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LUNAM University - IRCCyN CNRS UMR 6597, 44306, Nantes, France 

ABSTRACT  

High Dynamic Range (HDR) signals capture much higher contrasts as compared to the traditional 8-bit low dynamic 
range (LDR) signals. This is achieved by representing the visual signal via values that are related to the real-world 
luminance, instead of gamma encoded pixel values which is the case with LDR. Therefore, HDR signals cover a larger 
luminance range and tend to have more visual appeal. However, due to the higher luminance conditions, the existing 
methods cannot be directly employed for objective quality assessment of HDR signals. For that reason, the HDR Visual 
Difference Predictor (HDR-VDP-2) has been proposed. HDR-VDP-2 is primarily a visibility prediction metric i.e. 
whether the signal distortion is visible to the eye and to what extent. Nevertheless, it also employs a pooling function to 
compute an overall quality score. This paper focuses on the pooling aspect in HDR-VDP-2 and employs a 
comprehensive database of HDR images (with their corresponding subjective ratings) to improve the prediction accuracy 
of HDR-VDP-2. We also discuss and evaluate the existing objective methods and provide a perspective towards better 
HDR quality assessment.        
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1. INTRODUCTION  

High Dynamic Range (HDR) has been gaining popularity in academia and industry in recent times1. The reason is that 
with HDR we can represent the real physical luminance of a natural scene. As opposed to this, traditional low dynamic 
range (LDR) content allows limited range due to the limitations of capture and display devices. Therefore, LDR usually 
defines a white point or the maximum reachable luminance. For example, typical 8-bit representation assumes 255 as the 
maximum level. This has the consequence of shrinking the actual scene intensities within the defined limits obviously 
leading to loss of visual details and in turn the perceptual quality.  On the other hand, HDR values are related to the 
scene intensities. Thus, there is a unique white point for each scene and HDR content is often described as scene-
referred. Such scene-referred visual signals tend to be visually more appealing as they can represent the dynamic range 
of the visual stimuli present in the real world. Not surprisingly, the emergence of HDR is seen as an important step 
towards improving the visual quality of experience (QoE) of the end users.  

While HDR imaging offers obvious advantages over the traditional LDR contents in terms of better visual quality of 
experience (QoE), it comes with the price of much larger storage space requirements as compared to an LDR file. For 
instance, an HDR image may occupy 4 times the space needed by an LDR version of the same image1. So there is need 
for research into effective HDR compression schemes and this therefore has been an important research area. A crucial 
and related issue is that the existing coding architectures have become widely adopted standards supported by almost all 
software and hardware equipment dealing with digital imaging. As a result, it will be of great interest to design HDR 
compression schemes that are compatible with existing coding architectures. Not surprisingly, substantial research effort 
has been put into designing HDR compression systems that are backward compatible2, 3, 4 with the standard image (e.g. 
JPEG and JPEG 2000) and video coders (e.g. H.264/AVC). 

Due to the requirement of backwards-compatibility, HDR compression typically introduces artifacts due to three 
reasons. First, tone mapping is often exploited to reduce the dynamic range of HDR in a typical backward-compatible 
HDR compression pipeline. This causes loss of visual details. Second, the compression algorithm (eg. JPEG, MPEG) 
itself leads to loss of visual quality (eg. JPEG can introduce blockiness). Lastly, the inverse tone mapping is employed to 
rescale the dynamic range of the compressed bit-stream data. Again, inverse tone mapping being a lossy process can 
damage the perceptual quality. Thus, the decompressed HDR signal undergoes several processes all of which potentially 
decrease visual quality. This gives rise to the need of proper validation of perceptual quality in order to provide the end-
users with minimum acceptable quality HDR content.      



 

 

 

 

 

2. BACKROUND 

Even though subjective assessment of visual quality remains the 'gold' standard, its deployment is difficult in some 
situations (eg. real-time HDR compression). Thus, there is obviously a strong need to develop objective computational 
models that can predict the perceptual quality of HDR signals in an objective manner. Such models will be extremely 
useful in an HDR processing pipeline for predicting the visual quality of processed HDR images/videos. Unfortunately, 
the conventional objective visual quality prediction methods do not take into account the luminance range and typically 
assume that the input pixel values are perceptually uniform. As a result, these cannot be used in case of higher luminance 
conditions as is usually the case with HDR visual signals. Recently, the HDR-VDP-2 algorithm5 has been proposed. It is 
an extension of the Visible Differences Predictor (VDP) algorithm. The HDR-VDP-2 uses an approximate model of the 
human visual system (HVS) derived from new contrast sensitivity measurements. Specifically, a customized contrast 
sensitivity function (CSF) was employed to cover large luminance range as compared to the conventional CSFs.   

