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Abstract

Abdominal segmentation on clinically acquired computed tomography (CT) has been a 

challenging problem given the inter-subject variance of human abdomens and complex 3-D 

relationships among organs. Multi-atlas segmentation (MAS) provides a potentially robust 

solution by leveraging label atlases via image registration and statistical fusion. We posit that the 

efficiency of atlas selection requires further exploration in the context of substantial registration 

errors. The selective and iterative method for performance level estimation (SIMPLE) method is a 

MAS technique integrating atlas selection and label fusion that has proven effective for prostate 

radiotherapy planning. Herein, we revisit atlas selection and fusion techniques for segmenting 12 

abdominal structures using clinically acquired CT. Using a re-derived SIMPLE algorithm, we 

show that performance on multi-organ classification can be improved by accounting for 

exogenous information through Bayesian priors (so called context learning). These innovations are 

integrated with the joint label fusion (JLF) approach to reduce the impact of correlated errors 

among selected atlases for each organ, and a graph cut technique is used to regularize the 

combined segmentation. In a study of 100 subjects, the proposed method outperformed other 

comparable MAS approaches, including majority vote, SIMPLE, JLF, and the Wolz locally 

weighted vote technique. The proposed technique provides consistent improvement over state-of-

the-art approaches (median improvement of 7.0% and 16.2% in DSC over JLF and Wolz, 

respectively) and moves toward efficient segmentation of large-scale clinically acquired CT data 

for biomarker screening, surgical navigation, and data mining.
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1. INTRODUCTION

The human abdomen is an essential, yet complex body space. Computed tomography (CT) 

scans are routinely obtained for the diagnosis and prognosis of abdomen-related disease. 

Automated segmentation of abdominal anatomy may improve patient care by decreasing or 

eliminating the subjectivity inherent in traditional qualitative assessment. In large-scale 

clinical studies, efficient segmentation of multiple abdominal organs can also be used for 

biomarker screening, surgical navigation, and data mining.

Atlas-based segmentation provides a general-purpose approach to segment target images by 

transferring information from canonical atlases via registration. When adapting to abdomen, 

the variable abdominal anatomy between (e.g., weight, stature, age, disease status) and 

within individuals (e.g., pose, respiratory cycle, clothing) can lead to substantial registration 

errors (Figure 1). Previous abdominal segmentation approaches have used single 

probabilistic atlases constructed by co-registering atlases to characterize the spatial 

variations of abdominal organs (e.g., [1, 2]). Multi-atlas segmentation (MAS), on the other 

hand, is a technique that has been proven effective and robust in neuroimaging by 

registering multiple atlases to the target image separately, and combining voxel-wise 

observations among the registered labels through label fusion [3]. Recently, Wolz et al. 

applied MAS to the abdomen using locally weighted subject-specific atlas [4]; yet the 

segmentation accuracies were inconsistent. We posit that the efficiency of atlas selection for 

abdominal MAS requires further exploration in the context of substantial registration errors, 

especially on clinically acquired CT.

The selective and iterative method for performance level estimation [5] (SIMPLE) algorithm 

raised effective atlas selection criteria based on the Dice similarity coefficient [6] overlap 

with intermediate voting-based fusion result, and addressed extensive variation in prostate 

anatomy to reduce the impact of outlier atlases. In [7], we generalized a SIMPLE theoretical 

framework to account for exogenous information through Bayesian priors – referred to as 

context learning; the newly presented model selected atlases more effectively for 

segmenting spleens in metastatic liver cancer patients. A further integration with joint label 

fusion (JLF) [8] addressed the label determination by reducing the correlated errors among 

the selected atlases, and yielded a median DSC of 0.93 for spleen segmentation.

Herein, we propose an efficient approach for segmenting 12 abdominal organs of interest 

(Figure 1) in 75 metastatic liver cancer patients and 25 ventral hernia patients on clinically 

acquired CT. Based on the re-derived SIMPLE framework [7], we construct context priors, 

select atlases, and fuse estimated segmentation using JLF for each organ individually, and 

combine the fusion estimates of all organs into a regularized multi-organ segmentation using 

graph cut [9] (Figure 2). The segmentation performances are validated with other MAS 

approaches, including majority vote (MV), SIMPLE, JLF, and the Wolz approach.

2. THEORY

We re-formulate the SIMPLE algorithm from the perspective of Expectation-Maximization 

(EM) while focusing on the atlas selection step. In this principled likelihood model, the 
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Bayesian prior learning from context features (e.g., intensity, gradient) is considered as 

exogenous information to regularize the atlas selection.

