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Abstract

Parsing volumetric computed tomography (CT) into 10 or more salient organs simultaneously is a 

challenging task with many applications such as personalized scan planning and dose reporting. In 

the clinic, pre-scan data can come in the form of very low dose volumes acquired just prior to the 

primary scan or from an existing primary scan. To localize organs in such diverse data, we propose 

a new learning based framework that we call hierarchical pictorial structures (HPS) which builds 

multiple levels of models in a tree-like hierarchy that mirrors the natural decomposition of human 

anatomy from gross structures to finer structures. Each node of our hierarchical model learns (1) 

the local appearance and shape of structures, and (2) a generative global model that learns 

probabilistic, structural arrangement. Our main contribution is two fold. First we embed the 

pictorial structures approach in a hierarchical framework which reduces test time image 

interpretation and allows for the incorporation of additional geometric constraints that robustly 

guide model fitting in the presence of noise. Second we guide our HPS framework with the 

probabilistic cost maps extracted using random decision forests using volumetric 3D HOG 

features which makes our model fast to train and fast to apply to novel test data and posses a high 

degree of invariance to shape distortion and imaging artifacts. All steps require approximate 3 

mins to compute and all organs are located with suitably high accuracy for our clinical 

applications such as personalized scan planning for radiation dose reduction. We assess our 

method using a database of volumetric CT scans from 81 subjects with widely varying age and 

pathology and with simulated ultra low dose cadaver pre-scan data.
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1. INTRODUCTION

Extracting bounding boxes of the salient organs in a patient’s radiological scan provides 

important information that can be used to guide many subsequent applications. The 

localization information can also be used to guide finer scale segmentation of each organs 

boundary surface by constraining the segmentation to each localized ROI. In large 
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volumetric scans, bounding box information can aid in the visualization of just the 

anatomical structures of interest which can simplify workflow and interpretation by a 

radiologist. In addition, and a focus of ours, in the case of computed tomography (CT), 

organ localization information can be used to guide personalized scan planning and dose 

reporting. Other methods have been developed for organ localization using 2-D scout images 

such as X-Ray radiographs,1,2 however 3D image data is necessary to disambiguate the 

extents of abdomen organs (liver, spleen, kidneys, etc). In the clinic, the volumetric pre-scan 

data can come in the form of very low dose volumes acquired just prior to the primary scan 

or from an existing primary scan.

Some 3-D automated organ localization methods have been developed in recent years. Wolz 

et al.3 proposed an atlas-based method for abdominal multi-organ segmentation in CT. Both 

multi-atlas registration and patch-based segmentation techniques were combined in a single 

framework. Criminisi et al. proposed regression forest based methods for anatomical 

landmark detection using local context features.4 The methods were validated on 100 CT 

scans. Erdt et al.5 developed a learning-based region detection approach using HOG features 

for 3-D organ localization in standard-dose CT. The detected results were further refined 

using a PCA-based shape model. None of above methods have been applied on low dose CT 

scan.

In this work, we propose a new learning based framework that we call hierarchical pictorial 

structures (HPS), which builds multiple levels of models in a tree-like hierarchy. We apply it 

to localize multiple (11) organs simultaneously and accurately in a database of 51 

volumetric CT scans and demonstrate its suitability to very low dose pre-scan acquisition 

technology which we are developing separately.

2. METHODS

Our organ localization approach consists of two parts. First, single rectangular region of 

each organ is detected independently using 3-D HOG based features, which results in a 

probability map of candidate locations for the associated organ. Second, a tree-shaped 

pictorial structure model encoding context information between certain pairs of organs is 

constructed. The localization of multiple organs is then performed in a coarse to fine strategy 

using dynamic programming approach. The following sections describe each step in details.

