Using False Colors to Protect Visual Privacy of Sensitive Content

Serdar Çiftçi^a, Pavel Korshunov^b, Ahmet Oğuz Akyüz^a, and Touradj Ebrahimi^b

^aDepartment of Computer Engineering, Middle East Technical University, Ankara, Turkey; ^bMultimedia Signal Processing Group, EPFL, Lausanne, Switzerland

ABSTRACT

Many privacy protection tools have been proposed for preserving privacy. Tools for protection of visual privacy available today lack either all or some of the important properties that are expected from such tools. Therefore, in this paper, we propose a simple yet effective method for privacy protection based on false color visualization, which maps color palette of an image into a different color palette, possibly after a compressive point transformation of the original pixel data, distorting the details of the original image. This method does not require any prior face detection or other sensitive regions detection and, hence, unlike typical privacy protection methods, it is less sensitive to inaccurate computer vision algorithms. It is also secure as the look-up tables can be encrypted, reversible as table look-ups can be inverted, flexible as it is independent of format or encoding, adjustable as the final result can be computed by interpolating the false color image with the original using different degrees of interpolation, less distracting as it does not create visually unpleasant artifacts, and selective as it preserves better semantic structure of the input. Four different color scales and four different compression functions, one which the proposed method relies, are evaluated via objective (three face recognition algorithms) and subjective (50 human subjects in an online-based study) assessments using faces from FERET public dataset. The evaluations demonstrate that DEF and RBS color scales lead to the strongest privacy protection, while compression functions add little to the strength of privacy protection. Statistical analysis also shows that recognition algorithms and human subjects perceive the proposed protection similarly.

Keywords: Visual privacy protection, false color visualization, objective evaluation, subjective assessment.

1. INTRODUCTION

The advances in imaging technologies, widespread use of social networks, and rapid adoption of surveillance systems have created a situation where we are under the constant surveillance with daily violation of personal privacy. While social networks, photo and video sharing platforms, and cloud based services provide privacy and security protection mechanisms (albeit being rudimentary and inefficient as recent privacy scandals demonstrated), little is done for privacy protection in video surveillance systems.

One reason for the lack of use of privacy protection tools in video surveillance is the problem of balancing between privacy, the amount of personal information visible in a video, and intelligibility, the amount of visible information that is necessary to perform a surveillance task. An ideal video surveillance system should protect privacy without sacrificing intelligibility. This means, for instance, that unauthorized individuals should not be able to recognize people in a protected surveillance video but, if need be, authorities such as police, should be able to access the full content of the video during a potential criminal investigation. Furthermore, it should be possible to infer information from the protected video that is useful for the surveillance application without revealing the identities of the people. For example, determining the crowd density in a given region, the direction in which a group of people is moving, or the actions performed by people should be possible without revealing the identities of each individual involved in these scenarios.

Although many methods for privacy protection exist, most of them rely on computer vision algorithms, such as face or person detection, for identifying the privacy sensitive regions where the protection should be applied to. However, computer vision algorithms are not always accurate and may fail in certain cases such as poor capture conditions, noise in the captured

Further author information: (Send correspondence to Serdar Çiftçi)

Serdar Çiftçi: sciftci@ceng.metu.edu.tr, Pavel Korshunov: pavel.korshunov@epfl.ch, Ahmet Oğuz Akyüz: akyuz@ceng.metu.edu.tr, Touradj Ebrahimi: touradj.ebrahimi@epfl.ch frames, partial occlusion of the individuals, and non-ideal camera viewpoints or field-of-views. The failure even in a single frame of a video can lead to the loss of the privacy protection efforts. Therefore, a method that is independent on the underlying computer vision algorithms is needed for more robust privacy protection.

This paper proposes a computer vision independent method that utilizes simple intensity compression/expansion schemes and false color visualizations. To this end, the intensity values of a face image are first compressed and then transformed to a different color scale. For compression, three different functions are used, including logarithmic, sigmoidal, and histogram equalization. An uncompressed condition is also used to evaluate the effectiveness of only using false colors. For false coloring, four different palettes are tested, namely the rainbow, Radiance default*, heated-body, and the linearized optimal color scales. The objective (based on the evaluation framework proposed in²) and crowd-based subjective (based on the approach by Rogowitz and Kalvin³) experiments, were conducted using 100 images of the public FERET face dataset⁴ and show that the proposed approach can effectively protect privacy of faces. Furthermore, the proposed scheme is reversible in a way that all operations can be reverted to obtain the original images. Finally, the protected images retain most of the information necessary for the surveillance task without revealing personal identifiable details.

