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Abstract

While the proximal femur is preferred for measuring bone mineral density (BMD) in fracture risk 

estimation, the introduction of volumetric quantitative computed tomography has revealed stronger 

associations between BMD and spinal fracture status. In this study, we propose to capture 

properties of trabecular bone structure in spinal vertebrae with advanced second-order statistical 

features for purposes of fracture risk assessment. For this purpose, axial multi-detector CT 

(MDCT) images were acquired from 28 spinal vertebrae specimens using a whole-body 256-row 

CT scanner with a dedicated calibration phantom. A semi-automated method was used to annotate 

the trabecular compartment in the central vertebral slice with a circular region of interest (ROI) to 

exclude cortical bone; pixels within were converted to values indicative of BMD. Six second-order 

statistical features derived from gray-level co-occurrence matrices (GLCM) and the mean BMD 

within the ROI were then extracted and used in conjunction with a generalized radial basis 

functions (GRBF) neural network to predict the failure load of the specimens; true failure load was 

measured through biomechanical testing. Prediction performance was evaluated with a root-mean-

square error (RMSE) metric. The best prediction performance was observed with GLCM feature 

‘correlation’ (RMSE = 1.02 ± 0.18), which significantly outperformed all other GLCM features (p 

< 0.01). GLCM feature correlation also significantly outperformed MDCT-measured mean BMD 

(RMSE = 1.11 ± 0.17) (p < 10−4). These results suggest that biomechanical strength prediction in 

spinal vertebrae can be significantly improved through characterization of trabecular bone 

structure with GLCM-derived texture features.
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1. MOTIVATION/PURPOSE

Osteoporosis is one of the most common age-related diseases among elderly people and is 

usually characterized by imbalances in bone resorption and apposition resulting in bone 

density deterioration. The progression of osteoporosis can lead to osteoporotic fractures, 

which reduces the quality of life and increases the mortality rate. This highlights the need 

for accurate fracture risk estimation for clinical evaluation and management of osteoporosis.

Dual-energy X-ray absorptiometry (DXA) is currently the standard technique for bone 

quality evaluation in terms of bone mineral density (BMD) for purposes of assessing fracture 

risk [1–2]. Recently, quantitative computer tomography (QCT) has been introduced for 

extracting BMD measurements exclusively from the trabecular compartment while 

overcoming certain shortcomings of DXA [3–5]. However, while BMD has been a key 

clinical factor for fracture risk estimation, it does not completely account for individual 

fracture risk since it does not provide a complete description of bone quality. Variations in 

trabecular bone density and structure are also important factors that affect bone strength, and 

such a deteriorated bone structure in the trabecular compartment can drastically increase the 

fracture risk.

We are specifically interested in image features that look beyond the bone density and 

analyze trabecular bone micro-architecture. One area of focus in this context is the 

prediction of local bone strength, which is useful for diagnosis and monitoring of 

osteoporotic bone changes [6]. In this study, we focus on characterization of trabecular bone 

structure in spinal vertebrae for purposes of fracture risk assessment. While the proximal 

femur is the preferred site BMD measurements in such analysis, correlations between BMD 

and spinal fracture status have been previously shown in studies involving volumetric 

quantitative computed tomography [7]. Here, we use second-order statistical features derived 

from gray-level co-occurrence matrices (GLCM) for vertebral trabecular bone 

characterization. Such feature can serve as inputs for subsequent supervised learning 

algorithms to construct models for bone strength prediction. More importantly, such features 

to complement BMD measures and predict local bone strength, which can be useful for 

diagnosis and monitoring of osteoporotic bone changes [6,8–9]. This work is embedded in 

our group’s endeavor to expedite ‘big data’ analysis in biomedical imaging by means of 

advanced pattern recognition and machine learning methods for computational radiology, 

e.g. [10–40].

In this contribution, we present preliminary evidence to suggest that GLCM-derived 

descriptors of trabecular bone structure, as extracted from MDCT images of spinal 

vertebrae, can improve upon bone strength prediction achieved by MDCT-derived BMD 

measurements.

2. DATA

Femur Specimens

The donors had dedicated their body for educational and research purposes to the local 

Institute of Anatomy prior to death, in compliance with local institutional and legislative 
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requirements. The study protocol was reviewed and approved by the local Institutional 

Review Boards. Donors with a history of pathological bone changes other than osteoporosis 

(i.e., bone metastases, hematological, or metabolic bone disorders) were excluded at the 

outset. Surrounding muscle and fat tissue was completely removed from the spinal 3-

segment units. Then, half of the upper and lower vertebra of the spinal 3-segment units was 

removed with a band saw to create functional spinal segment units with intact ligaments, 

inter-vertebral discs, and posterior elements. In case of thoracic segment units, the costo-

vertebral joints were kept intact by dissecting the costae distally of the costo-vertebral joints. 