2.1 3-D HOG features

HOG features are frequently used in computer vision area with applications including object 

detection,5,6 video tracking,7 image retrieval,8 etc. The main idea is to count distribution of 

gradient orientation in local patches of the image, which describes both local appearance and 

shape information of target object.6 Compared to other feature descriptors, HOG features are 

invariant to local deformation and scales, and are therefore well suited for organ detection 

tasks where substantial inter-patient variances can exist. Note that HOG features are not 

rotation invariant beyond the bin angle width. However, the general scan orientation of 

patients are usually known in medical imaging. Thus we can roughly rotationally align the 

data before computing HOG features.
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To compute 3-D HOG features, a 3-D patch of the target area is obtained from input 

volumetric images. Then the patch is divided into 3 × 3 × 3 equally sized sub-cells. In each 

sub-cell a weighted 2-D histograms of gradient orientation is computed. Specifically, a 3-D 

gradient vector v = (r, θ, φ) is computed for each voxel inside the cell, where r is the 

magnitude of the gradient; θ and φ are the polar angle and the azimuthal angle of the 

gradient vector, respectively. Then each voxel casts a magnitude weighted vote in the 2-D 

orientation-based histogram H(θ, φ). Fig. 2a illustrates our 3-D HOG computation. For time 

efficiency, an integral histogram image is computed in a Cartesian space as described in,9 

which greatly helps to reduce HOG computation time.

The computed features are then used to train individual classifiers for single organ detection. 

A 3-D ground truth bounding-box is manually labeled for each target organ on the training 

image, from which 3-D HOG features are computed as positive samples. Negative samples 

are generated by randomly sampling over the image space with the constraint that it does not 

overlap the manually-labeled positive bounding-box. A decision forest10 classifier is then 

trained for each of target organs individually. The detection is performed on novel images by 

scanning over the volume at candidate locations l(x, y, z) with different scales of the image 

patches to capture the scale variance of target organs. The computed HOG features are then 

input to the classifier, which outputs a matching score mi(l, s) for organ oi normalized in the 

range of [0–1], representing the probability that the given image patches centered at l(x, y, z) 

with scale s matches the training models for organ oi. Fig. 2a shows examples of the 

computed score with optimal scale for left lung, heart and right kidney, respectively. The 

classifier generated a strong response in the center area of the target organs.

2.2 Pictorial structure model

Our proposed approach is inspired by the pictorial structure model for object recognition.11 

The basic idea is to describe an object as a collection of parts with a connection between 

selected pairs of parts. It can be expressed as an undirected graph G = (V, E), where set of 

vertices V = {v1, …, vN} corresponds to the N parts of the object, while each edge (vi, vj) ∈ 
E defines the connectivity relationship between part vi and vj. If we let L = (l1,…,lN) define 

the locations of N parts in a given image I, then the object recognition problem can be 

formulated as an optimization problem:

L* = arg min
L

( ∑
i = 1

n
ci(li) + ∑

(vi, v j) ∈ E
di j(li, l j)) (1)

where ci(li) is an image matching cost inversely related to the likelihood that part i is located 

at li. dij(li, lj) encodes the pairwise geometric contextual relationship between part i and j. 
Specifically, it measures the deformation cost of the model when placing part i at location li 
and placing j at location lj. As described in,11 a globally optimal solution can be achieved in 

linear time to the number of possible discrete space when the model is restricted to a tree 

structure.

In our proposed approach, we make use of similar idea for organ localization. Each organ is 

viewed as a graph node in the pictorial structures model. The context information between 
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pairs of organs can be captured by adding weighted edges between nodes. Fig. 2a is 

illustrative of the structure of our context model. A statistical model is used for both 

matching cost and the deformation cost. Here ci(li) at location li is designed based on the 

matching score obtained from the 3-D Hog Feature. To enforce context constraints between 

pairs of organs, we identify one of the organs as the root organ or. Then a probabilistic 

model of the relative location of the other organs to the root organ is built from the training 

data. Here we assume a Gaussian distribution model Nij(sij, Σij) on the distance vector 

between oi and oj, where sij is the mean distance vector and Σij is the associated covariance 

matrix, then the deformation cost is given by dij(li, lj) = Nij(li − lj, sij, Σij), measuring the 

deformation of current distance vector li − lj with respect to the trained context model. A 

globally optimal solution is achieved using a generalized distance transform under a 

Mahalanobis distance with diagonal covariance matrix, which leads to a linear time solution.
11,12 Once we compute the best location of li* for organ oi, the bounding box can be further 

obtained by centering the image patch at li* with optimal scale obtained from 3-D HOG 

feature computation.

