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Abstract

Dietary intake, the process of determining what someone eats during the course of a day, provides 

valuable insights for mounting intervention programs for prevention of many chronic diseases 

such as obesity and cancer. The goals of the Technology Assisted Dietary Assessment (TADA) 

System, developed at Purdue University, is to automatically identify and quantify foods and 

beverages consumed by utilizing food images acquired with a mobile device. Color correction 

serves as a critical step to ensure accurate food identification and volume estimation. We make use 

of a specifically designed color checkerboard (i.e. a fiducial marker) to calibrate the imaging 

system so that the variations of food appearance under different lighting conditions can be 

determined. In this paper, we propose an image quality enhancement technique by combining 

image de-blurring and color correction. The contribution consists of introducing an automatic 

camera shake removal method using a saliency map and improving the polynomial color 

correction model using the LMS color space.
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1. INTRODUCTION

Dietary intake, the process of determining what someone eats during the course of a day, 

provides valuable insights for mounting intervention programs for prevention of many 

chronic diseases such as obesity and cancer. Accurate methods and tools to assess food and 

nutrient intake are essential for epidemiological and clinical research on the association 

between diet and health. The goals of the Technology Assisted Dietary Assessment (TADA) 

System, developed at Purdue University, is to automatically identify and quantify foods and 

beverages consumed by utilizing one image of a users food acquired with a mobile device 

(mobile telephone) [1]–[4]. Figure 1 illustrates the overall architecture of our proposed 

system. First, images acquired with the mobile telephone and metadata are sent to the 

backend server. Then, the image analysis will be done on the server, which consists of four 
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main steps: preprocessing, segmentation, classification and volume estimation [5]–[7]. 

Every step is essential in the sense that a relatively small error may result in 

misclassification of the food or errors in the volume estimation. Next, the automatic 

segmentation results are sent back to the user, so that the user can confirm and/or modify 

food segments. Finally, the confirmed results from users are processed on the server. Based 

on the user feedback, refinement is done to the image segmentation and classification.

Color information is of great importance in our dietary assessment system and it serves as a 

key feature to identify foods [5], [6]. Thus, a consistent color descriptor of an object is 

critical. The colors of an object recorded by a camera depend mainly on three factors: 

illumination conditions in the scene (which are unknown in most cases), object intrinsic 

surface properties and various photometric parameters (e.g., exposure time, white balancing, 

gamma correction) [8]. A real world example is that the rendered colors of the same scene 

can be quite different even with the same camera from slightly different angles. Some 

approaches seek to overcome these problems by estimating illumination invariance color 

descriptors from training images, including the RGB histogram, color moments, and C-SIFT 

[9], [10]. In [9], a combined set of color descriptors with invariance properties surpass the 

performance of intensity based descriptors by 8% on category recognition.

An alternative approach to characterize the imaging properties is based on the spectral 

response/sensitivity of the camera. If the camera spectral sensitivity is known, then it is 

possible to estimate a relationship between the spectral sensitivity of the camera and the CIE 

color matching functions [11]–[14]. This approach, however, is not practical for common 

application due to the fact that the spectral sensitivity of the camera should be measured by 

using specialized devices, such as monochromators, or radiance meters.

1.1 Color Calibration

Our goal is to achieve color constancy under all kinds of lighting conditions so that the color 

of food can be used as a proper classification feature. When we look at an image acquired by 

a mobile phone camera, each pixel can be represented as a function fi, where i is the color 

index (e.g. R, G, B). fi is mainly dependent on three factors: the illuminant spectral power 

distribution I(λ), the surface spectral reflectance S(λ) and the sensor spectral sensitivities 

Vi(λ).

(1)

The color sensor response form a vector F(S) = (fR(S), fG(S), fB(S)), which is also referred 

as the RGB tristimulus (R, G, B). Suppose that two images have been acquired from the 

same scene under different lighting conditions and cameras. For any pixel in the two images,

(2)

Furthermore,
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(3)

We would like to be able to express explicitly such transformation, , between 

an unknown illuminant and a reference. Many chromatic adaptation techniques have been 

proposed to address this problem [15]–[17]. Since this is an ill-posed inverse problem most 

of the proposed solutions lacks uniqueness and stability. It has been shown that the universal 

best and the universal worst technique do not exist [18]: the method that performs best for a 

specific image depends on the image content.

