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Abstract. Currently, many low-cost computers can only simultane-
ously display a palette of 256 colors. However, this palette is usually
selectable from a very large gamut of available colors. For many
applications, this limited palette size imposes a significant constraint
on the achievable image quality. We propose a method for designing
an optimized universal color palette for use with halftoning methods
such as error diffusion. The advantage of a universal color palette
is that it is fixed and therefore allows multiple images to be displayed
simultaneously. To design the palette, we employ a new vector
quantization method known as sequential scalar quantization (SSQ)
to allocate the colors in a visually uniform color space. The SSQ
method achieves near-optimal allocation, but may be efficiently im-
plemented using a series of lookup tables. When used with error
diffusion, SSQ adds little computational overhead and may be used
to minimize the visual error in an opponent color coordinate system.
We compare the performance of the optimized algorithm to standard
error diffusion by evaluating a visually weighted mean-squared-error
measure. Our metric is based on the color difference in CIE L *a *
b , but also accounts for the lowpass characteristic of human con-
trast sensitivity.

1 Introduction
In recent years, there has been a dramatic increase in the need
for moderate and low-cost equipment to display digital color
images. While many of the applications that drive this need
require the highest possible quality, cost considerations often
restrict color displays to 8-bit video memory. This 8-bit re-
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striction only allows the simultaneous display of 256 colors
from the full gamut of 224 possible colors. The selection of
this palette of colors is then of critical importance.

There are a number of approaches for ameliorating the
effects of a restricted color palette. ' 'Palettization' ' tech-

niques work by choosing a palette that best represents a par-
ticular image.14 This method yields high-quality results, but
does not allow for the simultaneous display of multiple im-
ages. This is because the palette required for each image will
be different, so the combined palette for multiple images will
generally be too large. Iverson and Riskin5 have proposed a
method for combining image palettes, but such a process
must inevitably lead to degradation of image quality.

The alternative approach, studied in this paper, is to use
an optimized universal palette. The advantage of a universal
color palette is that multiple images can be displayed si-
multaneously, since each image uses the same palette. Un-
fortunately, direct quantization using a universal color palette
generally yields much lower image quality than an image-
dependent palette. Therefore, halftoning algorithms such as
multilevel dithering6 or error diffusion7'8 must be used to
improve the visual quality of the displayed images. These
methods exploit the lowpass nature of the human visual sys-
tem to hide color quantization artifacts.

A variety of approaches to universal color palette design
have been previously studied. Goertzel and Thompson9 ex-
amined separable color palettes in RGB for use with error
diffusion. They found that image quality was improved by
distributing quantization levels along the three primaries
based on the L* component of the CIE L*a*b* color space.
However, the separable nature of their RGB structure restricts
the optimality of the resulting palette. Alternatively, Gentile,
Walowit, and Allebach6 found that a nonseparable universal
color palette designed in L*u*v* coordinates gave superior
performance over one designed in RGB coordinates. How-
ever, because the quantizer is not separable with respect to
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L*u*v*, quantization of each color requires a computation-
ally expensive search of the entire palette. More recently,
Venable, Stinehour, and Roetling'° designed an optimized
universal color palette based on uniform separable quanti-
zation of a scaled CIE L*a*b* color space. However, because
the display gamut is no longer a cube in the L*a*b* color
space, straightforward application of this method leads to
wasted colors due to gamut mismatch. Also, use ofthis palette
in error diffusion requires a transformation to the L*a*b*
color space.

In this paper, we present a method for designing a uni-
versal color palette, which minimizes visual error and allows
very fast quantization. Our approach is based on vector quan-
tization (VQ) methods in a uniform color space CIE L*a*b*,
but it employs a recently developed VQ technique called
sequential scalar quantization (SSQ).4" 1,12 The SSQ method
uses a structured codebook to uniquely combine the perfor-
mance advantages of a vector quantizer with the speed of a
separable scalar quantizer. In practice, the quantization of a
pixel into an SSQ palette may be implemented by using a
sequence of three lookup tables; thus, a complete search
through the color palette can be avoided.

To improve the subjective quality of the quantized image,
we apply the optimized color palette in conjunction with a
visually optimized error diffusion technique described in
Ref. 13. Generally, error diffusion distributes errors at higher
spatial frequencies and thereby reduces human visual sen-
sitivity to those errors. In addition, optimized error diffusion
exploits the difference in modulation transfer functions for
luminance and chrominance components of color, and thus
further reduces the perceived error of the displayed images.