Therefore, the following are the main contributions of the paper:

- Privacy protection method based on false color scale and intensity compression is proposed. Because the method preserves the semantic structure of an image, it can be applied to the whole image without the need of identifying privacy sensitive regions using typically inaccurate computer vision algorithms.
- Both objective and subjective evaluations of the method are performed, and their results are compared. Four color scales and four compression schemes are evaluated.
- The detailed analysis is performed to determine which scale is the most suitable for privacy protection in cases when both machines and humans are the observers.

2. BACKGROUND AND RELATED WORK

A large number of privacy protection methods are proposed in the literature which can be classified into two major groups. The first group of algorithms determine a region of interest (ROI) from the input frame and applies privacy protection only in this region. In the second group, privacy protection is performed on the entire frame. In the remainder of the paper we refer to these two groups as *local* and *global* methods respectively. Most of the existing privacy protection methods fall into the local category. The chief drawback of local methods is their reliance on computer vision techniques. That is, if the sensitive regions are not correctly identified, the privacy of the recorded individuals may be compromised.

Privacy protection algorithms can be classified along other dimensions as well. For example, some privacy methods are format/compression dependent while others are format/compression independent. The former methods only work for certain image or video formats such as JPEG or MPEG. Format independent methods do not place any restriction on the format of the content that they process. Privacy protection methods can also be classified based on their reversibility. Reversible methods enable the original image or video to be recovered from the protected versions assuming that a secret key is known. Irreversible methods, on the other hand, do not provide a mechanism to obtain the originals.

The three simplest methods of privacy protection are masking, blurring, and pixelation. Masking corresponds to painting the sensitive regions with an opaque color (e.g., insertion of a black box). Although this maximizes privacy, it is not only irreversible but it may also prevent acquiring non-sensitive information as well. Blurring involves smoothing the sensitive regions with a blur kernel. Using a large kernel radius may enhance privacy protection but it may also hinder reversibility. Using small kernels, on the other hand, may not ensure sufficient privacy. Pixelation methods transform the selected regions into a mosaic-like pattern effectively reducing the resolution of the sensitive regions. Their advantages and disadvantages are similar to that of blurring.

More advanced privacy protection methods have also been proposed such as warping.⁵ In warping, a set of key points are determined by using face detection techniques. These key points' coordinates are shifted according to a warping strength parameter and the new intensity values are determined by using interpolation. Warping is local and compression independent. Its reversibility depends on the strength of the warping applied. It has been shown that while low warping

^{*}This is the default color scale used to visualize radiance maps in the Radiance global illumination software.

strength values make the method reversible it may not provide sufficient protection against both human observers and face recognition algorithms. Using high values, on the other hand, may render the warped images irreversible. Furthermore, high warping values often result in visually disturbing face rendering.

Another related privacy protection approach is called morphing.⁶ In morphing, the goal is to find an average face image between the source and the target faces according to a given interpolation level. The source face corresponds to the face of the individual whose identity must be preserved. The target face is any generic human face. The method first divides both images into Delaunay triangles⁷ and transforms the vertices of the source image toward the vertices of the target image. The pixel intensities are also interpolated with respect to a second parameter. Morphing is compression and format independent. It is also reversible unless the source image is morphed perfectly to the target image and the target image is known. Its security can be ensured by encrypting the key points and randomizing the interpolation level and the pixel interpolation values for each triangle. However, as the algorithm begins with triangulating the face images, it may fail to work in cases where the faces are not captured from ideal angles.

Region based scrambling is another technique to protect privacy in video surveillance. First, the region to be scrambled (ROI) is estimated. Next, the signs of the AC and DC coefficients of discrete cosine transform (DCT) are pseudorandomly inverted. For security and reversibility, the seed value of the pseudorandom number generator is encrypted. Although scrambling ensures that the protected region is unrecognizable (as it appears as random noise), it also prevents acquiring non-sensitive information from the scrambled region. Furthermore, the method is format/compression dependent.

Privacy protection can also be accomplished by removing the sensitive parts of the frames of a video. The removed parts create holes in the resulting frames. These holes can be filled with image in-painting techniques. If the background of the frame is static then these holes can be filled with the information from the other frames. Otherwise, if the background is dynamic, the holes can be filled by using the information from the neighboring pixels.