HDR-VDP-2 is essentially a visibility prediction metric. That is, it provides a 2D map with probabilities of detection at 
each pixel point and this is obviously related to the perceived quality because a higher detection probability implies a 
higher distortion level at the specific point. Nevertheless, in many cases, it is crucial to know an overall quality score 
(rather than just the local distortion visibility probability). Pooling is a crucial aspect in converting local error 
distribution into a single score that denotes the perceptual quality and the human visual system (HVS) can very easily do 
that accurately. But it is much more difficult to realize that in an objective quality prediction model given the underlying 
complexities and lack of knowledge of the HVS's pooling mechanisms. It is believed that multiple features jointly affect 
the HVS’s perception of visual quality, and their relationship with the overall quality is possibly nonlinear and d ifficult 
to be determined apriori. Therefore, the approach that HDR-VDP- takes is that finding the pooling parameters via 
optimization of correlation with subjective scores.  

In its original implementation, the authors of HDR-VDP-2 tried over 20 different combinations of aggregating (or 
pooling) functions. These included maximum value, percentiles (50, 75, 95) and a range of power means (normalized 
Minkowski summation) with the exponent ranging from 0.5 to 16. The aim was to maximize the value of Spearman's 
correlation coefficient in order to find the best pooling function and its parameters. While HDR-VDP-2 is fairly 
comprehensive method for HDR quality assessment, there is an issue with regards to pooling in HDR-VDP-2. This is 
related to parameter optimization. That is, the parameters of the pooling function in HDR-VDP-2 were found by 
maximizing (optimizing) correlation using existing LDR image databases. Therefore, its effectiveness in predicting the 
visual quality of HDR images is questionable given the different characteristics LDR and HDR images especially in 
terms of distortion visibility and overall visual appeal. To address that, we propose to compute the pooling parameters 
via optimization using HDR content. In the following, we first describe the development of a comprehensive HDR 
database and use it for parameter optimization.    

3. SUBJECTIVE DATABASE FOR HDR VISUAL QUALITY 

In this section, we will give a brief description of how we developed the HDR quality database. This will be used 
important for parameter optimization in HDR-VDP-2 as explained in the next section. Further, the HDR database will be 
the test bed for evaluating and comparing the performances of objective quality prediction methods. For developing the 
HDR database, we considered a total of 10 reference HDR scenes and two types of distortions: JPEG and JPEG 2000 
compression artifacts. To our knowledge, our efforts are amongst the first ones to introduce a comprehensive HDR 
image database with subjective scores. This will be of immense value to the research community given the lack of 
publicly available databases for HDR content quality evaluation. 

3.1 Test Material Preparation 

First, we generated the HDR stimuli with JPEG distortions. For that we chose 10 reference (i.e. undistorted) HDR 
scenes, 7 compression bit rates so that the resulting visual quality covers the entire range i.e. from excellent (rating 5) to 
bad (rating 1). Since HDR compression involves tone mapping operator (TMO), we employed the image color 
appearance model iCAM06 algorithm8. Also, two optimization criteria were used. As a result, we obtained a total of 140 
compressed HDR images (10 reference images × 1 TMO × 2 optimization criterion × 7 bit rates). With the inclusion of 
10 reference scenes, we have a total of 150 images, i.e. 150 conditions = 10 reference images × 15 conditions per 
reference image, to be evaluated by subjects. The keen reader is also referred to our previous work18 for further details. 



 

 

 

 

 

For JPEG 2000 distorted content, we chose 6 reference HDR scenes. In this case, we selected 5 TMOs: 3 local and 2 
global ones. The local TMOs include the ones proposed by Ashikmin9, Reinhard10 and Durand11. For global TMOs, we 
chose the logarithmic TMO and the global version of the TMO proposed by Reinhard. Seven bit rates were chosen such 
that the resulting visual quality covers the entire range i.e. from excellent (rating 5) to bad (rating 1). As a result, we 
obtained a total of 210 decompressed HDR images (6 reference scenes × 5 TMOs × 7 bit rates). With the inclusion of the 
6 reference scenes, we obtained a total of 216 still HDR images, i.e. 216 conditions = 6 reference scenes × 36 conditions 
per reference image, to be evaluated by subjects.    