Furthermore, we show how our optimized color palette
may be efficiently combined with color error diffusion. To
produce accurate color matches, the error diffusion algorithm
must be performed in color coordinates, which are linearly
related to intensity. Therefore, the L*a*b* coordinates of the
color palette may not be used in the error diffusion filter. To
eliminate the need for computationally expensive transfor-
mations, we introduce a new linear color coordinate system
called 14 Because this new coordinate system is care-
fully chosen to align with the L*a*b* system, it preserves
the structure of the SSQ palette. Hence, error diffusion and
SSQ quantization may be performed in the same coordinate
system, thereby eliminating the additional computation of a
transformation to Lab.

Finally, we investigate a visually weighted quality metric
to evaluate the performance of our haiftoning methods. Com-
monly, the quality of a match between two color patches of
sufficiently large size is assessed by computing the color
difference in the CIE L*a*b* color space. However, spatial
frequency response must also be incorporated to account for
the reduced visual sensitivity to the high-frequency quanti-
zation noise. To account for both of these effects, our metric
is calculated by passing the original and haiftoned images
through a spatial filter approximating the human contrast
sensitivity in luminance and chrominance. These spatial fil-
ters are applied in color coordinates, which are linear in in-
tensity. The filtered signals are then transformed to the vis-
ually uniform space L*a*b* and the error energy is computed
in each component.

We apply our optimized palette and error diffusion al-
gorithm to a variety of color test images. For comparison,
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we also test separable RGB palettes and conventional Floyd-
Steinberg error diffusion.7 Both subjective evaluation and
our proposed quality metric indicate that the new method
produces substantial and consistent improvement in image
quality.

In Sec. 2 we describe the sequential color palette design.
In Sec. 3 we combine our color palette with error diffusion
using the new color space Section 4 explains our
visually weighted error metric, and Sec. 5 contains experi-
mental results.

2 Optimal Color Palette Design
The objective of this section is to employ VQ methods to
design an optimized universal color palette. Conventional VQ
works by selecting N code words (in our case, colors), which
minimize some distance to the expected input values. We
assume that the input color is specified in terms of the visually
uniform color space (L,a,b) (we will suppress the asterisk
superscripts for notational simplicity). This coordinate sys-
tem was specified by CIE as

L= ll6f(Y/Y,)— 16

a = 500[f(X/X,7) —f( Yl Y,7 )1

b = 200[f(Y/Y) —f(Z/Z,7)I

where

— if O.OO8856<x I
f(x)_7787X+(l6/l 16) if OxO.OO8856

(1)

(2)

(X, Y, Zare the standard color coordinates for a 2-deg observer,
and specify the white point.

The Lab coordinate system was designed so that a just-
noticeable difference in color corresponds to an approxi-
mately constant Euclidean distance. However, this approx-
imate uniformity of Lab only holds at low spatial frequencies
because the design was based on large color patches. At
higher spatial frequencies, the relative sensitivity to the lu-
minance or L component of color is much greater and the
Lab color space becomes nonuniform. This is particularly
problematic when evaluating the quality of halftoning al-
gorithms such as error diffusion, because artifacts generally
occur at high spatial frequencies. To compensate for this
effect, Venable, Stinehour, and Roetling applied a weighting
factor w> 1 to the luminance component of the distortion.
Thus, the square of the distance between the two colors L1 a1 b
and L2a2b2 will be

D=wL1 —L22+ a1 —a72+ b1 —b22 (3)

where w is an experimentally determined constant.
A major disadvantage of conventional unstructured VQ

is its computational complexity. Moreover, quantization us-
ing an unstructured palette requires a full search through the
N codebook entries. Recently, tree-structured VQ methods
have been employed in color quantization applications to
reduce computation.3'15'7 However, these methods still re-
quire log N operations per input color, which is excessive in
many applications.
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2.1 OverviewofSSQ
SSQ is a VQ method that imposes structure on the color
palette to minimize 112 The SSQ works by
performing scalar quantization successively on each com-
ponent of an input vector. Figure 1 illustrates the method for
the two-dimensional input vector (L,a). First, the scalar
component L is quantized into N1 =5 regions denoted by the
sets S1 through S. These regions are formed by designing
an optimal one-dimensional quantizer for the marginal den-
sity of L,

PL(L) =J J pLb(L,a,b) da db
(1EU hE

Next, for each region L E S., a different one-dimensional
quantizer is applied to the scalar a. Each of these quantizers
is designed to be optimal for the conditional distribution of
a given that L E 5,,

pa(a L E S) =
lb E VJLE

PL,h(L,a,b) dL d b

Because each conditional density is likely to be different, we
would expect each quantizer to be different. In addition, each
quantizer will differ due to the varying number of quanti-
zation levels n associated with each region 5,. For example,
n4 = 4 levels have been allocated to region 54, whereas only
n5 = 3 levels have been allocated to region S. Note that the
total number of levels allocated for both L and a is given by