There are generally two ways of achieving color correction. The first approach changes the 

overall colors in an image and is often used for colors other than neutrals to appear correct 

or pleasing. Methods for this type of correction are generally known as gray balance, neutral 

balance or white balance [19], [20]. Gray world is one of the most well-known gray balance 

methods [21], [22]. It is based on the assumption that given an image with sufficient amount 

of color variations, the average value of the R, G, and B components of the image should 

average to a common gray value. Another opponent technique is known as white patch, 

which assumes that the maximum response in an image is caused by a perfect reflectance 

[23]. To combine both gray world and white patch approaches, Alessandro and Carlo Gatta 

proposed Automatic Color Equalization (ACE) in [24]. Their method extends the Retinex 

model of color equalization, merging Retinex with the Gray world and the White Patch 

equalization methods. Recently, the use of visual information automatically extracted from 

the images gas been investigated. Moreno et al. [25] obtained memory colors for three 

different objects (grass, snow and sky) using psychophysical experiments. They then used a 

supervised image segmentation method to detect memory color objects to color correct the 

image using a weighted Von Kries method. S. Bianco and R. Schettini [26] investigated 

color statistics extracted from faces in a scene to estimate illuminants. However, their results 

are largely based on the performance of the face detector and the knowledge of the 

corresponding skin color.

The second approach is usually referred to as color calibration uses the image of a reference 

chart for each set of acquisition conditions. Wang et al. [27] used a Munsell ColorChecker as 

the reference target. They then picked 13 color patches to train the parameters for the 

correction model. Adrian Ilie and Greg Welchin proposed a two-phase calibration technique 

in [28], where a 24-sample GretagMacbeth [29]ColorChecker was set up in each image 

acquired by different cameras. The two-phase method consists of an iterative closed-loop 

hardware calibration and software refinement, which is argued to ensure color constancy 

across multiple imaging devices.

From extensive studies the current TADA system has adopted the concept of using a 

reference target [2], [30]. Feedback from the participants in our studies indicated that it 

would be easy to use a credit card-sized fiducial marker due to the convenient incorporation 

into their current lifestyles [1], [31]. Thus, we decided to use a compact checkerboard 
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pattern to for color calibration (see Figure 2). The color checkerboard was designed to have 

the dimension of 7 × 6 cm2. The color patches were chosen to cover the full color spectrum.

1.2 Single Image Deblurring

In our previous work [30], an image quality measurement method as well as a nonlinear 

color correction model using the CIELAB color space was proposed. However, an 

underlying problem persists that a user might still send a blurry image to our image analysis 

system even our image quality “checker” suggests retaking the image. There are cases where 

the user may be reluctant to retake the image of his/her meal or the image on the small 

mobile telephone screen appears to be good enough. Often, the checkerboard in a blurred 

image cannot be correctly detected and consequently color correction will be skipped by our 

system. This imposes a critical problem for the image analysis steps, i.e. food segmentation 

and identification. This then becomes a Blind Deconvolution (BD) problem with the 

unknown blur represented as a Point Spread Function (PSF).

Blind deconvolution is the process of recovering a sharp version of a blurry image. It is also 

well known to be ill-posed, small perturbations of the data produce large deviations in the 

resulting solution [32]. Mathematically, the general model for a linear degradation caused by 

blurring and additive noise is given by

(4)

where x is a visually sharp image or original image, n is known noise and h is a nonnegative 

blur kernel, whose support is small compared to the image size. When the noise is ignorable, 

the objective of blind restoration is to estimate x and h. Often, the model above is also 

represented in terms of a matrix formulation, that is,

(5)

where the vectors  and  represent the original image and the observed image respectively 

by stacking the image matrix into a vector. H is a Block Toeplitz with Toeplitz Blocks 

(BTTB) matrix.