3.2 Subjective Testing 

Observers were seated in a standardized room conforming to the International Telecommunication Union 
Recommendation (ITU-R) BT500-13 recommendations12. For displaying the HDR images, SIM2 HDR47E S 4K 
display13 was used. The HDR47E S 4K is a 47-inch, 1080p LCD TV with maximum displayable luminance of 4000 
cd/m². The viewing distance was set to three times the height of the screen (active part), that is approximately 178 cm 
and the room illumination was set to 130cd/m².  

For rating the decompressed HDR images, we adopted the absolute category rating with hidden reference (ACR-HR) 
which is one of the rating methods recommended by the International Telecommunication Union (ITU) in Rec. ITU-T 
P.91014. For rating overall quality, a five-level scale is used: 5 (Excellent), 4 (Good), 3 (Fair), 2 (Poor) and 1 (Bad). A 
total of 27 observers (16 males and 11 females) were employed for JPEG while 29 observers (14 males and 15 females) 
subjectively evaluated the visual quality for the case of JPEG 2000. All observers naive (not expert in image or video 
processing) for the purpose of the study. We also employed post-experiment screening of the subjects in order to reject 
any outliers in accordance with the Video Quality Experts Group (VQEG) multimedia test plan15. Analysis per processed 
image and per source (i.e. reference) image was performed and in our case, none of the observers was rejected. The 
mean opinion score (MOS) for each stimuli was obtained by averaging the scores for that stimuli from all the observers. 
The keen reader is also referred to our previous works18, 19 for further details on the test material preparation and the 
subjective experiments. 

4. IMPROVING QUALITY PREDICTION WITH HDR-VDP-2 

In this section, we first give brief and relevant details of HDR-VDP-2. Then, we will outline the method to improve 
prediction performance based on optimization with HDR content.     

4.1 Brief review of HDR-VDP-2 

The HDR Visual Difference Predictor (HDR-VDP-2) algorithm is primarily designed for predicting the visibility of 
distortions in HDR images. To that end, HDR-VDP-2 provides a 2D map with probabilities of detection at each point 
and this is obviously related to the perceived quality because a higher detection probability suggests a higher distortion 
level at the specific point. Nevertheless, as an extension to provide an overall quality score, HDR-VDP-2 also employs 
pooling strategy so that the detected features can be pooled (fused) into a single number that denotes the overall quality 
scores for the image. Towards that end, the authors of HDR-VDP-2 tried over 20 different combinations of aggregating 
(or pooling) functions5. These included maximum value, percentiles (50, 75, 95) and a range of power means 
(normalized Minkowski summation) with the exponent ranging from 0.5 to 16. The aim was to maximize the value of 
the Spearman's correlation coefficient in order to find the best pooling function and its parameters. The resulting 
expression to predict quality score Q was defined as: 
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where i is the pixel index,  = 10-5 is a constant to avoid singularities when D is close to 0, and f, o are respectively the 
spatial frequency band and orientation indices of the steerable pyramid. I is the total number of pixels and the per-band 

weighting fw was found by maximizing the correlation with an LDR image quality database.    

4.2 Improved Optimization of Pooling in HDR-VDP-2 

As mentioned, the per-band weighing 
fw was obtained by optimizing with an LDR database. This is problematic 

because the characteristics of LDR content are different from those of HDR especially with regards to perceptual quality. 
More specifically, the influence of spatial frequencies on the perceptual quality can be different in HDR and LDR. 



 

 

 

 

 

Consequently, it is necessary to find the per-band weighting using HDR content. To that end, we employed JPEG 
compressed HDR images and their corresponding ratings. Because the subjective ratings and the HDR-VDP-2 
predictions are not in the same range, a logistic mapping function of the following form was employed before computing 
the RMSE: 
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where Q denotes the objective score and 
lQ represents the logistically transformed value and 

41  are the parameters of 

the logistic curve.  