For the purpose of conservation, all functional spinal segment units were stored in formalin 

solution during the study and degassed at least 24 h before imaging to prevent air artifacts. 

The functional spinal segment units were sealed in vacuum plastic bags during imaging.

Multi-detector Computed Tomography (MDCT)

The MDCT images of the functional spinal segment units were acquired by using a whole-

body 256-row CT scanner (iCT, Philips Healthcare, Best, The Netherlands). Scan parameters 

were a tube voltage of 120 kVp, a tube load of 585 mAs, an image matrix of 1024 × 1024 

pixels, and a field of view of 150 mm. Transverse sections were reconstructed with a high-

resolution bone kernel (YE). The interpolated voxel size was of 146 × 146 × 300 

micrometer3, while the real spatial resolution, as determined at q50 of the modulation-

transfer-function, was 250 × 250 × 600 micrometer3. A dedicated calibration phantom 

(Mindways Osteoporosis Phantom, San Francisco, CA, USA) was placed in the scanner mat 

beneath the functional spinal segment units.

Post-processing and Region of Interest (ROI) selection

A semi-automated method was used to place a circular ROI on the central axial slice of the 

middle vertebrae. This involved manual annotation of the vertebral outline which was 

subsequently eroded to eliminate cortical bone. An automated algorithm was then used to fit 

the largest possible circle to capture the trabecular compartment in the ventral portion region 

of the vertebrae. Special care was taken to avoid inclusion of dorsal portion of the vertebrae 

where invasion by venous plexus and blood vessels was not uncommon.

BMD Measurements

Pixel attenuations (Hounsfield units or HU) on MDCT images were converted to values 

indicative of BMD using a reference Mindaways calibration phantom. This phantom 

consisted of a plastic base containing 5 rods of reference material with varying densities of 

water and K2HPO4, as shown in Figure 1. The measured HU of these 5 rods and their 

corresponding equivalent water and K2HPO4 densities are used to estimate slope and 

intercept parameters, i.e. σCT and βCT, of a linear model for converting HU values to BMD 

within a specified ROI. The HU values of these reference phantom rods and their known 

K2HPO4 densities (Table 1) are used to construct a linear model, i.e.
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where μROI is the HU at a specific pixel or within a specific ROI, and ρROI is the 

corresponding bone mineral density in terms of equivalent K2HPO4 density. Examples of 

ROIs where pixel values have been converted to BMD are shown in Figure 2.

Biomechanical Tests

The half-dissected upper and lower vertebrae of the functional spinal segment units were 

embedded in resin (Rencast Isocyanat and Polyol, Huntsman Group, Bad Säckingen, 

Germany) up to 2 mm above, respectively, below their vertebral endplates. The fixation was 

performed with parallel alignment of the upper and lower endplate of middle vertebra with 

the outer surface of the resin chock to guarantee strict axial loading conditions of the middle 

vertebra during the uniaxial biomechanical test. After embedding, the functional spinal 

segment units were fixed in a mechanical testing system (Wolpert Werkstoffprüfmaschinen 

AG, Schaffhausen, Switzerland). Ten pre-conditioning cycles with uniaxial tension–

compression up to a load between 10 and 400 N with a rate of 5 mm/min was applied. Then 

a monotonic, uniaxial compression was performed at the same rate. The load–displacement 

curve was recorded and vertebral failure load was defined as the first peak of the load–

displacement curve with a subsequent drop of >10 %.

3. METHODS

BMD Features

The BMD distribution within the ROI was represented by its mean. This measure of BMD 

on MDCT has been shown to be highly correlated to conventionally used DXA-derived 

mean BMD [8].

GLCM Features

For a certain ROI with number of gray-levels G, a matrix of dimensions G × G can be 

generated indicating the frequency with which any two specific gray-levels occur at a certain 

distance d apart in a certain direction. For the 2-D scenario, such a gray-level co-occurrence 

matrix (GLCM) can be generated in four principal directions i.e. 0°, 45°, 90° and 135°. 

These frequencies can be normalized to yield the joint probability of gray level values 

occurring as neighboring pairs. For each directional GLCM, the element at a certain row i 
and column j indicates the frequency at which gray level values i & j occur as neighboring 

pairs in that specific direction. The non-directional GLCM obtained by summing these 

directional matrices form the basis for several second-order statistical measures that serve as 

texture features; these are outlined in [41,42]. We investigated 6 of these features that were 

the least correlated and most commonly used, i.e., absolute value, contrast, energy, 

homogeneity, correlation and entropy [43].