N2=n

The extension of SSQ to three dimensions is straightforward.
Each region of (L,a) formed by quantizing both components
is denoted by . Foreach set the third scalar component
b is quantized to n,1 levels and the total number of allocated
colors is given by

N3=
Ij = I

Because the quantizers are different for each region S or
Si,j' theSSQ method exploits the dependencies among scalar
components. For example, combinations of L and a that fall
outside the gray area of Fig. 1 are not in the device gamut
and need not be quantized. We note that the order of quan-
tization may vary, but the L,a,b order shown here will prove
useful later.

The principal computational advantage of SSQ is that it
may be implemented as a sequence of 1 -D lookup table
(LUT) operations. Therefore, SSQ yields the performance
benefits of VQ, but requires no more computation than con-
ventional scalar quantization. Figure 2illustrates the structure
of this sequential LUT for the three-dimensional input
(L,a,b). The first LUT quantizes the L component and returns
an index i corresponding to the quantization region L E ,.
The second LUT then applies the appropriate scalar quantizer
based on this region 5, and returns the index (i,j) correspond-
ing to the quantization region (L,a) E S,. The third LUT
quantizes the component b based on S,, and yields the quan-
tized color vector Q[L,a,b] =(qL,qa,qb).

2.2 Color Palette Design with SSQ
To obtain pLab(L,a,b), we assume that image colors are uni-
formly distributed over the gamut of the monitor. Define the
window function

(L b) — I i if (L,a,b) is in gamut
w ,a, —

if (L,a,b) is out of gamut

For the time being, we also assume that N1 ,N2, and N3 are
known in advance. Generally, the total number of desired
quantization levels, N3, is specified, and we present a method
for estimating N1 and N2 in Sec. 2.2.4.

Our method for designing the SSQ color palette is based
on asymptotic quantization 8 and closely parallels the
method used for color quantization in Refs. 4, 1 1, and 12.
One unique aspect of our problem is that we would like to
preserve the maximum gamut of the display device. Because
halftoning algorithms can produce the average of several
palette colors, the effective gamut will be the convex hull
spanned by the color palette. Moreover, error diffusion as-
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Then pL,b(L,a,b) is given by

w(L,a,b)
p(L,a,b)

I- I I-
w(L,a,b) dL da

LEiJ QE.J bEU

a

L

L

Fig. 1 Two-dimensional example for SSQ. The shaded area mdi- Fig. 2 Block diagram of sequential LUT that performs SSQ quanti-
cates a 2-D device gamut. Bullets denote quantization levels and zation for the three-dimensional (L,a,b) input vector. The order of
dotted lines show cell boundaries. In this example, L is quantized quantization is L, then a, then b, and the output codeword is
first. Q[L,a,b].

k
LUT 3
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sumes that the input signal is contained in the convex hull
of the available quantization levels and will otherwise pass
accumulating errors forward to unquantized pixels, thus driv-
ing the quantizer into saturation. Therefore, our color palette
design method will include heuristics to ensure that colors
extend to the boundaries of the device's gamut.

2.2.1 Luminance quantizer

First, we design the quantizer for L. To preserve the maximum
gamut, we temporarily fix the first and last quantization levels
to be

, =min {L:pL(L)O}

=max {L .p1(L)O}

Because the computational cost of the quantizer design is not
significant, we use the Lloyd-Max algorithm to choose the
quantization regions S, SN and the quantization levels

In practice, we found the performance of the

Lloyd-Max algorithm to be strongly dependent on the initial
condition. Therefore, we initialize the Lloyd-Max algorithm
by choosing the intermediate quantization levels according
to the asymptotically optimal point density function X(L),
given by

{ PL(L)}
1/3

ILE
{pL(x)}' dx

More specifically, we choose the initial values for q2
qN—I, so that

i—i 1q
=1 X(L)dL.

N,—l

Before we can design an optimal quantizer for each region
5,, we must determine the optimal number of quantization
levels n,. The optimal value for n, can be derived using
asymptotic quantization theory," and is given by

ni=int(N2EN[, ri)

where

V fr = {P(L E Si)i i a
{pa(an5i)}' da

P(L E 5,) is the probability that L is quantized to the region
5,, and mt () denotes rounding to the nearest integer.

