medical experts. All
images were evaluated by every expert three times at different times. The I Ey, calculated by four experts were
averaged and compared with I F,,; calculated by our plugin.

We decided to use absolute and relative error to compare the total IE calculated by medical experts I E;q;
with the total IE calculated by proposed algorithm IFE;,;. The absolute error € is given by € = |IE;p; — I Eyot]
100 [%)]. Example of the table of computed

characteristics can be seen in Tab. 2. This tables also contains SD (standard deviation) calculated from 4
averaged measurement of Total IE of medical experts.

and relative error in percents is given by § = ‘1 — I/E\tot /T E:ot

[Testimage [ 1] 2] 3] 4[] 5] 6] 7] 8[ 9] 10] 11] 12]

IE; o [-] 398 | 421 | 798 | 215 | 306 | 539 | 161 | 460 | 646 | 271 | 298 | 549
IE:0: [-] 384 | 400 | 771 | 190 | 293 | 468 | 190 | 391 | 604 | 268 | 290 | 564
0 [%) 3.5 5.0 3.4 | 115 4.2 | 13.2 | 18.3 | 15.0 6.5 1.3 2.8 2.8
e[ 14.0 | 21.2 | 274 | 24.7 | 12.8 | 70.9 | 294 | 69.2 | 41.9 3.4 8.4 | 15.1
SD [] 16.8 | 16.3 | 75.6 | 25.7 | 13.7 | 21.3 | 16.4 | 31.2 | 77.1 | 404 | 19.5 | 48.2
e/SD 0.8 1.3 0.4 1.0 0.9 3.3 1.8 2.2 0.5 0.1 0.4 0.3

Table 2. Relative and absolute error of total IE, spherical islet, linear classifier, RGB features, mean relative error § =

7.2 (%)

4.2.1 Influence of color space

From the performed measurements we chose the best parameters (method, features, classifier). We always set
two parameters to be constant and the third parameters was changing to find its statistical significance.

We tested if the relative error § and absolute error € computed for used color spaces differ significantly. From
the performed single factor ANOVA test at a = 0.05 we can concluded that obtained errors does not differ
significantly. We recommend to use RG and RGB features, because Lab features are less robust against the
noise. The evaluated errors averaged over all images can be seen in Tab. 3.

4.2.2 Influence of classifier

We tested if the relative error § and absolute error € computed from the islet equivalent obtained from segmenta-
tion given by linear classifier (perceptron) and linear SVM differ significantly. From the performed t-tests at « =
0.05 we can concluded that obtained errors does not differ significantly. Hence, at given a the results obtained by
both classifiers are comparable. The evaluated errors averaged over all images are for both classifiers in Tab. 4.



Classifier | Method ‘ Space H d [%] ‘ e [-] ‘ SD [-] ‘ e/SD ‘

RG 8.3 28.3 40.2 0.9
SVM Ellipse RGB 8.4 30.0 40.2 1.0
Lab 8.2 25.0 40.2 0.9

Table 3. Influence of color space: computed mean relative errors 6 and mean absolute errors ¢ for all used color spaces

| Space | Classifier | Method | 6 [%] | e [] | SD[-] | ¢/SD |
SVM 8.2 25.0 40.2 0.9
Lab Ellipse
Perceptron 11.4 36.7 40.2 1.2

Table 4. Influence of classifier: mean relative errors § and mean absolute errors € computed from errors averaged over all
images

4.2.3 Influence of method: circle vs. ellipse

We tested if the relative error § and absolute error ¢ computed for islet shapes modeled by circle and islet shapes
modeled by ellipse differ significantly. From the performed t-tests at « = 0.05 we can concluded that obtained &
errors does not differ significantly. However, at o = 0.05, the absolute error ¢ differs significantly. The evaluated
errors averaged over all images can be seen in Tab. 5. We recommend to use modeling of islet volume using the
ellipsoid.