Encrypting visual objects, such as shapes and textures in an image content that is partitioned in hierarchical trees can be performed with a method called Secure Shape and Texture SPIHT (SecST-SPIHT where SPIHT is an abbreviation for Set Partitioning in Hierarchical Trees). SecST-SPIHT encrypts shapes and textures and ensures that reconstruction is not possible without knowing the decryption key. It is reversible but it does not permit non-private information to be extracted from a video as the output does not contain any meaningful visual information.

A recent work by Erdélyi *et al.*, called adaptive cartooning, converts an image into an abstracted cartoon-like version. The algorithm's main steps are smoothing and edge enhancement. The areas with similar color values are smoothed and the areas with color discontinuities (edges) are accentuated. This method can be applied to an ROI or the whole image. Thus it can be classified as both a local and global method. However, it is irreversible.

3. FALSE COLOR BASED PRIVACY PROTECTION

The core of the proposed method involves representing images in a different color scale to distort private information while preserving intelligibility. The rationale for this is based on the fact that the human visual system is particularly tuned to recognize faces when seen under standard illumination. If this illumination changes, for example by moving the light source such that it illuminates a face from the bottom rather than the top, it becomes difficult to recognize even familiar faces. Furthermore, earlier research suggests that if faces are represented in nonmonotonic color scales, it becomes much harder for people to recognize them.³

Based on these ideas, we first transform an image (containing faces) using a point-wise compression or expansion function. The purpose of this step is to bring together or spread apart the intensity distribution of the pixel values. We then transform the resulting image into a different color scale. In the following subsections, both the compression/expansion algorithms and the color scales are explained in more details.

3.1 Compression/Expansion Stage

The purpose of compression/expansion stage is to induce a change in the intensity distribution of an input image. We have experimented with logarithmic and sigmoidal functions as compressive transformations and histogram equalization as an expansion transformation. During the experiments, we have also tested a no-transformation case (abbreviated by **NOP**)

to understand whether this initial step has a significant influence on the results. All of these operations are applied on the intensity image which is computed from an RGB image as follows[†]:

$$Y = 0.216R + 0.7152G + 0.0722B. (1)$$

Logarithmic scaling (LOG): Logarithmic scaling scales the logarithm values of the intensity image to the [0,1] range:

$$f_{log}(Y) = \frac{\log(Y + \epsilon) - \log(Y_{min} + \epsilon)}{\log(Y_{max} + \epsilon) - \log(Y_{min} + \epsilon)}.$$
 (2)

Here, a small value ($\epsilon = 10^{-6}$) is added to intensity values to avoid singularity for black pixels.¹²

Sigmoidal compression (SIG): This compression technique, inspired from the photographic tone mapping operator, ¹³ compresses the intensity values through an S-shape function applied after an initial intensity scaling:

$$f_{sig}(Y) = \frac{\alpha Y/\bar{Y}}{1 + \alpha Y/\bar{Y}},\tag{3}$$

where α denotes a user-defined key value and \bar{Y} is the log-average intensity value computed as:

$$\bar{Y} = \exp\left(\frac{1}{N} \sum_{x,y} \log(Y(x,y) + \epsilon)\right). \tag{4}$$

For the current experiments, $\alpha=0.18$ and $\epsilon=10^{-6}$ values are used. For both logarithmic and sigmoidal scaling the color mapping algorithm is defined in Algorithm 1, where one needs to substitute f_{log} or f_{sig} for f. In this algorithm, $\mathbf{C_{m,n}}$ is the false color value found in the given palette:

Algorithm 1: Color selection algorithm for logarithmic and sigmoidal compression

```
\begin{split} Y' &= f(Y) \\ \textbf{for } i &= 0 \rightarrow 255 \ \textbf{do} \\ bin[i] &= \frac{i}{255} (Y'_{max} - Y'_{min}) \\ \textbf{end} \\ \textbf{for } \textit{each} \ \text{pixel } Y'_{m,n} \in Y' \ \textbf{do} \\ &\quad \textit{find } k \ \textbf{where} \ |Y'_{m,n} - bin[k]| \ \textit{is minimum} \\ &\quad \mathbf{C_{m,n}} = PALETTE[k] \\ \textbf{end} \end{split}
```

Histogram Equalization (HIS): Histogram equalization redistributes the intensity values such that each bin contains equal number of pixels. ¹⁴ Instead of computing histograms, bin boundaries and palette indices based on the distance of the luminance values to these boundaries are directly computed as shown in Algorithm 2.

3.2 Color Scale Selection

Following the intensity compression stage, the colors of an image are then scaled according to one of the four color scales presented in Figure 1 and summarized below:

Rainbow scale (RBS): RBS is also called the spectral scale since the ordering of the colors is roughly based on their wavelength. The palette of this scale is generally produced by varying the hue attribute in a color space such as HSV and keeping the other attributes constant. RBS has a nonmonotonic perceived intensity progression.