While numerous approaches have been described [33]–[36], the results are still far from 

perfect. Recent methods have characterized x using natural image statistics [37]–[40]. These 

techniques exhibit some common principles. A. Levin et al. [41] argued the failure of the 

MAP approach and suggested that the key component making blind deconvolution possible 

is not the choice of the prior, but the estimator. In [42], D. Krishnan et al. pointed out that 

there is a major drawback in many common forms of image priors because the minimum of 

the resulting cost function does not correspond to the true sharp solution. They proposed a 

new image regulation method using the ratio of the l1 norm to the l2 norm on the high 

frequencies of an image.
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Based on Krishnan's approach [42], we introduce an image deblurring scheme using a 

saliency map. The idea behind using visual saliency is that we want to reduce the processing 

time by analyzing a sub-image. The sub-image should contain enough features to estimate 

the blur kernel. In our application, it is plausible to assume that the blur in a image is 

uniform and only comes from slight camera movement, such as camera shift or in-plane 

rotation. There are mainly two reasons for such assumption. First, we have implemented an 

image quality check on the mobile telephone, which should prevent users from taking blurry 

images or images without the fiducial marker present. Second, in our image dataset, most of 

the food images are acquired in a stationary environment with reasonably adequate lighting 

condition and the fiducial marker is always detected as a salient region, if present. Since the 

checkerboard region contains plenty of corner or edge features as well as a wide range of 

colors, the estimated blur kernel is consistent to what is analyzed from the entire image. The 

results show that our saliency based image deblurring is robust and fast.

2. IMAGE DEBLURRING

In this section, we explain our proposed deblurring technique in detail. Figure 3 illustrates 

the workflow from mobile quality measure to image preprocessing on the server. The user 

first takes a food image that contains the color fiducial marker under an unknown 

illumination. Then, several image quality checks are initiated before the user can send the 

food image to our backend server. The examination includes checkerboard detection [43], 

blur detection and a coarse illumination condition check. Due to the limited computational 

resources and the need for quick feedback on the mobile device, simple processing 

approaches are used. If the image does not pass the blur detection on the mobile phone, 

image deblurring will be triggered. Both image deblurring and color correction we describe 

in this paper are implemented on the backend server to complete the preprocessing. We want 

to restore the blurry images to the maximum extent so that they can be color corrected for 

further analysis. As shown in Equation 4, we observe the resulting blurry image y and the 

goal is to recover the unknown sharp image x as well as the blur kernel h. Based on the 

deblurring technique proposed in [42], we introduce a faster and robust deblurring method 

using visual saliency. Our method dramatically reduces the computational time without 

sacrificing restoration quality. As shown in Figure 4, the proposed deblurring method 

consists of four steps. Given an input blurry image, the saliency map of the image is first 

computed. A saliency map is a multi-scale feature map which contains local spatial 

discontinuities in the modalities of color, intensity and orientation. We adopted the idea of 

image signature for faster saliency detection, which was first introduced by X. Hou etc. in 

[44]. If we denote the grayscale blurry image as x, which is the mixture of foreground and 

background, its image signature is defined as

(6)

where DCT represents Discrete Cosine Transformation. Consider the reconstructed image x̃ 
= IDCT[ImageSignature], the saliency map s is computed by smoothing the squared 

reconstructed image x̃,
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where g is a Gaussian kernel, * is convolution symbol and ○ represents entry-wise product 

operator. Then we use a Flood Fill technique [45] to eliminate the noisy saliency regions, 

especially small blobs. If we consider a sub-image containing the checkerboard, it possesses 

many of visually recognizable features, such as corners, edges and contrast color patches, so 

it almost always is detected as a salient region. However, it is likely that more than one 

region will be detected. Figure 5 shows two examples of the initial saliency map. Our goal is 

to extract the area containing the checkerboard and use that to estimate the blur kernel. This 

can be achieved by analyzing the histogram of each salient region. For one salient region, 

the histogram of each channel is split into 8 bins, which can be represented by an 8 

dimensional vector. The element with the largest value is discarded and 7 other elements are 

then normalized. By combining 3 channels, we get a 21 dimensional feature vector. The 

cross-correlation between such feature vector and the reference checkerboard histogram is 

computed to find the optimal match.

After we extract the checkerboard region, we use Krishnan's approach [42] to estimate the 

blur kernel. Krishnan's method is described as follows:

1. Use derivative high-pass filters on the blurry image y, creating a high-frequency 

image g

2. Blind multi-scale estimation of blur matrix h from g using a coarse-to-fine 

pyramid of image resolutions. At each scale, update sharp high-frequency image 

f and h using l1/l2 regularization. Use bilinear interpolation to up-sample the 

current kernel to finer level as initialization.