2.3 Hierarchical Organ Localization

We were inspired to build a model composed of submodels because human anatomy has a 

natural hierarchical decomposition. In HPS, each submodel has one root and one or more 

leaves. The first level has one model while subsequent levels have one or more submodels. 

Fig. 2b illustrates our two-level model. Level 1 uses spine as root and has head, pelvis, and 

chest/abdominal organs as leaves. The head is also the root for a level 2 submodel which has 

the eyes (dual) as a leaf, while the pelvis is the root for a level 2 submodel which has the 

testes as a leaf (gender is generally available in the dicom header). Organs within a level 

provide context for one another, and root organs in level 1 provide context for the leaves of 

level 2. To train appearance models for level 2, negative examples are drawn from search 

windows (yellow boxes in Fig 2c) around root organs of level 1. Each submodel’s local 

organ appearances and global context model is trained separately using these search window 

specifications and ground truth annotations. To apply the trained model, the model fitting is 

iterated successively from the top level to the lower level. Here we first compute the 

probability maps for the organs at level 1 and fit its context model, then we use the organ 

localization results from level 1 to form the root organ locations of the submodels in level 2 

and fit them accordingly. Note that here we only need to search in a much smaller region 

around the detected root organ locations from level 1, which significantly reduces the 

computation time of model fitting. Also, multi-resolution organ localization is allowed since 

we can use larger resolution for large organs (lung, liver, etc) in level 1 and smaller 

resolution for eyes and testes in level 2.

3. EXPERIMENTS AND RESULTS

In our first experiment, volumetric CT scans from a database of 81 subjects acquired from 

PET-CT scan were used to simulate the clinical situation where subjects have a previous 

(longitudinal) acquisition that can be used to help guide subsequent scan planning. The 

image resolution ranges from 0.98 × 0.98 × 3.27 mm3 to 1.37 × 1.37 × 3.75 mm3. Note that 

CT images in wholebody PET-CT scan usually have large slice thickness and low contrast. 
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Hence the organ localization in PET-CT is more challenging than ordinary CT. Ground-truth 

bounding-boxes for lungs, liver, heart, spleen, kidneys, head, pelvis, eyes and testes were 

manually identified on all 81 subjects. We randomly selected 30 subject for training and the 

remaining 51 were used for testing. Fig. 3a shows examples of the accurate localization that 

is attained using our method for larger organs, while Fig. 3b,c shows the highly accurate 

localization for smaller organs such as the eyes and testes. For quantitative evaluation, the 

unsigned distance between the computed box sides and the ground-truth box sides were 

computed. The mean errors for each organ across the 51 test subjects are shown in Fig. 3d. 

All organs have fairly low errors (less than 20mm) and meet our clinical purpose of 

personalized scan plan optimization for a CT scanner.