[†]We do not use the term *luminance* here as the input images are in a non-linear and uncalibrated color space.

Algorithm 2: Color selection algorithm for histogram equalization

```
\begin{split} Y_s &= sort(Y) \text{ in ascending order} \\ l &= length(Y_s) \\ \textbf{for } i &= 0 \rightarrow 255 \textbf{ do} \\ bin[i] &= Y_s[l \times \frac{i}{255}] \\ \textbf{end} \\ \textbf{for } \textbf{each} \text{ pixel } Y_{m,n} \in Y \textbf{ do} \\ find \textbf{ k where } |Y_{m,n} - bin[k]| \text{ is minimum} \\ \mathbf{C}_{\mathbf{m,n}} &= PALETTE[k] \\ \textbf{end} \end{split}
```


Figure 1: Color scales used in this study (see Appendix for numerical values).

Heated-body scale (HBS): In HBS, colors progress from black to white while passing through orange and yellow. The advantage of this scale is attributed to the fact that the human visual system is mostly sensitive to luminance changes in that portion of the spectrum. The perceived intensity increase monotonically for this scale.

Radiance default color scale (DEF): This is the default false coloring scale used in the Radiance global illumination software. It was designed to maximize the number of named colors while still depicting a progression from cold to hot.

Linearized optimal color scale (LOCS): LOCS is designed to create a maximum number of just noticeable differences (JNDs) while preserving a natural order. ¹⁵ This scale is perceptually linearized (numerical color differences correspond to perceived color differences) and monotonically increasing in perceived intensity.

RBS color scale was selected because it is commonly used for visualization, although it also has a bad reputation. ¹⁶ HBS was selected as another commonly used scale, in which the perceived intensity values increase monotonically across the scale. LOCS was selected because it is both monotonic and perceptually linear. Finally, DEF was selected as it is the default color scale in a commonly used light simulation program, Radiance. ¹ The color palettes of these four color scales can be found in the Appendix.

4. EVALUATION

In this paper, we performed both objective and subjective evaluations using 100 face images from the publicly available FERET face recognition dataset.⁴ Figure 2 presents example images from the dataset. Objective evaluation relied on three face recognition algorithms implemented in the evaluation framework by Korshunov *et al.*² In subjective evaluation, we employed 50 subjects in online study.

4.1 Objective Evaluation

For objective evaluation, each face image was false colored using the combinations of the three point transformations functions plus a no-transformation condition and four color scales resulting in total 16 visualizations per face. The resulted

Figure 2: Sample images from FERET dataset.

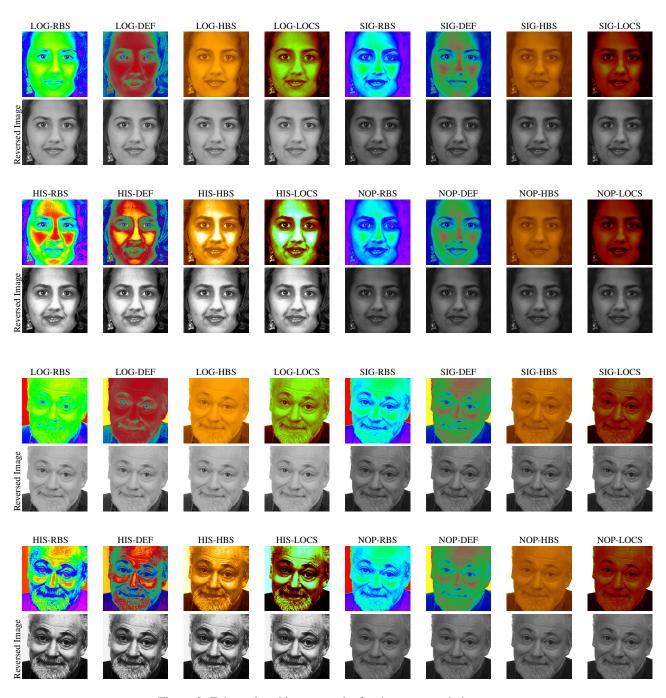


Figure 3: False colored image results for the two sample images.

false colored sample images are presented in Figure 3. To evaluate the recognizability of these false color visualizations, we used objective evaluation framework, which utilizes three face recognition algorithms implemented in OpenCV ‡ The face recognition algorithms are the principal component analysis (PCA) referred to as 'Eigen', ¹⁷ linear discriminant analysis (LDA) referred to as 'Fisher', ¹⁸ and local binary patterns referred to as 'LBPH' algorithm. ¹⁹

[‡]http://opencv.willowgarage.com/wiki/

4.1.1 Results

The visual inspection of Figure 3, showing different false colored images, reveal that not all compression type/color palette combination are equally effective. For example, the faces in the images obtained by using the HBS and LOCS remain mostly recognizable. This can be attributed to the fact that these color scales have a monotonic perceived intensity variation. However, the RBS and the DEF appear to apply strong enough distortions to faces, making them hard to recognize.