3. Image recovery using non-blind algorithm [46].

3. COLOR CORRECTION

In this section, we describe the selection of the color space we use for color correction and 

then compare our method to our previous work [30]. Color correction is done on the 

backend server, which mainly consists of color extraction from the checkerboard and color 

mapping to the D65 reference and matching the acquired image to the reference lighting 

condition [30]. In this paper we investigate polynomial models using three different color 

spaces and compare them to our previous work.

3.1 Color Space Models

A color space is a mathematical model used to describe how colors can be interpreted as 

tuples, typically of three or four elements. sRGB color space is commonly used in mobile 

cameras and displays [8]. The transformation between sRGB color space and linear RGB 

space is defined as follows:
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where C represents R,G or B channel and γ is the gamma correction value. In our previous 

work [30], the checkerboard image captured using a mobile telephone camera under the D65 

illumination was used as the reference. We implemented a different approach for measuring 

the color patch. The checkerboard shown in Figure 2 is placed inside a ”SpectraLight II” 

illumination booth and we use a spectral radiometer to measure each color patch on the 

checkerboard. The output of spectral radiometer is in XYZ color space. The conversion from 

linear RGB color space to CIEXYZ color space is defined as [8],

The inverse conversion from CIEXYZ to linear RGB color space is,

Here, we propose to use LMS color space for color correction. LMS color space is derived 

from the human visual system. Humans have three distinct types of color receptors, which 

are referred to as long,medium and short cones [47]. Though the LMS color space is not 

commonly used in color specification, it is often used for chromatic adaptation. It has simple 

and positive color matching function for each channel. It is computationally simpler 

compared to other nonlinear color spaces, such as the CIELAB color space. It is also 

proportional to the illuminant energy. The coordinates in the XYZ system are related to 

LMS through the following transformation,

(7)

3.2 Proposed Color Correction

Figure 6 shows a diagram of our proposed color correction method. The uncorrected image 

is first converted into LMS color space. Then, we implement and optimize the polynomial 

transforms to find the correction matrix. For each color patch, the tristimulus values in LMS 

color space can be represented as a vector V : (Li, Mi, Si)T (i = 1, 2, . . . , 11), we have 11 

colors on the checkerboard including black and white. Similarly, the reference checkerboard 

has 11 corresponding color values, denoted as R : (RLi, RMi, RSi)T (i = 1, 2, . . . , 11). We 
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use the following vector X : [L, M, S, LM, LS, MS, 1]T to estimate the color correction 

matrix. The transformation model can be represented as,

where CLi,CMi and CSi are the corrected tristimulus. The equation can also be rewritten in 

matrix form as,

(8)

where A is the color correction matrix and X is the polynomial combination. Thus, we want 

to find a matrix A, which minimizes the overall error between the corrected image and the 

reference across all 11 color patches. We further formulate this problem as finding 

constrained least square solution. By using the notation above, we have

(9)

Equation 9 can be solved using Levenberg-Marquardt methods [48]. Finally, we correct the 

image in the LMS color space using A and convert it back to the sRGB space for display.

4. EXPERIMENTAL RESULTS

To evaluate our visual saliency based image deblurring technique, we manually choose 25 

blurry images from the TADA free-living study. The free-living study contains a number of 

315 meal images, which were acquired under natural eating conditions by 11 participants. 

Two examples are shown in Figure 5. All food images acquired in this study were taken 

under natural eating conditions by our participants. We also acquired another 25 images of 

plastic food using Samsung Galaxy Nexus. When acquiring those images, we tried to 

simulate the real life situation by deliberately moving the camera slightly to create blur e ect. 

Now, we have a total of 50 images as testing data. The TADA checkerboard was included in 

all the images, but none could be detected due to blurriness. After applying our method to 

the testing images, 31 out of 50 were correctly detected to have the TADA checkerboard. 

Therefore, color correction can be applied to them.
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Figure 7 illustrates two deblurred images corresponding to the original ones in Figure 5. The 

one on the left was detected to have the TADA checkerboard after image deblurring, even 

though it seems visually unpleasant in Figure 7. The image on the right failed to be detected 

with a checkerboard pattern due to the heavy rotation and shift of the camera. A plastic food 

image example is shown in Figure 8. The fiducial marker was correctly located in the 

deblurred image in this case. In addition to the robust image restoration, our method 

achieved approximately ⅙ of computational time compared to Krishnan's algorithm without 

using saliency map. As for the two cases in Figure 7(from left to right), Krishnan's algorithm 

took 51.45s and 74.42s respectively and the proposed method consumed 8.13s and 11.51s 

including saliency detection as well as deblurring. All the experiments were conducted on 

OSX Yosemite with 2.6G quad core i7 CPU and 16G RAM. The images were scaled to 800 

× 600 to speed up the process.