Function Approximation

After the computation of different trabecular bone characterizing features sets, their ability 

to predict the biomechanical strength of the femur specimens (measured by failure load) was 

evaluated. For this study, a generalized radial basis function neural network was trained to 

act as a function approximator [44].
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Prediction Performance

In order to generalize the prediction performance of the image features, the set of VOIs was 

divided into training and test sets. In one iteration, a randomly selected training set of VOIs 

(80%) was used to approximate the target function (failure load). The resulting model was 

used to predict the failure load of the remaining, independent test set. The average residual 

error between the predicted failure load FLpred and the true failure load FLtrue for the VOIs 

in this test set Ti, i = 1,‥,Niter, was measured by the root-mean-square error,

This iteration was repeated Niter = 50 times resulting in a RMSE distribution for each bone 

feature set. A Wilcoxon signed-rank test was used to compare two RMSE distributions and 

test for statistical significant differences in performance.

The statistical analysis, feature extraction, function approximation, performance evaluation 

and significance testing were performed in MATLAB, version R2010a (MathWorks, Natick, 

MA).

4. RESULTS

The prediction performances of different features with the GRBF function approximator are 

shown in Figure 3. The best prediction performance was observed with GLCM feature 

correlation (RMSE = 1.02 ± 0.18), which significantly outperformed all other GLCM 

features (p < 0.01). GLCM feature correlation also significantly outperformed MDCT-

measured mean BMD (RMSE = 1.11 ± 0.17) (p < 10−4).

5. NEW AND BREAKTHROUGH WORK

BMD measurements, measured through MDCT or DXA, do not account for a complete 

description of trabecular bone in terms of quality or microstructure. Thus, the accuracy of 

BMD in predicting bone strength or its subsequent use in osteoporosis diagnosis is limited. 

We address this shortcoming by pursuing a more complex global characterization of 

trabecular bone micro-architecture in spinal vertebrae. Specifically, we used GLCM-derived 

second-order statistical features for characterizing trabecular structure in the vertebral 

compartment. In addition, where previous studies have investigated the use of multi-

regression for predicting failure load, we investigate the use of a sophisticated machine 

learning algorithm, i.e. a GRBF neural network, to construct the bone strength prediction 

model. Our results show that such GLCM-derived texture features, when used in 

combination with neural networks, can contribute to improvements in biomechanical 

strength prediction, especially when compared to more BMD measurements derived from 

MDCT.

We are also interested in investigating other novel methods for characterizing trabecular 

bone micro-architecture in spinal vertebrae through their topology (Minkowski Functionals 

[45]) or local geometry (scaling index method [46]) in future studies. Such methods could 
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yield a superior characterization of the bone structures under investigation, or complement 

those already investigated in this study. One can also quantify the anisotropy of the 

trabecular bone structure and evaluate its relationship to overall bone strength in the 

vertebrae.

6. CONCLUSION

In conclusion, the results presented in this work indicate that GLCM-derived second-order 

statistical features that characterize trabecular bone structure in spinal vertebrae can 

significantly improve the prediction of biomechanical strength when compared to 

conventional approaches. This could play an important role in bone fracture risk prediction 

and osteoporosis diagnosis in future computer-aided diagnostic applications.
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Figure 1. 
The central axial slice from the middle vertebra. The calibration phantoms A-E are see on 

the bottom; their equivalent H20 and K2HPO4 densities are specified in Table 1. The ROI 

selected for analysis of trabecular bone structure is marked in red.
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Figure 2. 
ROIs extracted from the central slice of spinal vertebrae on MDCT and transformed to BMD 

from HU. From left to righ, ROIs were extracted from specimens that exhibited high, 

medium and low failure load.
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Figure 3. 
Comparison of prediction performance (mean RMSE ± std) between mean BMD and 

GLCM features. For each RMSE distribution, the central mark corresponds to the median 

and the edges are the 25th and 75th percentile. As seen here, the best performance is 

achieved with GLCM feature correlation.
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Table 1

Calibration phantom with 5 rods A-E. Actual densities and associated uncertainties determined for the 

reference materials are shown here.

Reference Eq. H20 density
(mg/cc)

Eq. K2HPO4 density
(mg/cc)

A 1012.2 ± 2.3 −51.8 ± 0.1

B 1057.0 ± 1.9 −53.4 ± 0.1

C 1103.6 ± 1.7 58.9 ± 0.1

D 1119.5 ± 1.8 157.0 ± 0.3

E 923.2 ± 2.1 375.8 ± 0.9
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