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Abstract

Computed tomography (CT) is the standard imaging modality for patient dose calculation for

radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify

brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for

accurate delineation of the tumor and other structures, and is critical in radiotherapy planning.

Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to

CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale.

Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint

histogram of the images. In this paper, we propose a fully automatic framework for MR-CT

registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and

CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT

patches are estimated in a probabilistic framework. The synthetic CT is registered to the original

CT using a deformable registration and the computed deformation is applied to the MRI. In

contrast to most existing methods, we do not need any manual intervention such as picking

landmarks or regions of interests. The proposed method was validated on ten brain cancer patient

cases, showing 25% improvement in MI and correlation between MR and CT images after

registration compared to state-of-the-art registration methods.
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1. INTRODUCTION

CT is the primary imaging modality for radiation therapy planning and dose computation.

Accurate segmentation of the target structures and tumors based on CT alone is challenging

due to insu cient image contrast. To compensate, MRI is used in conjunction with CT for the

target and tumor delineation. Although MRI shows excellent soft tissue contrast with high

SNR, MR images show geometric image distortions and do not provide electron density

information needed for dose computation. Therefore, an accurate registration between MRI
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and CT is crucial for accurate radiotherapy planning and delivering the prescribed dose to

the patient.1 This is particularly critical in areas such as the head and neck where the

planning target volume must spare critical structures.

Several MR to CT registration techniques have been proposed in the past. Mutual

information (MI) is a common cost function used to drive a registration.2 MR to CT

methods typically require users to input landmarks or draw region of interests on the CT and

MR, and the MR is then deformably registered using the segmentations of the regions3 or

landmarks.4 It has also been shown that the fully automatic methods perform comparably or

worse than semi-automatic methods,5 although any manual intervention is likely to be prone

to reproducibility error and is time consuming.

Unlike CT, MR intensities do not possess a calibrated intensity scale. Thus MR intensities

obtained from di erent scanners or imaging sessions usually have di erent scales and

probability distributions. As MI depends on the joint distribution of the images, it sometimes

leads to local maxima,6 especially when the intensity scales are widely di erent. An example

is shown in Fig. 1, where MR and CT images of the same subject were registered by rigid

registration followed by a b-spline registration using commercial software (VelocityAI,

Velocity Medical Solutions, Atlanta, GA).7 We also computed the registration using a state-

of-the-art MI-based di eomorphic deformable registration algorithm SyN.8 Both methods

did not properly register soft tissues such as ventricles (red arrow) while registering the skull

reasonably well. The soft tissue registration was improved with the proposed method.

In this paper, we propose a fully automated framework to register MR to CT via a synthetic

CT (sCT) that contains the same intensity scale as a CT image. We use a registered MR and

CT image pair as atlas which is often done in a semi-automated way. Note that the atlas and

subject images are not registered. The atlas and subject images are first decomposed into

patches, generating corresponding “patch clouds”. The subject patch cloud is matched to the

atlas cloud using a number of Gaussian mixture models by incorporating the idea of

coherent point drift.9 The sCT image is obtained as a maximum likelihood estimate from the

model. The sCT is in the same space as the subject MR and contains CT-like intensities, it is

deformably registered to the original subject CT by maximizing cross-correlation (CC) using

SyN. The subject MRI is then registered to the CT by applying the corresponding

deformation. We compare the proposed framework with two methods, a b-spline based

registration (VelocityAI7) and SyN.8 In both cases, the MR is registered to the CT using MI

as a similarity metric. Similar inter-modality analyses has been previously explored in a MR

image registration context.10–12 We emphasize that our sCT images are used for the sole

purpose of registration improvement and are treated as an intermediate result. They are not

meant to be used by radiologists for any diagnostic purposes.

2. METHOD

2.1 Atlas and patch description

We define the atlas as a pair of co-registered images {a1, a2} having the same resolution

with contrasts C1 and C2, respectively. In this paper, C1 is MR and C2 is CT. The subject,

also having the same resolution, is denoted by b1 and is of contrast C1. Both a1 and b1 are
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normalized such that their WM peak intensities are at unity. WM peak intensity is found

from the corresponding histogram. At each voxel of an image, 3D patches—size p × q × r—

are stacked into 1D vectors of size d × 1, with d = pqr. Atlas C1 and C2 contrast patches are

denoted by yj and vj, respectively, where j = 1, … , M. Subject b1 yields C1 contrast patches

which are denoted by xi, i = 1, … , N. The unobserved C2 contrast subject patches of b1 are

denoted by ui. N and M are the number of non-zero voxels in the subject and the atlas,

respectively. We combine the patch pairs as 2d × 1 vectors  and .