Let 
klQ ,
and 

kS denote the logistically transformed HDR-VDP-2 score and the subjective score for the kth image and 

assume there are N images. The function to be minimized can be obtained as  
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To solve for 

fw by minimizing the above function, we employed the Nelder-Mead simplex algorithm6 which is widely 

used for minimizing real-valued functions. The Nelder-Mead method attempts to minimize a scalar-valued nonlinear 
function of n real variables using only function values, without any derivative information (explicit or implicit). It 
maintains at each step a nondegenerate simplex, a geometric figure in n dimensions of nonzero volume that is the convex 
hull of n + 1 vertices. Each iteration of a simplex-based direct search method begins with a simplex, specified by its n + 
1 vertices and the associated function values6. One or more test points are computed, along with their function values, 
and the iteration terminates with bounded level sets. The optimized weights 

fw obtained were then used to predict the 

quality scores for JPEG 2000 compressed images. Therefore, the content employed for optimization is different from the 
testing set. Note that there are a total of 216 HDR images for this condition. Another reason for using these sets of 
images for performance evaluation is related to their processing. Recall that the database for JPEG 2000 compressed 
HDR images the perceptual quality is not only affected by the compression rate but also depends on five tone mapping 
operators.   

5. PERFORMANCE EVALUATION ON HDR DATABASE 

Even though HDR-VDP-2 employs the pooling function in (1) to predict quality, to our knowledge, it has not been 
evaluated on a comprehensive set of distorted HDR images with MOSs since the original HDR-VDP-2 paper was more 
focused on visibility predictions rather than overall quality assessment. In fact, the quality prediction performance was 
tested only on a set of LDR images (from TID2008 database7). Hence, it will be interesting to assess the performance of 
HDR-VDP-2 for quality prediction of HDR images and examine its effectiveness for the task of prediction (which is not 
entirely the same as detection). As mentioned, currently there is no publicly available HDR database with subjective 
quality ratings. Thus, the performance of HDR-VDP-2 and even conventional LDR metrics has not been evaluated with 
HDR content except our previous study18 in which we evaluated the performance for JPEG compressed HDR images. In 
this paper, we further validate the performance of objective methods on HDR images affected by JPEG 2000 
compression errors as well as distortions due to tone mapping.   

5.1 Qualitative analysis  

The experimental results are reported in terms of four criteria commonly used for performance comparison, namely: the 
Pearson linear correlation coefficient CP (for prediction accuracy), the Spearman rank order correlation coefficient CS 
(for monotonicity), the Kendall rank correlation coefficient CK and the Root Mean Squared Error (RMSE) between the 
MOS and the objective predictions. For a perfect match between the objective and subjective scores, CP = CS = CK = 1 
and RMSE=0.We not only evaluate the overall prediction accuracies but also report the results for two cases: (a) per-
content prediction accuracy, (b) accuracy based on tone mapping operator (TMO). The former provides more 
information on how different objective methods perform for different content while the latter gives insights into method 
performance for predicting quality affected by TMO. In this paper, we considered 3 LDR objective methods namely 
Mean Squared Error (MSE), Structural Similarity Index Measure (SSIM) 16 and the scalable image quality measure 
(SIQM) 17.  



 

 

 

 

 

Table 1. Per-content prediction performance of MSE  
Measure/ 

HDR content 
CP CS CK RMSE 

Office_ivc 0.2466 0.0115 0.0734 1.0451 
Carpark_ivc 0.4875 0.2261 0.8022 0.2016 
Bausch_lot 0.1734 0.2325 0.2424 0.9010 
Forest_path 0.5537 0.5927 0.4637 0.8903 

Lake 0.5452 0.5636 0.4427 1.0353 
Moto 0.5145 0.5174 0.3725 0.9374 

Overall results  0.1356 0.1482 0.1098 1.1238 
 

Table 2. Per-content prediction performance of SSIM  
Measure/ 

HDR content 
CP CS CK RMSE 

Office_ivc 0.1479 0.0095 0.0797 1.0665 
Carpark_ivc 0.5062 0.2187 0.1984 1.0392 
Bausch_lot 0.1330 0.2325 0.2424 0.9068 
Forest_path 0.6314 0.6597 0.5147 0.8291 

Lake 0.4734 0.5387 0.4172 1.0879 
Moto 0.4871 0.5219 0.3725 0.9548 

Overall results  0.1053 0.1466 0.1070 1.1280 
 

Table 3. Per-content prediction performance of SIQM 
Measure/ 

HDR content 
CP CS CK RMSE 

Office_ivc 0.1851 0.1269 0.1467 1.0597 
Carpark_ivc 0.8328 0.8699 0.6944 0.6671 
Bausch_lot 0.4008 0.4384 0.3445 0.8382 
Forest_path 0.5470 0.5947 0.4861 0.8951 