To evaluate the performance of the proposed color correction methods, we use 

GretagMacbeth Colorchecker [49] as the testing target. Both the TADA fiducial marker and 

GretagMacbeth Colorchecker were placed inside a SpectraLight II illumination booth. We 

acquired several images of the two checkerboards using four different illuminants, i.e. 

simulated daylight (CIE D65, 6500 K), horizon daylight (simulated early morning sunrise or 

afternoon sunset, 2300 K), CIE A (incandescent home lighting, 2856 K), and commercial 

fluorescent (cool white, 4000 K). All the images were acquired using iPhone 5 camera.

The captured images with non-D65 illuminations were corrected using the method described 

in Section 3. Here, we compared our proposed method with the similar approach using the 

CIELAB and sRGB color spaces. Let (Ri, Gi, Bi)(i = 1, 2, . . . , 24) denote the reference 

color of each patch in the GretagMacbeth Colorchecker and (i = 1, 2, . . . , 24) 

be the corrected values of corresponding patch under various lighting conditions. The 

average Euclidean distance for all 24 pairs is defined as:

(10)

Table 1 shows the mean error between the reference and corrected images for different 

methods. The entry Total in the table is simply the summation of R, G and B channel errors. 

The column of LMS demonstrates the error of the method we proposed and the results from 

the similar technique using sRGB and CIELAB color space verified our choice of choose 

LMS as the color correction space. Even though our method does not produce consistently 

the smallest error for each channel, the overall RGB error is approximately a 10% 

improvement compared with the correction method using CIELAB color space. This implies 

that even though the CIELAB color space is uniform with respect to the Human Visual 

System (HSV), it is not necessarily the best choice when it comes to the linear color 

correction model, since the model expects each channel to be correlated when combining the 

polynomial terms. In our experiment, we used the fixed gamma value of 2.2 based on te 

iPhone 5's camera specification. By examining some of the most popular smart phones on 

the market, we concluded that such gamma is plausible (see Table 2).
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5. CONCLUSION AND FUTURE WORK

In this paper we presented an improved polynomial color correction model using LMS color 

space and proposed a visual saliency based image deblurring method. We have shown that 

image deblurring using a saliency map is plausible in the TADA system because we have 

enough prior knowledge of food images. The proposed technique recovers more than 60 

percent of the images in our dataset which could not be color corrected previously. It is 

approximately 5 times faster than Krishnan's method [42]. The color correction model in 

LMS color space demonstrates more accuracy compared to other color correction models 

using CIELAB or sRGB space. In the future we would like to explore color correction using 

multiple lighting sources and generalize the saliency based method for image deblurring or 

segmentation.
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Figure 1. 
The architecture of TADA system.
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Figure 2. 
An Example of the Color Fiducial Marker Used in the TADA System.
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Figure 3. 
TADA mobile quality measure system.
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Figure 4. 
Proposed image deblurring technique.
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Figure 5. 
Examples of saliency regions.
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Figure 6. 
Diagram of our proposed color correction method.
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Figure 7. 
Examples of deblurred images.

Wang et al. Page 19

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Example of blurry and deblurred plastic food images.
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Table 1

Errors (Δ) Between the Reference Image and Corrected Images

Lighting Error LAB sRGB LMS

Incandescent

Red 7.98 7.44 7.76

Green 9.54 8.86 7.59

Blue 10.56 9.58 7.56

Total 28.08 25.88 22.91

Horizon Light

Red 7.53 6.34 3.30

Green 3.84 3.98 3.85

Blue 11.85 11.55 9.37

Total 23.22 21.87 16.52

Coolwhite

Red 3.54 3.44 3.22

Green 4.18 4.15 4.31

Blue 3.88 3.65 2.89

Total 11.60 11.24 10.52
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Table 2

Gamma correction values of popular smart phones

Mobile Phones iPhone 6 iPhone 5 iPhone 4s Samsung Galaxy S5 Samsung Galaxy S4

Gamma 2.23 2.22 2.1 2.25 2.16
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