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Abstract

We explore a computational framework for functional connectivity analysis in resting-state 

functional MRI (fMRI) data acquired from the human brain for recovering the underlying network 

structure and understanding causality between network components. Termed mutual connectivity 

analysis (MCA), this framework involves two steps, the first of which is to evaluate the pair-wise 

cross-prediction performance between fMRI pixel time series within the brain. In a second step, 

the underlying network structure is subsequently recovered from the affinity matrix using non-

metric network clustering approaches, such as the so-called Louvain method. Finally, we use 

convergent cross-mapping (CCM) to study causality between different network components. We 

demonstrate our MCA framework in the problem of recovering the motor cortex network 

associated with hand movement from resting state fMRI data. Results are compared with a ground 

truth of active motor cortex regions as identified by a task-based fMRI sequence involving a 

finger-tapping stimulation experiment. Our results regarding causation between regions of the 

motor cortex revealed a significant directional variability and were not readily interpretable in a 

consistent manner across subjects. However, our results on whole-slice fMRI analysis demonstrate 

that MCA-based model-free recovery of regions associated with the primary motor cortex and 

supplementary motor area are in close agreement with localization of similar regions achieved 

with a task-based fMRI acquisition. Thus, we conclude that our MCA methodology can extract 

and visualize valuable information concerning the underlying network structure between different 

regions of the brain in resting state fMRI.
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1. INTRODUCTION

There has been significant growth in research aimed at exploring structural and functional 

connectivity in the human brain [1]. Of particular interest is the analysis of functional 

connectivity at fine-grained spatial and temporal resolution scales, based on the acquisition 

capabilities provided by advanced in vivo neuro-imaging techniques, such as state-of-the-art 

fMRI. Here, several contemporary analytic techniques such as seed-based functional 

connectivity analysis [2], independent component analysis [3], Granger causality [4], etc., 

imply inherent simplifications, such as assuming linearity or implicit time-series 

separability, which can obscure the characteristics of the complex system being investigated. 

Another drawback of such approaches is that they transform the original high-dimensional 

imaging data into simpler low-dimensional representations, which discards valuable 

information and thus limits the interpretability of brain connectivity analysis.

Our primary goal with this contribution is to introduce a computational framework for 

analyzing functional network connectivity of information transfer in the human brain, while 

simultaneously avoiding some of the information loss induced by the previously mentioned 

techniques. To this end, we present a mutual connectivity analysis (MCA) approach for non-

linear functional connectivity analysis in large time-series ensembles obtained from resting 

state fMRI data. Our approach involves network identification through large scale non-linear 

mutual time-series cross-prediction [5] followed by functional network identification by 

partitioning the resulting affinity (or dissimilarity matrix) through non-metric clustering 

approaches, such as with the Louvain method [6]. Subsequently, causality analysis between 

identified network components is performed using convergent cross-mapping (CCM) [7].

We demonstrate the applicability of our MCA framework to identifying and visualizing the 

motor cortex through analysis of resting-state fMRI data. It has been previously shown that 

frequency fluctuations (< 0.1 Hz) from regions of the motor cortex associated with hand 

movement are strongly correlated both within and across hemispheres [2]. We explore non-

linear connectivity and causality between time series ensembles from different regions of the 

motor cortex associated with hand movement, as discussed in the following sections. This 

work is embedded in our group’s endeavor to expedite ‘big data’ analysis in biomedical 

imaging by means of advanced pattern recognition and machine learning methods for 

computational radiology, e.g. [8–38].

2. DATA

Functional MRI images were acquired from 4 healthy volunteers (1 female and 3 males, age 

range 25–28 years) with a 1.5T GE SIGNA™ whole-body MRI scanner (GE, Milwaukee, 

WI, USA). Two image sequences were acquired from each subject; the first was under 

resting state conditions while the second one involved a finger-tapping task stimulus to 
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localize the left motor cortex (LMC), right motor cortex (RMC), and supplementary motor 

area (SMA) regions for establishing ground truth (example shown in Figure 1). During the 

resting-state scan, the subject was instructed to stay still and keep eyes closed. The fMRI 

sequences were performed with the following parameters - echo time (TE) - 40 ms, echo-

repetition time (TR) - 500 ms, and flip angle (FA) - 90°. 512 fMRI scans were acquired from 

two slice locations that corresponded to the motor cortex; each image had a slice thickness 

of 10 mm and an in-plane pixel resolution of 3.75 mm x 3.75 mm. The first 24 time points of 

fMRI data were discarded to avoid any impact on the data analysis by initial saturation 

effects.