Lake 0.5011 0.4700 0.3535 1.0687 
Moto 0.4934 0.5260 0.3725 0.9508 

Overall results  0.3720 0.3034 0.2145 1.0529 
 

Table 4. Per-content prediction performance of HDR-VDP-2 (original) 
Measure/ 

HDR content 
CP CS CK RMSE 

Office_ivc 0.5818 0.6030 0.4556 0.8771 
Carpark_ivc 0.8797 0.8909 0.7296 0.5731 
Bausch_lot 0.4852 0.5487 0.4358 0.8019 
Forest_path 0.6464 0.7234 0.5721 0.8157 

Lake 0.9600 0.9650 0.8567 0.3459 
Moto 0.9183 0.9657 0.8649 0.4328 

Overall results  0.7009 0.7389 0.5616 0.8090 
 

Table 5. Per-content prediction performance of HDR-VDP-2 (modified) 
Measure/ 

HDR content 
CP CS CK RMSE 

Office_ivc 0.7433 0.7240 0.5901 0.7214 
Carpark_ivc 0.7610 0.7556 0.5792 0.7817 
Bausch_lot 0.6735 0.6303 0.4944 0.6801 
Forest_path 0.7460 0.7647 0.6040 0.7120 

Lake 0.9420 0.9434 0.7962 0.4145 
Moto 0.9123 0.9260 0.7818 0.4476 

Overall results  0.7201 0.7499 0.5620 0.7871 
 

 



 

 

 

 

 

Table 6. Prediction performance of MSE for each TMO 
Measure/ 

TMO 
CP CS CK RMSE 

Ashikmin 0.3297 0.5701 0.4450 1.0990 
Durand 0.2531 0.3261 0.2509 0.9215 

Log 0.1451 0.0811 0.0900 0.9459 
Reinhard_global 0.3918 0.1878 0.0550 1.0566 
Reinhard_local 0.4502 0.2530 0.2144 0.7443 

 
Table 7. Prediction performance of SSIM for each TMO 

Measure/ 
TMO 

CP CS CK RMSE 

Ashikmin 0.3050 0.5962 0.4776 1.1087 
Durand 0.3532 0.3678 0.2836 0.8911 

Log 0.1952 0.1171 0.1110 0.9378 
Reinhard_global 0.4103 0.1916 0.0713 1.0474 
Reinhard_local 0.0383 0.2177 0.1888 0.8330 

 
Table 8. Prediction performance of SIQM for each TMO 

Measure/ 
TMO 

CP CS CK RMSE 

Ashikmin 0.7311 0.7140 0.5545 0.7942 
Durand 0.6864 0.5548 0.4773 0.6926 

Log 0.4757 0.4500 0.3540 0.8409 
Reinhard_global 0.3134 0.0507 0.0971 1.0906 
Reinhard_local 0.3228 0.1730 0.1344 0.7890 

 
Table 9. Prediction performance of HDR-VDP-2 (original) for each TMO 

Measure/ 
TMO 

CP CS CK RMSE 

Ashikmin 0.7677 0.7777 0.6104 0.7460 
Durand 0.6192 0.7025 0.5519 0.7479 

Log 0.7624 0.7919 0.6157 0.6187 
Reinhard_global 0.8112 0.8197 0.6655 0.6716 
Reinhard_local 0.7635 0.7835 0.6240 0.5384 

 
Table 10. Prediction performance of HDR-VDP-2 (modified) for each TMO 

Measure/ 
TMO 

CP CS CK RMSE 

Ashikmin 0.8029 0.7832 0.6174 0.6940 
Durand 0.5805 0.6414 0.4726 0.7755 

Log 0.8390 0.8543 0.6717 0.5202 
Reinhard_global 0.7905 0.8105 0.6515 0.7034 
Reinhard_local 0.6665 0.6339 0.4704 0.6215 

 
For HDR methods, we evaluated the HDR-VDP-2 with original parameter values and the modified values based on 
optimization with HDR content via (3). These cases are respectively denoted as HDR-VDP-2 (original) and HDR-VDP-
2 (modified). The results for the per-content evaluation are given in Tables 1-5 from which we can make the following 
observations: 

 
1. The overall prediction performance of the three LDR methods is very poor as compared to the two version of 

HDR-VDP-2 with SIQM performing the best. Such poor performance of LDR methods is however not entirely 
unexpected. This is because these methods typically assume perceptually scaled pixel value representation of 
the image signal. But with HDR, the pixels values are represented in terms of physical luminance values. 
Another possible reason for such poor performance is related to the high luminance conditions with HDR. 
Consequently, more distortions might be visible on an HDR display as compared to conventional LDR 



 

 

 

 

 

displays. This in effect can reduce the effectiveness of contrast sensitivity models that LDR methods in general 
might directly or indirectly employ (of course MSE does not use such models).  
 