2.1 Statistical SIMPLE Model

Consider the latent true segmentation as a vector, T ∈ LN×1, where L = {0, ..., L − 1} is the 

set of possible label types. Consider a collection of R registered atlases with label decisions, 

D ∈ LN×R. Let c ∈ SR, where S = {0,1} indicates the atlas selection decision, i.e., 0 – 

ignored, and 1 – selected. Let i be the index of voxels, and j of registered atlases. We 

propose a non-linear rater model, , that considers the two atlas selection 

decisions. Let the ignored atlases be no better than random chance, and the selected atlases 

be slightly inaccurate with error factors ε ∈ ER×1, where . Thus

(1)

where each element θjns′s represents the probability that the registered atlas j observes label s

′ given the true label is s and the atlas selection decision is n with an error factor ∈j if 

selected, – i.e., θjns′s ≡ f(Dij = s′|Ti = s, cj = n, εj).

Following [10], let , where  represents the probability that the true label 

associated with voxel i is label s at the kth iteration. Using Bayesian expansion and 

conditional inter-atlas independence, the E-step can be derived as

(2)

where f(Ti = s) is a voxel-wise a priori distribution of the underlying segmentation. Note 

that the selected atlases contribute to W in a similar way as globally weighted vote given the 

symmetric form of θj1s′s as in the original SIMPLE. In the M-step, the estimation of the 

parameters is obtained by maximizing the expected value of the conditional log likelihood 

function found in Eq. 2. For the error factor,

(3)

Consider the binary segmentation for simplicity, let 

, and 

MT = MTP + MTN, MF = MFP + MFN. After taking partial derivative of Lεj,

Xu et al. Page 3

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2015 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(4)

Then for the atlas selection decision

(5)

Given the intermediate truth estimate  can be maximized by evaluating each 0/1 

atlas selection separately. Note the selecting/ignoring behavior in Eq. 5 is parameterized 

with the error factor εj, and thus affected by the four summed values of True Positive (TP), 

False Positive (FP), False Negative (FN), and True Negative (TN) as in Eq. 4. This differs 

from DSC using in the original SIMPLE in that DSC does not factor the impacts of TN. 

Typical practice for a fusion approach might use the prior probability, f(Ti = s), to weight by 

expected volume of structure. With outlier atlases, one could reasonably expect a much 

larger region of confusion (i.e., non “consensus”[11]) than true anatomical volume. Hence, 

an informed prior would greatly deemphasize the TN and yield a metric similar to DSC. 

Therefore, we argue that SIMPLE is legitimately viewed as a statistical fusion algorithm that 

is approximately optimal for the non-linear rater model proposed in Eq. 1.

2.2 Context Learning

Different classes of tissues in CT images can be characterized with multi-dimensional 

Gaussian mixture models using intensity and spatial “context” features. On a voxel-wise 

basis, let  represent a d dimensional feature vector, m ∈ M indicate the tissue 

membership, where M = {1, ..., M} is the set of possible tissues, and typically, a superset of 

the label types, i.e., M  L. The probability of the observed features given the tissue type is t 

can be represented with the mixture of NG Gaussian distributions,

(6)

where  are the unknown mixture probability, 

mean, and covariance matrix to estimate for each Gaussian mixture component k of each 

tissue type t by the EM algorithm following [12]. This context model can be trained from 

datasets with known tissue separations.

The tissue likelihoods on an unknown dataset can be inferred by Bayesian expansion and 

can use a flat tissue membership probability from extracted feature vectors.

(7)
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Consider a desired label s as one tissue type t, and thus f(Ti = s) = s) ≡ f(m = t|ν), the 

Bayesian prior learning from context features serves to regularize the intermediate fusion 

estimate in Eq. 3, and hence the atlas selection.

3. METHODS

3.1 Data and Experimental Setup

Under Institutional Review Board (IRB) supervision, the first-session of abdomen CT scans 

of 75 metastatic liver cancer patients were randomly selected from an ongoing colorectal 

cancer chemotherapy trial, and an additional 25 retrospective scans were acquired clinically 

from post-operative patients with suspected ventral hernias. The 100 scans were captured 

with variable field of views (approx. 300 × 300 × 250 mm ~ 500 × 500 × 700 mm) and 

resolutions (approx. 0.5 × 0.5 × 1.5 mm ~ 1.0 × 1.0 × 7.0 mm). Twelve abdominal organs 

were manually labeled by two experienced undergraduate students, and verified by a 

radiologist on a volumetric basis using the MIPAV software (NIH, Bethesda, MD [13]). All 

images and labels were cropped along the cranio-caudal axis with a tight border without 

excluding liver, spleen, and kidneys before any processing (following [4]).

Forty of the 100 subjects were randomly selected as the atlases for validating five MAS 

approaches, including MV, SIMPLE, JLF, the Wolz approach, and our proposed method. 