For each region 5, and the bit allocation n,, the quantizer
for a is designed as before. The Lloyd-Max algorithm is
applied after fixing the first and last quantization levels to be

= mm {a :p(L =q,a)O}

= max {a :PLa(L =q,a)O}

and the Lloyd-Max algorithm is initialized using

j—l 1q1
I X,(a) dani—i J_c

where

{pa(aL E

IX E
{Pa(4L E S)}' dx

Once again, as a final step, the first and last quantization
levels are relocated to the centroids of their cells according to
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i

a
Figure 3 illustrates a final step in which the quantization levels

and q are replaced with the centroids of their respective

quantization regions,

qi—J
PL(L) dL

L E S1

PL(L) dL
L a SN1

These values of q, q are then used as output val-
ues for L.

2.2.2 Chrominance quantizer
The next step is to design the quantizer for the scalar a. We
first calculate the conditional probability density of a given
that LnS,

pa(a L E S) =I I pLah(L,a,b) dL db
ba LaS,

S: :: *:
L

Fig. 3 Quantization procedure for L and a components. Notice that
E11 and q5 are initially placed at the most extreme locations, and are
then moved to the centroids of their cells denoted by q1 and q5.
Quantization levels q1,1 are lined up along q.
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1 N NDL—a, DN a21' Db—,
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q1,1 = j- p,(a L E S) da
L E S,i

i,NifPa(Si) da
The quantizer design for b is similar to that used for a. For
each region S11 in the (L,a) plane, we design a l-D quantizer
for the b component. Using the conditional density
Pb [b (L,a) E S11], we may compute the number quantization
levels for region S,1 as

ni=int(N3N, nk )k=1 1=1 rkl

where

r11 = {P [(L,a) n S11 ]}1/3 lb
E

{Pb [b (La) n S1 j}l/3 db

and P[(L,a) E Sf1] is the probability that (L,a) is quantized
to the region S1,1.

For each region £, we again set the first and last quan-
tization levels to their most extreme values,

q,1,1 =min {b:pUh(L=q1,a=q/J,b)O}

q1,1,,1= max {b:p(L=qj,a =

The remaining quantization levels q.1 2 q11 , ,— are

again allocated using the Lloyd-Max algorithm and an initial
condition based on the optimal point density function

{ph[bRL,a) E S. .j}1/3
X1(b)=

'I

I {pb[bkL,a)ESII}'

This time we do not replace the first and last quantization
levels. Instead, we leave them at the boundary of the color
space to preserve the maximum gamut.

At this point, we make some observations about the pal-
ette. If the gamut of the device is convex, then the palette
colors will fall inside the gamut. However, the quantization
levels corresponding to the minimum and maximum values
of a will generally not be on the boundary of the gamut. In
the next section, we will describe how these colors can be
moved slightly to expand the usable device gimut. Note that
because the values of n1 and n1 must be rounded to the nearest
integer, the total number of allocated colors may not always
be equal to the desired numbers ofcolors. The desired number
of colors may be obtained by adding or subtracting single
quantization levels according to a mean-squared-error cri-
terion as described in Ref. 11. However, for our application,
we simply accept a slightly smaller palette.

2.2.3 Expanding the color map range
To maximize the displayable gamut formed by the convex
hull of palette colors, we will move some of the colors near

the minimum and maximum values of a. Figure 4 illustrates
how colors corresponding to the regions S and 5, can be
moved to expand the gamut.

More formally, for 1 <j<n1, we define the final (L,a,b)
palette colors to be

cii k (q ,q1,1, q,1, k )

and for j = 1 or n1, we define

ci ,k (q , mm1 k' q1, i ,k)

cifl!,= (q1, max1 k,qI,

where

mink=mn {a:p1(L=q; a,b=q 1,k)>O}
maxk=max {a:p(L=q; a,b=q,fl.)>O}

Finally, we expand the color map to the maximum range
along the L axis by adding one quantization level for perfect
black (0,0,0) and another for perfect white (100,0,0).

As mentioned previously, we note that in each cell S the
algorithm already placed the first and last quantization level
of b on the boundaries of the display gamut.