2.  While the LDR methods perform quite poorly, their best performance occurs for ‘Forest_path’ content. As 
explained in our previous work19, the subjective ratings for this scene processed by the five TMOs were quite 
close. That is, despite the scene being processed by different TMOs, the resultant HDR qualities were judged 
by subjects as being quite close. We attributed this to the fact that the scene ‘Forest_path’ has mainly bright 
regions and so the TMOs yield very similar visual qualities. This can also be used to explain why LDR 
methods perform the best for this scene. Because of the absence of very dark regions, the overall luminance is 
spread in a more uniform manner. Therefore, this is more similar to an LDR content but with brighter 
luminance leading to better quality prediction by LDR methods.     

 

3. The two versions of HDR-VDP-2 perform much better than all the three LDR methods. The proposed 
optimization indeed improves the overall performance of HDR-VDP-2. However, the improvement is not 
statistically significant as verified in the next section. We suspect that the performance can be further improved 
by calibration of other HDR-VDP-2 parameters (other than pooling ones like the peak sensitivity parameter5).  

 

Further evaluation results for each TMO are reported in Tables 5-10. One can notice improvement in the prediction 
performance for each TMO. The biggest improvement is for SIQM which in some cases performs closer to HDR-VDP-
2. On the other hand, the performance of HDR-VDP-2 (both versions) is similar to the per-content case. However, HDR-
VDP-2 (modified) is still overall better although the performance is degraded for Reinhard_local TMO. The marked 
improvement in case of LDR methods indicates that within the same distortion (we can assume that each TMO is a 
source of distortion), LDR methods can predict quality more reliably. But with a more complex scenario (images 
processed by different TMOs), the performance of LDR methods starts to degrade rapidly. Overall, HDR-VDP-2 and its 
modified version clearly outperform the LDR methods. 
 
5.2 Statistical analysis 

In this section, we evaluate the statistical significance of the overall prediction performance of different objective 
methods. To that end, an F-test20 was performed on the prediction residuals between the objective predictions (after 
applying the logistic mapping) and the subjective scores. The test is based on an assumption of Gaussianity of the 
residual differences. Therefore, we first need to check if the residuals can be assumed to be Gaussian or not. For that, we 
used the Kolmogorov-Smirnov (KS) test21,22 and Table 11 lists the results and the corresponding test statistics. The 
critical value which is computed based on the number of residuals (in this case 216) was 0.0916. For determining 
normality, the KS test compares the test statistic with the critical value and a smaller test statistic value (as compared to 
the critical value ) implies normality.  In Table 11, 0 for the KS test implies that the null hypothesis cannot be rejected at 
5% significance level and therefore implies normality. One finds the residuals SIQM and the two HDR-VDP-2 versions 
are normally distributed. However, the test statistic of the remaining residuals is also not too large as compared to the 
critical value. This means that those residuals (from MSE and SSIM) can be taken to be approximately Gaussian. This 
was further confirmed by the skewness and kurtosis values which are also reported in Table 11. Since the Gaussian 
distribution has K value of 3, commonly, K values between 2 – 4 can be deemed Gaussian approximately. Further given 
that S = 0 for normal distribution, we could assume approximate normality if S values are close to 0. We therefore find 
that the assumption of Gaussianity of residuals of all the five objective methods holds (or nearly holds). Assuming 
that 2

MSE , 2
SSIM , 2

SIQM , 2
)(2 orginalVDPPHDR  ,and 2

)(2 modifiedVDPPHDR  denote the variances of the residuals from the respective 

objective quality assessment algorithms, a measure known as the F-value can be defined as 
2

1

2
2

Method

MethodF 
  where 2

1Method  and 

2
2Method  denote the variances of the residuals from the two objective methods which need to be compared. The F value 

is then compared with a critical value denoted as 
criticalF  to establish statistical difference between the two methods. 

criticalF  

is computed based on the number of residuals and the desired confidence level. Table 12 summarizes the implications of 
different ranges of F values.  