The patch clouds are defined as the collection of patches and patch-pairs X = {xi}, P = {pi},

and Q = {qj}.

2.2 Contrast synthesis algorithm

The subject and atlas C1 patches represent a pattern of intensities that are scaled to a similar

intensity range. Therefore, an atlas patch that has a pattern of intensities that is similar to a

given subject patch might arise from the same distribution of tissues. In that case, the C2

patch in the atlas can be expected to represent an approximate C2 contrast of the subject in

that patch.13 One could naively find a single patch within the atlas that is close (or closest)

to the subject patch and then use the corresponding C2 atlas patch directly in synthesis. A

slightly more complex way to use this is to find a sparse collection of atlas patches that can

better reconstruct the subject patch, then use the same combination of C2 patches to

reconstruct a synthetic image.14–16 Neither of these approaches uses the C2 atlas patches in

selecting the combination. A joint dictionary learning using both C1 and C2 contrast patches

has been proposed in a registration framework.17 In this paper, we propose a synthesis

framework where we want to combine a small number of patches and take advantage of the

C2 patches in the atlas while selecting the C1 patches. This idea of pattern matching su ers if

there are pathologies (e.g., tumors or lesions) in the subject which is not present in the atlas.

Nevertheless, since the synthetic images are used to improve registration and treated as

intermediary result, we synthesize C2 contrast patches with matching atlas patches

irrespective of their underlying biology.

We propose a probabilistic model that specifically relates subject C1 patches to atlas C1

patches. Since atlas patches may not be plentiful enough to closely resemble all subject

patches, we consider all convex combinations of pairs of atlas patches. We then postulate

that subject patches are random vectors whose probability densities are Gaussian with means

given by an unknown convex combinations of pairs of atlas patches and with unknown

covariance matrices. This framework captures the notion that a convex combination of a

small number of atlas patches (just two in this paper) could be used to describe a subject

patch. In order to tie the C1 and C2 contrasts together, we further assume that the subject’s

unknown C2 patch is a random vector whose mean is the same convex combination of the

same two atlas patches associated with the C1 contrast, with a covariance matrix that can be

di erent, in principle.

This can be summarized succinctly by considering a subject patch pi and two associated

atlas patches qj and qk. Then pi is assumed to arise from the Gaussian distribution,
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(1)

Where Σt is a covariance matrix associated with the atlas patches and t ∈ Ψ, where Ψ is the

set of all pairs of atlas patch indices, and αit ∈ (0, 1) is a mixing coe cient for the ith subject

patch to the tth atlas patch-pairs. In essence, each subject patch follows an ( )-class

Gaussian mixture model (GMM). We assume the patches are i.i.d. and maximize the

probability of observing the subject patches pi using expectation-maximization (EM) to find

the synthetic contrast patches ui.

We define zit as the indicator function that pi comes from a GMM of the t = {j, k}th atlas

pair, Σt∈Ψ zit = 1 ∀i, zit ∈ {0, 1}. Then the probability of observing pi can be written as,

(2)

where hit = pi − αitqj − (1 − αit)qk, t ≡ {j, k}. The prior probability of having pi originating

from the distribution of the tth pair is P (zit = 1 |Σt, αit). Without any knowledge of xi, this

prior should ideally depend on a classification of the patch cloud Q. However, we avoid any

classification of patches by assuming a uniform prior. We have experimentally found that a

full-rank Σt is often less robust to estimate. Instead, we assume it to be separable and block

diagonal,

indicating that the variations of each voxel in a patch are the same around the means,

although individual voxels can be of di erent tissue. Thus the joint probability becomes,

(3)

The set of parameters are Θ = {σ1t, σ2t, αit; i = 1, … , N, t ∈ Ψ}, and the maximum

likelihood estimators of Θ are found by maximizing Eqn. 3 using EM. The EM algorithm be

outlined as,

1. E-step: to find new update Θ(m+1) at the mth iteration, compute the expectation

Q(Θ(m+1)|Θ(m)) = E[log P(P, Z|Θ(m+1))|X, Θ(m)].

2. M-step: find new estimates Θ(m+1) based on the previous estimates using the

following equation Θ(m+1) = arg maxΘ(m+1) Q(Θ(m+1)Θ(m)).