In our second experiment, we test the applicability of our method trained on the 30 subjects 

in the previous experiment to generalize to an extremely low volumetric pre-scan, with dose 

equivalent to a traditional 2D x-ray radiograph. Due to ethical (e.g. IRB) concerns, we 

simulate such a volumetric pre-scan by: (1) scanning a human cadaver at CTDIvol of 

0.9mGy which is less than 10% of the dose of a standard volumetric CT, and then reduce the 

dose another 10× to a CTDIvol of 0.09mGy by using only every 10th view when performing 

a sparse filtered backprojection. To reduce noise we apply noise reduction in projection 

domain, such as detector blur as described by Yin et al,13 and Gaussian smoothing in the 

image domain. Despite the fact that the simulated pre-scan volume has a dose of just 
0.09mGy, and the resulting volume is of lower quality than the standard dose data, our 

method still achieves high quality localization of the cadaver’s organs. Fig. 3d shows the 

visually accurate organ localizations for the lungs heart and pelvis (left panel, axial), and 

spine, liver (middle panel) and the kidneys (right panel). This ability to generalize well to 

never seen before data is promising for our future clinical applications of our approach.

In addition to high accuracy and generalization, our approach also enjoys high 

computational efficiency. Our current C++, ITK based implementation requires roughly 3 

min to run on a standard 4 core workstation. We achieve efficiency in several ways including 

the use of integral histogram image which greatly helps reduce HOG computation time. 

Currently most remaining computation time is spent in the application of the organ 

probability map computation, however even this can be fully parallelized in future 

implementation, reducing total run time to roughly 20 seconds.

4. DISCUSSION AND CONCLUSIONS

Hierarchical pictorial structures afford three primary advantages. (1) The HPS model 

captures both local appearance and shape information of organs as well as global context 

constraints between organs in a coarse to fine manner. (2) The contextual model can have 

tighter probabilistic distributions than single level model because the hierarchical model 

allows the root to be more proximal to leaves. For example the eyes have low variance 

distance with respect to head center compared to spine center due to head orientation. (3) 

The hierarchical model allows for an additional form of geometry based constraints (relative 

search windows) that can present fewer false positives in cost maps to the model fitting step.

Montillo et al. Page 5

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We have also shown that HPS simultaneously localizes a set of 11 organs across a large 

database of 51 subjects and promising results on extremely low dose (0.09mGy dose) 

cadaver pre-scan simulations. HPS is fully automated, runs in tens of seconds and the 

accuracy we achieve is suitable for important clinical applications such as radition dose 

reduction through personalized scan planning, particularly when used on low dose pre-scan 

data acquired immediately prior to the actual CT scan. We note that to reuse a longitudinal 

scan a fairly straight forward, rigid registration would also be required, however consistent 

patient positioning on the scanner’s table (e.g. with a physical guide) could be used to 

suppress much of this variation, leaving just the organ localization challenge solved by our 

method. We look forward to integrating HPS with personalized scan planning and multi-

modal quantification (e.g. PET/CT).
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Figure 1. 
(a) The steps of 3-D HOG computation, (b) Example of computed matching score of HOG 

features with optimal scale on one coronal slice for left lung (left panel), heart (middle 

panel) and right kidney (right panel). The scores are normalized in the range of [0–1], with 

white representing 1 and black representing 0. Note that the classifier generated a strong 

response in the center area of the target organs.
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Figure 2. 
(a) Pictorial structure model. The red line indicates the connectivity relationship between 

root organ or and remaining organs oi. (b) Multi level hierarchical model. Level 1 organs 

include spine as root organ and head, lungs, heart, liver, spleen, kidneys, pelvis as leaves. 

Level 2 models include (top) head as root with dual eye model as leaf, and (bottom) pelvis 

as root with testes as leaf.
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Figure 3. 
Automatically localized organs on standard dose volumetric CT using 2-level model, (a) 

Level 1 organ localization in a young subject (left), middle aged male (middle) and female 

(right). Level 2 localization results including (b) eye detection results on two additional 

subjects, and (c) testes for two more subjects, (d) Average mm error of bounding box sides 

for each of the 11 organs across 51 test subjects.
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Figure 4. 
Automatically localized organs on extremely low dose (1%) volumetric pre-scan scout 

acquisition. Left panels axial views showing lungs heart (top) and pelvis (bottom). Middle 

panel sagittal view also shows spine (tan)) and liver (blue), while right panel shows kidneys 

(purple, beige).
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