2.2.4 Optimal bit allocation

A method must still be given for selecting the optimal values
of N1 and N2. If N1, N2, and N3 are large numbers, then
asymptotic quantization theory may be applied. Specifically,
if DL, Da, and Db are the mean squared error in the L,a,b,
components, respectively, then the total distortion is given
by D =DL+ Da + Db. Furthermore, each component distor-
tion is approximately equal to

(4)

where a, , and y are constants that depend on the probability
density of the input signal.4"2 If a, , and y are known,
then the optimal values for N, and N2 are given by

b

Si,1,1

I,1,2

l,1,3

SI,1,4

i,1 i,2 I3 I4 a
Fig. 4 Expanding the palette range by moving the outer a-quanti-
zation levels to the edges of the display gamut.
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1/3 f(wa)2\'/6
N1=N31\ 1y

and

1/6

N2=N3()
In practice, N1 , N2, and N3 will not be very large, so the

analytical formulas for x, 3, and y will not be accurate.
However, experiments have shown that, if the constants a,
1, and y are properly adjusted, then Eq. (4) holds for a range
of relatively small Nk. Adjusted values of these constants
may be obtained by performing an initial quantization with
arbitrary Nk and measuring the values of DL, Da, and Db . The
estimates for a, 3, and 'y may then be obtained by equating
terms in Eq. (4).

3 Application to Error Diffusion
In this section, we incorporate the optimized color palette
into the error diffusion halftoning method. A naive imple-
mentation would require a transformation both to and from
the Lab coordinate system used in the palette design. How-
ever, we show that by careful selection of the coordinates
used for the enor diffusion algorithm, the SSQ quantizer may
be implemented directly without any transformations.

Figure 5 illustrates the basic error diffusion algorithm as
described by Floyd and Steinberg in Ref. 7. To better un-
derstand how error diffusion works, we review the frequency
analysis of Ref. 3. The error diffusion algorithm works by
feeding back quantization error to reduce the low-frequency
component of the displayed error. Let s(n) be an image in-
dexed by the two-dimensional pixel locations n = (n1,n2).
Then, the equations that describe error diffusion are given by

y(n) =

q(n) = (n) —y(n)

(n) =s(n) + g(n)*q(n)

where y(n) is the displayed image, q(n) is the quantization
error, and * denotes two-dimensional convolution. Substi-
tuting the third equation into the second yields the relation-
ship for the display error e(n),

e(n) = s(n)—y(n)

Fig. 5 Block diagram of the error diffusion algorithm.

Because this is a linear relationship, we may take the fre-
quency transform to yield

E(co)= [1 — G(w)IQ(w),

where E(w), G(w), and Q(w)denote the discrete space Four-
ier transforms of e(n), g(n), and q(n), respectively. Thus, the
display error spectrum can be shaped by selecting the proper
error diffusion filter G(o). Generally, G(w) is chosen to be
lowpass so that the transfer function 1 —G(w) is highpass.
This suppresses the low-frequency error for which the visual
system is most sensitive.

We choose the error diffusion filter G(w) to minimize the
perceived error as described in Ref. 1 3. This optimized error
diffusion approach is appropriate for multilevel halftoning
and selects G(w) based on an overall system model. This
system model includes the monitor and the human visual
system response, and incorporates the contrast sensitivity to
both luminance and chrominance, and the reduced visual
sensitivity to diagonal frequencies.

One difficulty with incorporating the optimized palette
into error diffusion is the proper choice of color coordinates.
For the perceived color of the original and halftone images
to match, the data should be processed in the same coordinate
system used by the human visual system. Experiments show
that spatial frequency response of the visual system is due
to the combined effects of optical blur and the limited re-
solving power of the retina-brain system.'9 Recent studies
have found that the falloffin contrast sensitivity at high spatial
frequencies is mainly due to optical properties of the eye.2°
Because optical blurring effects are due to incoherent aver-
aging of energy, these effects are properly modeled by fil-
tering in a color coordinate system that is linear in intensity.
In our application, this lowpass behavior is the dominant
effect, so we adopt a linear color coordinate system when
modeling the lowpass nature of the human visual system. (It
is interesting to note that conventional color measurement
instruments average the energy of the reflected signal over
a color patch, and therefore effectively operate in a linear
color coordinate system.) This choice precludes the direct
use of the Lab coordinates in the error diffusion algorithm
because they are nonlinearly related to intensity.

Figure 6(a) shows a naive solution to this problem of
mismatched coordinate systems. The input data s (n) is pro-
cessed by the error diffusion filter in a linear coordinate sys-
tem. However, because the quantizer is designed in Lab, T
(.) transforms the colors to Lab before quantization and T (.)
converts back after quantization. We would like to eliminate
these transformations because they are computationally ex-
pensive. The inverse transformation T 1(.) may be elimi-
nated by precomputing the transformation for the palette of
output colors.