The five approaches shared a common multi-stage registration procedure for each target 

image, where all atlases (excluding the target if in the set of atlases) were aligned to the 

target in the order of rigid, affine and a multi-level non-rigid registration using free-form 

deformations with B-spline control point spacings of 20, 10, and 5mm [14]. Ten of the 100 

subjects were randomly selected as training datasets for context learning, thus we performed 

validation on the segmentations of the rest 90 subjects against the manual labels using DSC, 

mean surface distance (MSD), and Hausdorff distance (HD).

3.2 Implementations

We used 10 subjects to train context models for 15 tissue types, including twelve manually 

traced organs, and three automatically retrieved tissues (i.e., muscle, fat, and other) using 

intensity clustering and excluding the traced organ regions. Six context features were 

extracted, including intensity, gradient, and local variance, and three spatial coordinates with 

respect to a single landmark, which was loosely identified as the mid-frontal point of the 

lung at the plane with the largest cross-sectional lung area. We specified the number of 

components of Gaussian mixture model,NG, = 3. For each organ, the foreground and 

background likelihoods were learned from the context models based on the context features 

on target images, and used as a two-fold spatial prior to regularize the organ-wise SIMPLE 

atlas selection. We constrained the number of selected atlases as no less than five and no 

larger than ten. When using JLF on the selected atlases for each organ, we specified the 

local search radii as 3 × 3 × 3, the local patch radii as 2 × 2 × 2, and set the intensity 

difference mapping parameter, and the regularization term as 2 and 0.1, respectively (i.e., 

default parameters). Following [4], we regularized the final segmentation with graph cut 

(GC), where the probabilistic fusion estimate from JLF and the intensity likelihoods using 1-

D context learning were combined as the data term with a weight parameter of 3.3 over the 
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smoothness term. Note that we only applied GC smoothing to large organs (i.e., spleen, 

kidneys, liver, stomach), and kept the JLF results for the remaining organ structures.

For the direct JLF approach, the same parameters were used as above, except that it was 

conducted for all organs simultaneously. For the Wolz approach, we kept 30 atlases for the 

global atlas selection, adjusted the exponential decay for the organ level weighting to 

support 10 atlases, followed [4] for voxel-wise weighting by non-local means, and used the 

same GC scheme as applied to our proposed method.

4. RESULTS AND DISCUSSIONS

Compared to the other MAS approaches, the proposed method presents consistently 

improved segmentation in DSC on 11 of 12 organs of interest (Figure 3, Table 1). Based on 

the mean DSC of each organ, a median improvement of 7.0% and 16.2% were achieved 

over JLF and Wolz, respectively. The segmentations of spleen, gallbladder, esophagus, and 

aorta using the proposed method significantly outperformed those using the other 

approaches.

The serpentine labels of portal vein and splenic vein are barely captured by registration (0.06 

in DSC by median), thus the intermediate voting-based fusion estimates had a good chance 

of missing the structure entirely (zero median in DSC for MV and SIMPLE). A MV fusion 

(instead of JLF) of the selected atlases by SIMPLE context learning identified this structure 

better (0.25 in DSC by median). While with limited atlases of catastrophic registration 

errors, our proposed method was outperformed by JLF with all available atlases.

On the other hand, in the context of reasonably substantial registration errors for other 

organs, our proposed method yields segmentation with better performances in not only 

accuracies, but also efficiencies. With much fewer atlases (while more target-alike than 

average) included for label fusion, our method relieved massive computational time and 

memory required by JLF and Wolz approach, and thus provides more efficient abdominal 

segmentations. As found in our previous study, the MV fusion of the registered atlases with 

the top five DSC achieves a median DSC of 0.9 for spleen [7]. Therefore, we considered the 

global non-linear selection of the atlases as a necessary procedure in addition to the locally 

weighted label determination for MAS in abdomen.

With a closer look, our proposed method yielded the segmentation with at least 0.89 in DSC 

and less than 3.3 mm in MSD for the major organs of interest, i.e., spleen, kidneys, and 

liver. For other structures, the proposed method also provided successful identification over 

half of the subjects, even those that empirically considered difficult to capture, e.g., adrenal 

glands (Table 2). Qualitatively, the segmentation on a subject with median accuracy 

captures the organs from the perspective of both 3-D rendering and 2-D coronal slices 

(Figure 4).

In conclusion, the proposed method provides a fully automated approach to segment twelve 

abdominal organs on clinically acquired CT. The SIMPLE context learning reduces the 

impact of the vastly problematic registrations with appropriate atlas selection considering 

exogenous contexts in addition to intermediate fusion estimate, and thus enables more 
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efficient abdominal segmentations. The estimated segmentation could be used in large-scale 

trials to provide abdominal surgical navigation, organ-wise biomarker derivation, or 

volumetric screening. The method also enables explorative studies on the correlation the 

structural organ metrics with surgical/physiological conditions. Further refinement of the 

proposed method may well consider deeper integration between SIMPLE context learning 

and JLF.
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Figure 1. 
Twelve organs of interest (left) and registration examples of variable qualities for one target 

image (right).
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Figure 2. 
Flowchart of the proposed method. Given registered atlases with variable qualities, atlas 

selection and statistical fusion are considered as two necessary steps to obtain a reasonable 

fusion estimate of the target segmentation. The SIMPLE algorithm implicitly combines 

these two steps to fusion selected atlases; however, more information can be incorporated to 

improve the atlas segmentation, and a more advanced fusion technique can be used after the 

atlases are selected. We propose to (1) extract a probabilistic prior of the target segmentation 

by context learning to regularize the atlas selection in SIMPLE for each organ, (2) use Joint 