 

 

 

 

 

Table 11. Test of normality for the residuals (difference between logistically transformed objective predictions and MOSs) from the 5 
methods namely MSE, SSIM, SIQM, HDR-VDP-2 (original) and HDR-VDP-2 (modified). '0' implies that the null hypothesis cannot 

be rejected at 5% significance level and implies normality while '1' denotes the opposite case. 
 MSE SSIM SIQM HDR-VDP-2 

(original) 
HDR-VDP-2 
(modified) 

KS test (0/1) 1 1 0 0 0 
Test statistic 0.1226 0.1301 0.0881 0.0893 0.0811 
Skewness -0.4676 -0.4783 -0.5728 -0.4811 -0.3090 
Kurtosis 2.0666 2.0585 2.3360 2.9551 2.8186 

 

Table 12. Interpretation of F-values 


 
2

1

2
2

Method

MethodF 
  for the F-test to ascertain statistical significance  

criticalFF   criticalFF 1  1
1  F

Fcritical

 

criticalF
F

1  

Method2 has significantly 
larger residuals than 

Method1, so Method1 is 
statistically better than 

Method1. 

Since F > 1 Method1 performs 
better than Method2 but  both 

are statistically 
indistinguishable because 

criticalFF   . 

Since F < 1 Method2 performs 
better than Method1 but both 

are statistically 
indistinguishable because 

criticalF
F

1 . 

Method2 has significantly 
smaller residuals than 

Method1, so Method1 is 
statistically worse than 

Method2. 

 

Table 13. F-test result for the four objective methods. The F values 


 
2

1

2
2

Method

MethodF 
  are computed such that the method in each row 

is 'Method1' while the method in each column denotes 'Method2'. The boldface values imply statistically significant difference 
between the two objective methods. 

 MSE SSIM SIQM HDR-VDP-2 
(original) 

HDR-VDP-2 
(modified) 

MSE   1.0074 0.8778 0.5183 0.4905 
SSIM 0.9926   0.8713 0.5144 0.4869 
SIQM 1.1392 1.1477   0.5904 0.5588 

HDR-VDP-2 
(original) 

1.9295 1.9439 1.6937   0.9465 

HDR-VDP-2 
(modified) 

2.0386 2.0538 1.7895 1.0565   

 
In Table 13, we present the F-values when comparing two objective methods. In this table, the 

2
1

2
2

Method

MethodF 
  values are 

computed such that the method indicated in each row is Method1 while the one in the column is Method2. With 216 
residuals and 95% confidence level we have 

criticalF = 1.25 and 
criticalF

1 = 0.8000. Keeping in mind the implications of the F 

values as compared to 
criticalF  (refer to Table 12), we can see from Table 13 that HDR-VDP-2 (original) and HDR-VDP-2 

(modified) are statistically better than the LDR methods. Moreover, the three LDR methods lead to statistically 
indistinguishable performances. This once again confirms with statistical evidence that LDR methods cannot be used for 
HDR visual quality measurement. The statistical results also reveal that the wo HDR-VDP-2 versions are statically 
indistinguishable but HDR-VDP-2 (modified) performs better overall (F > 1). This has been highlighted in Table VII by 
bold-face F values for the corresponding cases. On the other hand, all the LDR based methods SIQM, SSIM and MSE 
are statistically indistinguishable from each other. 

6. CONCLUSIONS 

This paper has dealt with HDR visual quality assessment evaluation both from subjective and objective viewpoints. To 
that end, we first introduced an HDR database with JPEG and JPEG 2000 compression distortion as well as TMO 
induced distortions. We then used the HDR database for improving the prediction performance of HDR-VDP-2 by 
finding better pooling parameters. This was done by minimizing the error between the logistically transformed predicted 



 

 

 

 

 

values and the subjective ratings. The performance of three LDR methods namely MSE, SSIM and SIQM and the two 
versions of HDR-VDP-2 was evaluated on a set of 216 HDR images. The use of HDR images for parameter  
optimization lead to an overall better performance. We also expect that calibration of several other parameters in HDR-
VDP-2 (eg. parameters controlling the peak sensitivity, visual contrast masking) with the HDR database will improve 
the prediction accuracy of HDR-VDP-2 further.  
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