We will eliminate the forward transformation T(.) by
judiciously selecting the linear coordinate system for error
diffusion. Define the coordinate system'4 that we call Y,
cx , cz,

Y =1l6,y

Fx y
C =5001———x

LX Yn

136/Journal of Electronic Imaging 1Apr11 1995 / Vol. 4(2)

=q(n)—g(n)*q(n)



Optimized universal color palette design for error diffusion

Fig. 6 Block diagram of error diffusion with SSQ: (a) matching color
spaces with transformations Tand T1 and (b) eliminating transfor-
mations in new Y, c,c color space.

1 z
C- = 200 I — — —

Z
where as before (Xv, Y,Z) specifies the white point. Note
that the coordinates are chosen so that they are aligned
with the L,a,b system. In fact, one may easily verify that

V(YVC.VC)(L,a,b) white point =f'(Y)I

wheref'(Y,) is the derivative off() evaluated at Y, and Iis
the identity matrix. Furthermore, Y,, c, c. is approximately
an opponent color system, where variations in c, correspond
to changes along a red-green direction and variations in c.
reflect changes along a blue-yellow axis.

We show next that the SSQ structure of the optimized
palette is approximately preserved in the coordinate system

This implies that a modified SSQ quantizer may be
directly applied to the components of s (n) in the error dif-
fusion filter. Because the functionf(.) in Eq. (2) is a monotone
increasing function, quantization of L= ll6f(Y/Y)— 16
may be replaced by equivalent quantization of Y,

QL[LIQY[YV1

The component a is dependent on the value of Y and c,
however, the value of Y may be approximated by the quan-
tized value Q[ Y]. After making this replacement, the quan-
tization of a is equivalent to quantization of c. More spe-
cifically, we may define the function a =g(c,Y,). Then

Qa [a] =Q[g (ct,Y)]

Q[g(c, Q,[ Y])1

=Qjc, Q,[ Y1]

Therefore, for each quantized value Q[ Y], the quantizer for
a may be approximately replaced by a quantizer for c. We

note that this approximation becomes more accurate as N
becomes large.

The third component is similar. Define the function
b =h(c,Y). Then

Qb [b]= Qb [h(c,Y)]

Qb[h(cZ, Q,[ Y,])]

= Q [c, Q[ Y]]

This implies that the quantizer for b may be replaced by a
quantizer for c for each quantized value Q[ Y].

Figure 6(b) shows a block diagram of the resulting error
diffusion algorithm, where we assume that the input image
s(n) is already transformed to Y c, c. coordinates. Note that
the transformations before and after the quantizer are elim-
mated and that the block diagram resembles basic error dif-
fusion as in Fig. 2, where the simple RGB quantizer is re-
placed by a sequential LUT similar to Fig. 2 but with Y,
cx,cz inputs.

4 Visually Weighted Error Metric
We would like to evaluate the quality of a halftoned image
by some reproducible, perceptually relevant criterion. For
large color patches, it is common to calculate the mean
squared error,

where L L, L\a, and E b are the differences between the orig-
inal and the reproduced color patch in the visually uniform
color space Lab. As mentioned previously, error diffusion
and other haiftoning techniques introduce mostly high-
frequency noise to the quantized image. Therefore, any useful
error metric must incorporate a model for human contrast
sensitivity as a function of spatial frequency. Mitsa and
Varkur21 have studied a variety of quality metrics for mon-
ochrome halftone images and have found that the best cor-
relation with subjective tests is achieved when the frequency
response is chosen to be lowpass instead of bandpass. We
take a similar approach, but also incorporate the Lab color
metric to account for nonlinear visual effects.

Figure 7 shows a block diagram of our error metric. First,
the halftoned and the original image are transformed from
RGB to Y, c, c coordinates. Both images are then passed

Fig. 7 Block diagram of the visually weighted error metric: T1, T2
denote the transformations from R,G,B to Y,. c, c and from Y, c,
c to L,a,b.
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through a set of lowpass modulation transfer functions, which
model the contrast sensitivity of the human observer toward
luminance and chrominance. The outputs of these filters are
converted to Lab coordinates and the difference signals be-
tween the halftone and original are calculated. Finally, the
energy in each component of the difference signal is deter-
mined. Before combining the three values of Z L2, z a2, and

2 to a L\ E related quantity, we examine the performance
of our algorithm in the three components L,a,b separately.

Note that the linear filtering operation is performed before
the transformation to the Lab coordinates. This order of op-
erations is critical, because the perceived color will be the
average of the halftoned colors in a linear coordinate system.
If the nonlinear transformation were performed first, the
model would inaccurately predict the perceived color of the
halftoned image.