3. METHODS

3.1 Pre-processing

Motion artifacts were compensated by automatic image alignment and signal drifts were 

corrected with linear de-trending. In addition, resting state fMRI time series were subject to 

low pass filtering with a cut-off frequency of 0.08 Hz for minimizing the influence of 

respiratory and cardio-vascular oscillations while preserving the frequency spectrum 

pertaining to functional connectivity [2]. Finally, the time-courses were further normalized 

to zero mean and unit standard deviation to focus on signal dynamics rather than amplitude 

[39].

3.2 MCA - Pair-wise Affinity Evaluation

Our first step is to build a pair-wise affinity/similarity matrix A for all time series of brain 

pixels on a single fMRI slice. Given n pixels, the pair-wise affinity between two pixel time 

series X and Y (where X,Y ∈{Xk, k=1…,n}) describes the degree of their dynamic coupling 

as a measure of their cross-prediction performance. For example, to compute matrix element 

(A)X,Y, we break down time series X of length l into a set of vectors xi, i ∈{1,2,…l-d+1} of 

dimension d, which can be interpreted as a sliding window of length d moving along X. The 

corresponding target vectors for xi are yi of dimension e. In this study, the parameters d and 

e were chosen d=10 and e = 1. Here, xi is mapped to future yi, e.g. the vector xi that 

comprises of the first 10 time points of X is mapped to yi which corresponds to the 11th time 

point of Y.

Using all (or a smaller sub-sampled set) of vectors xi, we can use a local simplex model, e.g. 

[7], to compute estimates ŷi of yi. Here, d+1 nearest neighbors xj are identified for every xi. 

An estimate of its corresponding target vector ŷi is then computed as the weighted average 

of the target vectors for the d+1 neighbors. Thus,

where the weights wj are determined as -
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Note that x1 indicates the nearest neighbor for a specific xi and ||·|| represents the Euclidean 

distance between vectors. The estimates ŷi are subsequently concatenated to reconstruct Ŷ. 

One may also make use of other local linear or average models described in the literature for 

this step. (A)X,Y is now computed as the correlation coefficient between the prediction Ŷ and 

the actual time series Y. Further details can be found in [40].

3.3 MCA - Non-Metric Clustering

From the affinity matrix A, we use the Louvain method [6] to recover the underlying 

network structure through non-metric clustering. The Louvain method aims to find high 

modularity clusters in networks, where modularity is defined as the ratio of the density of 

intra-community node linkage to the density of inter-community node linkage. Modularity Q 
is defined as

where Aij represents the affinity between nodes i and j,

is the sum of affinities of nodes attached to i, Ci is the community to which node i is 

assigned, δ(u,v) = 1 when u = v, and 0 otherwise, and

[ 41]

Thus, a complex network is decomposed into clusters with strong intra-community links and 

weak inter-community links. The algorithm involves an iterative process during which 

different nodes of the network are merged into larger communities if the modularity is 

improved as a consequence. The process is discontinued when no further improvement in 

modularity can be achieved. Further details pertaining to this clustering approach can be 

found in [6].

In order to avoid the creation of large super-communities that encompassed smaller and 

more interesting clusters, we also pursue an approach frequently applied in spectral 

clustering to make the affinity matrix sparser [42]. Specifically, we only consider the k most 

similar nodes for any given node i. Additionally, only mutual k most-similar nodes are 

considered, i.e., bi-directional links in the k most-similar nodes. In this study, k = 100 is 
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chosen empirically from preliminary analysis; this corresponds to approximately 20% of the 

nodes in the network in most cases. Similarity between clustering results and the ground 

truth was evaluated using the Dice coefficient [43].

3.4 MCA - Causality Analysis

We further extend MCA to include convergent cross-mapping (CCM) for investigating 

causality between different regions of the primary motor cortex network. CCM explores the 

phenomenon of causation in non-linear systems, where the ability of time series X to better 

predict (or “cross-map”) Y with increasing time-series length L is investigated. The length L 
can be modified by choosing appropriate collections of vectors xi and their targets yi. Thus, 

according to [7], observing the degree to which X and Y are cross-mapped over increasing L 
enables one to establish grounds for causation.

In this study, we restrict the examination of causation to specific regions of the motor cortex, 

as identified using the ground truth. Thus, MCA with both GLM is used to build a smaller 

affinity matrix involving pixels from the LMC, RMC and SMA alone. From the entire 

collection of vectors xi from time series X, a randomly chosen subset (of 10–80%) can have 

different variations. So we compute an affinity matrix for 20 different variations of subsets 

of xi, and use their average for CCM analysis.