The E-step requires the computation of E(zit|P, Θ(m)) = P (zit|P, Θ(m). Given that zit is an

indicator function, it can be shown that , where
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(4)

 being the posterior probability of pi originating from the Gaussian distribution of the tth

atlas patches qj and qk.  and  are the expressions defined in Eqn. 3 but with . 

and  denote the corresponding values with atlas patches belonging to the ℓth pair, ℓ ∈ Ψ,

with . The synthetic patches are obtained by the following expectation,

(5)

At each iteration, we replace the value of ui with its expectation. The M-step involves the

maximization of the log of the expectation w.r.t. the parameters given the current . The

update equations are given by,

(6)

(7)
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It should be noted that F (0) = −1, F (1) = 1, ∀ A, B; thus, there is always a feasible

. Once EM converges, the expectation of the final ui is considered the synthetic

C2 contrast, and the center voxel of ui is used as the C2 contrast replacement of the ith voxel.

The imaging model is valid for those atlas and subject patches that are close in intensity.

Using a non-local type of criterion,18 for every subject patch xi, we choose a feasible set of

L atlas patches such that they are the L nearest neighbors of xi. Thus the ith subject patch

follows an -class GMM and the algorithm becomes O(NL2). In all our experiments,

we used 3 × 3 × 3 patches with L = 40.

3. RESULTS

We experimented on images from ten brain cancer patients with various sizes and shapes of

tumors, each having one MR and CT acquisition. A di erent subject was chosen as the atlas,

for which the MRI was carefully registered to the CT using a commercial software.7 This

registered MR-CT pair was used as the atlas {a1, a2}. For each of the ten subjects, we

registered the MRI to CT using b-spline registration7 and SyN.8 We also generated the sCT

image from the MRI (b1), registered (SyN) sCT to the original CT and applied the

deformation to the MRI to get registered MRI. An example of the atlas {a1, a2}, subject MR

b1, registration results from b-spline, SyN, sCT, and the corresponding deformed MR

images from their registrations are shown in Fig. 2.

Fig. 3 top image shows absolute values of correlation and MI between CT and the registered

MR brain volumes of ten subjects. The brain volumes are obtained from skull-stripping19

masks of the MR images. Both MI and correlations increase significantly (p-value < 0.05)

after registration via sCT, indicating significant improvement in MR-CT registration of the

brains. Another registration metric is the variability of CT intensities for di erent tissue

classes. For each subject, we segmented the registered MRI into three classes, cerebro-spinal

fluid (CSF), gray matter (GM) and white matter (WM), using an atlas based method.20 The

mean and standard deviations of CT intensities for each of the classes are plotted in Fig. 3

bottom row. For every tissue, standard deviations from sCT deformed MRI reduce

significantly (p-value < 0.05) in comparison to both the b-spline and SyN registered MRIs.

Misregistration causes the inclusion of other structures with di erent intensities in the

segmentation, which leads to higher variability. The sCT registration also gives the closest

mean CT intensities to the truth, 15, 40, and 25 Hounsfield units for CSF, GM, and WM,

respectively.21 A visual inspection in Fig. 2 of the subject MRI shows the registration

improvement near the ventricles (red arrow) and frontal gray matter (yellow arrow).

4. DISCUSSION AND CONCLUSION

We have proposed a novel framework for registering MRI to CT using CT synthesis as an

intermediate step. Since the sCT has the same intensity scale as CT, we register sCT to the

subject CT using CC as a similarity metric instead of directly registering MRI to CT based

on MI. For the current work, we created the atlas by registering MR and CT using a semi-

automatic method. We note that this atlas MR-CT registration can be improved using the
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proposed framework (i.e., synthesize and register). However, for the current work, we

visually checked the atlas and found little registration error. Although the sCT is only used

for improving registration in this study, the synthesis quality can be improved by using

multiple atlases and di erent patch sizes or shapes. The capability of accurately synthesizing

CT from MRI will allow us to directly compute dose on sCT and enable solely MRI-based

radiotherapy planning.
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Figure 1.
(b) A real MR image is registered to its CT acquisition (shown in (a)) using an MI based

commercial b-spine registration,7 (c) shows the registration using an MI based state-of-the-

art deformable registration algorithm,8 (d) shows the result from the proposed framework.
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Figure 2.
Top row shows a registered pair of MR-CT images used as atlas. Middle row shows the

original subject CT image, and the registered MRIs by b-spline7 and SyN.8 Bottom row

shows the sCT, SyN registered sCT, and the corresponding deformed MR with the

deformation from sCT to original CT via SyN.
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Figure 3.
Top image shows absolute values of correlation (blue) and MI (red) between original CT

and b-spline,7 SyN8 and sCT registered MRIs. Bottom row shows mean and standard

deviations of CT intensities from segmentations of the three registered MR images.
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