’ Space ‘ Classifier | Method H 4 [%] ‘ e [-] ‘ SD [-] ‘ e/SD ‘
Circle 12.0 51.9 33.5 1.8
Lab SVM
Ellipse 8.2 25.0 40.2 0.9

Table 5. Influence of method: mean relative errors § and mean absolute errors € computed from errors averaged over all
images

5. CONCLUSION

We proposed fast fully automatic method which is able to analyze microscopy images of Langerhans islets and
evaluate IE as good as medical experts. A medical experts takes about 15 minutes to evaluate (segmentation and
IE computation) a single image. This time depends mainly on experiences of medical expert, light conditions
during image acquisition and content of exocrine tissue. In the case of proposed algorithm, the time necessary
for image segmentation and islet parameters calculation takes up to 10 seconds. The time necessary for training
of classifier depends on the method used for it. In our case it takes about 30 seconds.

ACKNOWLEDGMENTS

This work has been supported by the grant P202/11/0111 ” Automatic analysis of light and electron microscopy
neuronal data” of the Czech Science Foundation.

REFERENCES

[1] Ricordi, C., Gray, D. W., Hering, B. J., and et al., “Islet isolation assessment in man and large animals,”
Acta Diabetologica Latina 27(3), 185-195 (1990).

[2] Habart, D., Girman, P., Zacharovova, K., Berkova, Z., Kriz, J., and Saudek, F., “Reproducibility of hu-
man islet counting by a digital image analysis,” in [Abstract Book of 3rd joined AIDPIT/EPITA winter
symposium], (2013).



3]

[11]

Lehmann, R., Fernandez, L. A., Bottino, R., Szabo, S., Ricordi, C., Alejandro, R., and Kenyon, N. S.,
“Evaluation of islet isolation by a new automated method (coulter multisizer ile) and manual counting,”
Transplantation Proceedings 30(7), 373-374 (1998).

Niclauss, N., Sgroi, A., Morel, P., Baertschiger, R., Armanet, M., Wojtusciszyn, A., and et al, “Computeras-
sisted digital image analysis to quantify the mass and purity of isolated human islets before transplantation,”
Transplantation 86(11), 1603-1609 (2008).

Kissler, H. J., Niland, J. C., Olack, B., Hering, C. R. B. J., Naji, A., and et al., “Validation of methodologies
for quantifying isolated human islets: an islet cell resources study,” Clinical Transplantation 24(2), 263-242
(2010).

Friberg, A. S., “Quantification of the islet product: Presentation of a standardized current good manufac-
turing practices compliant system with minimal variability,” Transplantation 91(6), 677-683 (2011).
Buchwald, P., Wang, X., Khan, A., and et al, “Quantitative assessment of islet cell products: Estimating the
accuracy of the existing protocol and accounting for islet size distribution,” Cell Transplantation 18(10-11),
1223-1235 (2009).

Wile, K. J., Fetterhoff, T. J., Coffing, D., Cavanagh, T. J., and Wright, M. J., “Morphologic analysis of
pancreatic islets automated image analysis,” Transplantation Proceedings 26(6), 3441 (1994).

Girman, P., Kriz, J., and Saudek, F., “Digital imaging as a possible approach in evaluation of islet yield.
cell transplantation,” Transplantation 12(2), 129-133 (2003).

Stegemann, J. P., O’Neil, J. J., Nicholson, D. T., and Mullon, C. J., “Improved assessment of isolated islet
tissue volume using digital image analysis,” Cell Transplantation 7(5), 469-478 (1998).

Pisania, A., Papas, K. K., Powers, D. E., Rappel, M. J., Omer, A., Bonner-Weir, S., and et al., “Enumeration
of islets by nuclei counting and light microscopic analysis. laboratory investigation,” Journal of Technical
Methods and Pathology 90(11), 1676-1686 (2010).

Schlesinger, M. 1. and Hlavac, V., [Ten Lectures on Statistical and Structural Pattern Recognition], Springer
Netherlands, first ed. (2002).

Haralick, M. R. and Shapiro, L. G., [Computer and Robot Vision, Volume I], Addison-Wesley (1992).
Mulchrone, K. F. and Choudhury, K. R., “Fitting an ellipse to an arbitrary shape: implications for strain
analysis,” Journal of Structural Geology 26, 143-153 (2004).

Schindelin, ., Arganda-Carreras, 1., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden,
C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., K.Eliceiri, Tomancak, P., and
Cardona, A., “Fiji: an open-source platform for biological-image analysis,” Nature Methods 9(7), 676682
(2012).

Lam, L. and Suen, C. Y., “Application of majority voting to pattern recognition: An analysis of its be-

havior and performance,” IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and
Humans 7(5), 553-567 (1997).