Label Fusion to obtain the probabilistic fusion estimate while characterizing of the 

correlated errors from among the selected organ-specific atlases, and render the final 

segmentation for all organs via graph cut.
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Figure 3. 
Boxplot comparison among five tested methods for 12 organs.
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Figure 4. 
Qualitative segmentation results on a subject with median DSC. On the left, the 3-D organ 

labels are rendered for the true segmentation, and the proposed segmentation. On the right, 

the truth (red) and the proposed segmentation (green) for each organ of interest are 

demonstrated on a representative coronal slice.
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Table 1

Quantitative evaluation for five tested methods using dice similarity coefficient (mean ± std.).

MV SIMPLE JLF Wolz Proposed

Spleen 0.63 ± 0.24 0.73 ± 0.22 0.84 ± 0.15 0.83 ± 0.10 0.90 ± 0.08**

R. Kidney 0.47 ± 0.26 0.65 ± 0.27 0.79 ± 0.19 0.70 ± 0.24 0.81 ± 0.20

L. Kidney 0.46 ± 0.27 0.74 ± 0.25 0.81 ± 0.17 0.72 ± 0.21 0.84 ± 0.20

Gallbladder 0.01 ± 0.04 0.00 ± 0.03 0.09 ± 0.15 0.19 ± 0.21 0.27 ± 0.26*

Esophagus 0.07 ± 0.11 0.20 ± 0.25 0.37 ± 0.21 0.18 ± 0.19 0.43 ± 0.18*

Liver 0.79 ± 0.20 0.84 ± 0.18 0.89 ± 0.11 0.88 ± 0.09 0.91 ± 0.09

Stomach 0.34 ± 0.18 0.46 ± 0.19 0.51 ± 0.17 0.41 ± 0.19 0.55 ± 0.18

Aorta 0.34 ± 0.22 0.64 ± 0.22 0.72 ± 0.13 0.67 ± 0.18 0.77 ± 0.13*

IVC 0.33 ± 0.18 0.50 ± 0.21 0.57 ± 0.15 0.58 ± 0.15 0.62 ± 0.19

PV & SV 0.05 ± 0.10 0.05 ± 0.15 0.52 ± 0.20** 0.16 ± 0.16 0.45 ± 0.21

Pancreas 0.11 ± 0.13 0.27 ± 0.25 0.40 ± 0.19 0.40 ± 0.19 0.45 ± 0.21

A. Glands 0.00 ± 0.01 0.00 ± 0.03 0.34 ± 0.20 0.05 ± 0.08 0.36 ± 0.19

*
indicates that the DSC value was significantly higher than the second best DSC across the methods for the organ segmentation as determined by a 

right-tail paired t-test with p<0.05.

**
indicates a p<0.01.
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Table 2

Quantitative metrics of the proposed segmentation method.

Metrics Dice Similarity Coefficient Surface Distance (mm)

Organs Median [Min, Max] Sym. MSD Sym. HD

Spleen 0.93 [0.54, 0.97] 1.75 ± 1.71 17.27 ± 8.42

R. Kidney 0.89 [0.00, 0.96] 2.99 ± 3.92 19.47 ± 11.37

L. Kidney 0.90 [0.00, 0.97] 2.00 ± 2.80 16.13 ± 8.05

Gallbladder 0.25 [0.00, 0.84] 14.36 ± 20.34 34.57 ± 22.87

Esophagus 0.43 [0.00, 0.75] 4.16 ± 2.05 17.97 ± 5.46

Liver 0.93 [0.24, 0.97] 3.22 ± 4.43 34.46 ± 15.03

Stomach 0.57 [0.00, 0.87] 10.26 ± 6.36 49.48 ± 18.91

Aorta 0.80 [0.00, 0.90] 3.02 ± 2.27 23.23 ± 10.98

IVC 0.67 [0.00, 0.87] 3.75 ± 1.84 19.89 ± 5.60

PV & SV 0.48 [0.00, 0.83] 5.92 ± 5.08 38.37 ± 17.18

Pancreas 0.49 [0.00, 0.77] 5.47 ± 3.51 31.34 ± 8.92

A. Glands 0.39 [0.00, 0.72] 4.06 ± 3.56 20.68 ± 8.68
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