For interpretation of results achieved with CCM causality analysis, we present a pair-wise 

regional visualization of presumed causal influences between the LMC, RMC and SMA. 

Thus, when comparing any two regions in the motor cortex network, each pixel of a specific 

region is assigned an influence score based on its cross-prediction performance with all 

pixels in the other region.

All procedures were implemented using MATLAB 8.1 (MathWorks Inc., Natick, MA, 

2013). The Louvain method implementation was taken from [44].

4. RESULTS

4.1 Network Recovery

Figure 2 shows the results of recovering communities associated with the motor cortex from 

a single resting state fMRI slice through non-metric clustering of the MCA affinity matrix 

using the Louvain method [6]. As seen here, MCA with non-metric clustering is able to 

recover the community structure of bilateral primary motor cortices and the supplementary 

motor areas. The overlap between the recovered regions of the primary motor cortex and the 

ground truth, as characterized by the Dice coefficient, was 0.51.

4.2 Causality Analysis

Figure 3 shows a visualization of the results of pair-wise causality analysis between the 

LMC, RMC and SMA for the same image slice as in Figure 1. A specific direction of 

causation is noted between the different regions, i.e., both LMC and RMC appear to 

influence the SMA. However, such findings are not consistent on images from other 

subjects.
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5. NEW AND BREAKTHROUGH WORK

We present a computational framework for analysis of functional connectivity in the brain 

from resting state fMRI data for purposes of recovering the underlying network structure 

and establishing causality. While other methodologies for assessing functional connectivity 

through fMRI exist, such as seed-based approaches [2], ICA [3], etc., our framework avoids 

certain shortcomings, such as assumptions of linearity, time-series separability, etc. We 

instead propose to use non-linear mutual connectivity analysis (MCA) to evaluate the pair-

wise cross-prediction quality between resting state fMRI time series acquired from the 

human brain. Our results, as seen in Figures 2–3, suggest that such pair-wise affinity 

matrices can reveal valuable information concerning the underlying network structure and 

causation between functionally connected brain regions. To the best of our knowledge, this 

is the first publication in the literature, which introduces convergent cross-mapping (CCM) 

into the domain of functional MRI analysis. Beyond its immediate applications in 

computational neuroscience, neurophysiology, and clinical neurology, we conjecture that our 

MCA approach to analyzing the dynamics of large non-linear systems will be useful in many 

other research domains throughout science and engineering, ranging from information 

retrieval to systems biology.

For future outlook, one can investigate other methods such a neural networks and 

information theory measures to setup the pair-wise affinity (or dissimilarity) matrix. One 

may also use other methods of non-metric clustering such as agglomerative clustering [45], 

pair-wise clustering through deterministic annealing [46], topographic mapping of proximity 

data (TMP) [47], spectral clustering methods based on eigenvalue decompositions of graph 

Laplacians [48] etc., in place of the Louvain method.

6. CONCLUSION

We present a mutual connectivity analysis (MCA) framework for analysis of functional 

connectivity and causality in the brain from resting state fMRI data, which combines local 

non-linear time series prediction, such as by using a local simplex model, with non-metric 

clustering, such as the Louvain method, for recovering the underlying functional brain 

network structure, and convergent cross-mapping (CCM) for exploring causation between 

different network components. By successfully recovering the network structure of the 

motor cortex, the results observed in our study demonstrate the applicability of our method 

to exploring functional connectivity in the human brain.

This work is not being and has not been submitted for publication or presentation elsewhere.
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Figure 1. 
The ground truth example for one subject. The identified primary motor cortex (left and 

right motor cortex) and pixels corresponding to the supplementary motor area (shown in red) 

are superimposed on the original slice.
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Figure 2. 
(LEFT) Ground truth for primary motor cortex regions (LMC, RMC and SMA). (RIGHT) 

Motor cortex regions recovered from our MCA framework. Note the similarity of the 

identified brain networks revealing bilateral primary motor cortices and supplementary 

motor areas. Dice coefficient between the ground truth and our MCA network analysis 

results is 0.51.
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Figure 3. 
Pair-wise regional causality analysis performed on a pixel-wise basis. From left to right, the 

pair-wise comparisons involve the RMC and SMA, LMC and SMA, and the LMC and 

RMC. The influence score of each pixel, as described in section 3.4 is color coded; red 

pixels are “influencers” while blue pixels are “influencees”.
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