The spatial filters used in luminance and chrominance are
based on visual model described by Sullivan, Ray, Miller,
and Pios22'23 and data obtained by Mullen.24 Both the lu-
minance and the chrominance model are of the form

W(f) = Jexp{-a(f-f)} ff
11

where the decay rates a and the cutoffsf are estimated from
Mullen's data. For the luminance model, we determined
a =0.4385 deg/cycle andf = 2.2610 cycles/deg, and for the
chrominance model we obtained a =0.1761 deg/cycle and

=0.2048 cycles/deg. Furthermore,f is the weighted mag-
nitude of the frequency vectorf= (f 'f2)' where the weight-
ing has an angular dependence as applied by Sullivan,22

s(O)

where

s(O)=0.15 cos(40)+0.85

and 0 is defined as

(fl0=arctani —

Thus, the model is also a function of the viewing angle and
decreases faster for diagonal frequencies to account for re-
duced sensitivity to luminance changes in diagonal
directions.

5 Experimental Results
The marginal distributions are obtained by numerical inte-
gration ofpb(L,a,b) with respect to a and b. Figure 8 shows
a histogram of this color distribution in the (L,a) plane for a
display with SMPTE RGB primaries and a D65 white point.
Bright areas correspond to high probability, while the dark
regions along the boundaries of the gamut reflect low prob-
ability. The white dots in Fig. 8 indicate the positions of the
quantization levels projected into the (L,a) plane and the
white lines show the boundaries between quantization cells.
Note that several quantization levels are shown for most of
the boundary quantization cells. This shows the effect of
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a

Fig. 8 Histogram of the marginal color distribution in the (L,a) plane,
where L increases from left to right and a increases from top to
bottom. Bright areas indicate high probability and dark regions reflect
low probability.

expanding the range of the color map as described in
Sec. 2.2.3. Using a weighting factor of w = 8.0 for the error
metric, we assign 12 quantization levels to luminance, 57
levels to the chrominance component a, and 245 colors to
the entire palette. Adding perfect black and perfect white to
the palette increases the palette size to 247 colors.

Figure 9 illustrates the transformation of the color map
and the histogram to the new Y, c, c. coordinate system,
where the Y, c plane is shown. Note that the sequential
structure of the color palette is maintained after the
transformation.

Figure 10 shows the range of colors in the (L,a) plane,
which occur in the image ' 'Picnic.' ' Lightgray areas indicate
colors that are present in the image. The white lines and dots
again indicate the quantization cell boundaries and the palette
colors. For each quantization region, we only show the one
palette color that is closest to the gamut boundary. Note how
the colors of this image extend almost to the edges of the
projected gamut. Although the distribution of colors in any
one image is rarely uniform, the figure shows the variety of
colors that may occur in one image. This indicates the value
of minimizing the loss in gamut when designing the
color map.

We compare three algorithms: Floyd-Steinberg with a sep-
arable palette, Floyd-Steinberg with an optimized palette, and
optimized error diffusion with an optimized palette. We refer
to this last combination as the optimized algorithm. Because
a separable RGB color palette with linear spacings between
quantization levels yields poor results, we used a separable
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Fig. 9 Histogram of the marginal color distribution in the (Yr, c)
plane, where Y increases from left to right and c increases from
top to bottom. The Y, axis is magnified by a factor of 8.

Fig. 10 Range of color distribution in the (L, a) plane for the image
"Picnic."

RGB palette with colors allocated according to a power law
with an exponent of 3.0. A similar approach was taken by
Goertzel and Thompson in Ref. 9. We assigned eight levels
to each of the red and green components, and four levels to
the blue component for a total of 256 colors.

Table 1 shows a measure of perceived error for a set of
five test images shown in Fig. 1 1 . The error was measured
using the procedure described in Sec. 4 and assumed a normal

Table 1 Estimates of perceived error of halftone images in L,a,b.
The optimized error diffusion algorithm with an optimized universal
palette produced the lowest errors in almost every case.

Image: Floyd-Steinberg
RGB Palette

Floyd-Steinberg
Opt. Palette

Opt. ED
Opt. Palette

Balloon
za2
Lb2

0.3176
0.1203
0.7894

0.1239
0.0772
0.3310

0.0872
0.0510
0.2940

Beach -&tr
La2
zb2

0.3584
0.1064
0.3889

0.1191
0.0238
0.0524

0.0740
0.0116
0.0357

Munich
zta2

b2

0.3190
0.0662
0.1092

0.1356
0.0428
0.0300

0.0968
0.0191
0.0168

Picnic

a2
Lb2

0.4016

0.1675

0.4257

0.2680

0.1726

0.4031

0.1989

0.1477

0.4514

Uchart -it;r
za2

0.3298
0.1247
0.6661

0.2037
0.0751
0.3668

0.1535
0.0355
0.2614

viewing distance of 45.5 cm (17.9 in.) and a display reso-
lution of 100 dots/in. We examined a variety of images,
including images with very saturated colors such as ''Pic-
nic, ' ' images with more pastel colors such as ' 'Beach' ' and
"Balloon," and test images such as "Uchart." Except for
the b component in the image ' 'Picnic,' ' the optimized al-
gorithm achieved consistently lower errors in all three com-
ponents. Column 2 in Table 1 shows the improvement that
can be achieved by using the optimized color palette while
retaining the Floyd-Steinberg filter coefficients. However, the
best overall performance was achieved when combining the
optimized color palette with optimized filter coefficients.
These numerical results corresponded well with our subjec-
tive evaluations of image quality. Table 2 lists values of L\
E for the three algorithms, which are obtained by adding the
three quantities of L2, za2, b2 for each image. In this
case, the optimized error diffusion together with an optimized
color palette consistently produced the lowest errors.

Figure 12 shows the original ' 'Balloon' ' image, the Floyd-
Steinberg halftone with RGB palette, Floyd-Steinberg al-
gorithm with optimized palette, and optimized error diffusion
with optimized palette. Given the 2: 1 zoom of the figures
and the assumed viewing distance and resolution, these im-
ages are designed to be viewed at 7.0 times their height. The
range of colors in this image and the numerical results for
our error metric seem to be typical for the majority of images
we worked with. Note that the optimized algorithm breaks
up contours and patterns that are typical artifacts ofthe Floyd-
Steinberg algorithm. These effects can be most clearly seen
in the slowly varying colors of the different balloons. Note,
for example, how contouring effects in the balloon on the
left of the girl' s face are broken up when using the fully
optimized algorithm.

Figure 13 shows the original ''Picnic' ' image, the Floyd-
Steinberg halftone with RGB palette, Floyd-Steinberg al-
gorithm with optimized palette, and optimized error diffusion
with optimized palette. Similar effects may be seen in this
image. For instance, examining the texture in the tree on the
right side of the image, it can be seen that the optimized
algorithm renders details with more accuracy than the old
method. However, the improvement in this image was the

Journalof Electronic Imaging 1Apr11 1995 I Vol. 4(2)! 139



Kolpatzik and Bouman

Table 2 Estimates of perceived error of haltone images in E2.
Here the optimized error diffusion algorithm with an optimized uni-
versal palette yielded consistently the lowest errors.

Image:
Floyd-Steinberg

RGB Palette
zE2

Floyd-Steinberg
Opt. Palette

AE2

Opt. ED
Opt. Palette

LE2
Balloon
Beach
Munich
Picnic

Uchart

1.2273

0.8537

0.4944

0.9948

1.1206

0.5321

0.1953

0.2084

0.8437

0.6456

0.4322

0.1213

0.1327

0.7980

0.4504

least noticeable and the numerical results represent our worse-
case performance.

In a few image areas, for instance in the blue sky area of
the ' 'Picnic' ' image, the optimized algorithm seems to gen-
erate slightly more visible texture. We think that this effect
is our trade-off for achieving an overall performance im-
provement. The predominantly diagonal orientation of the
texture may be due to the angle dependency of the human
visual model, which was used to design our optimized error
diffusion filter.

6 Conclusion
We examined the design of a universal color palette in a
visually uniform color space. The palette is generated using
a new vector quantization method known as SSQ. The SSQ
approach reduces computation by allowing VQ to be per-
formed with a series of scalar quantizers. The resulting color
palette was then combined with a previously developed mul-
tilevel error diffusion algorithm to give the best overall result.

To evaluate the quality of the displayed images, we de-
veloped a visually weighted error metric that uses models
for human contrast sensitivity toward luminance and chrom-
inance together with a nonlinear transformation of the color
space. The measurement of this error metric for a variety of
images substantiated our subjective conclusions that the op-
timized palette improved the displayed image quality.
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Fig. 13 Comparison of 2: 1 zoom of (a) original "Picnic" image, (b) Floyd-Steinberg algorithm with
separable ROB palette, (c) Floyd-Steinberg algorithm with optimized palette, and (d) optimized error
diffusion with optimized palette. (Halftones obtained from color images.)
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