These visual observations are supported by the quantitative results that are obtained by using the above mentioned objective framework. Table 1 reports the face recognition accuracy obtained by running three different face recognition algorithms on all false colored images from the dataset. In this table, the lower accuracy numbers indicate a higher degree of privacy protection against face recognition algorithms. It can be seen that, on average, the 'LBPH' method is the most successful in recognizing false colored face images. However, for HIS-DEF combination, even 'LBPH' recognition shows a low accuracy of 0.11, which means that out of 100 face images in the dataset, only 11 were correctly recognized by the algorithm. In general, the DEF color scale is the most effective in privacy protection, since it reduces the accuracy rates irrespective of the applied point transformation. Following DEF, RBS color scale is found to be the second most effective. The other two color scales, HBS and LOCS, are both ineffective against recognition algorithms, leading to high accuracy ratings.

Similar trends can be observed for 'Eigen' and 'Fisher' face recognition algorithms. However, the accuracy ratings of both of these algorithms are generally lower than the LBPH-based face recognition algorithm. For both algorithms LOG-RBS, SIG-DEF, and NOP-DEF methods yield a 0 accuracy value.

Based on the results in Table 1, it can be argued that the color scale is the critical factor that strongly influences the face recognition accuracy for the tested face recognition algorithms. It shows that a point transformation applied prior to the color mapping has little affect on the accuracy of the algorithms and, hence, has little contribution to privacy protection.

We also compare the obtained accuracy ratings with two methods from the literature, namely blurring and warping (Table 2). The lowest accuracy for these two methods is obtained for a blur kernel size of 55, which leads to accuracy value 0.14 of 'LBPH' recognition and significantly higher for other recognition methods. However, blurring is not only computationally more expensive than the proposed false coloring algorithm, but it is also irreversible when such a large kernel size of 55 is applied. False colored images can be reversed to obtain the images that are very close to originals (see the second rows for each sample face in Figure 3). The slight intensity differences between the originals and the reversed images mainly due to the compression functions.

Palett	e	L	BPH			E	igen		Fisher					
Compression	RBS	DEF	HBS	LOCS	RBS	DEF	HBS	LOCS	RBS	DEF	HBS	LOCS		
LOG	0.27	0.14	0.75	0.76	0.00	0.01	0.44	0.49	0.00	0.01	0.44	0.49		
SIG	0.41	0.14	0.78	0.50	0.01	0.00	0.61	0.46	0.01	0.00	0.61	0.46		
HIS	0.19	0.11	0.87	0.69	0.05	0.04	0.59	0.67	0.05	0.04	0.58	0.66		
NOP	0.46	0.13	0.76	0.44	0.01	0.00	0.60	0.37	0.01	0.00	0.59	0.36		

Table 1: Face recognition accuracy rates results for false colored faces. The lower the value, the better the performance.

	LE	ВРН	Ei	gen	Fisher					
Warping	Strength level $= 3$	Strength level = 13	Strength level $= 3$	Strength level = 13	Strength level $= 3$	Strength level = 13				
waiping	0.64	0.90	0.68	0.89	0.68	0.89				
Blurring	Kernel size = 5	Kernel size = 55	Kernel size = 5	Kernel size = 55	Kernel size = 5	Kernel size = 55				
Diurring	0.72	0.14	0.89	0.79	0.89	0.79				

Table 2: Face recognition accuracy rates for warping and blurring. The lower the value, the better the performance.

4.2 Subjective Evaluation

A good privacy protection algorithm should provide effective protection not only against machines but also against human observers. We conducted online-based subjective experiments to evaluate this aspect of the proposed privacy protection method. For subjective evaluation, we used 10 faces from the FERET100 dataset. In our experimental design, we used a similar approach to that proposed by Rogowitz and Kalvin.³ In our web-based implementation, we asked participants to rate the recognizability of the false color visualizations with respect to the original image. The participants could see the

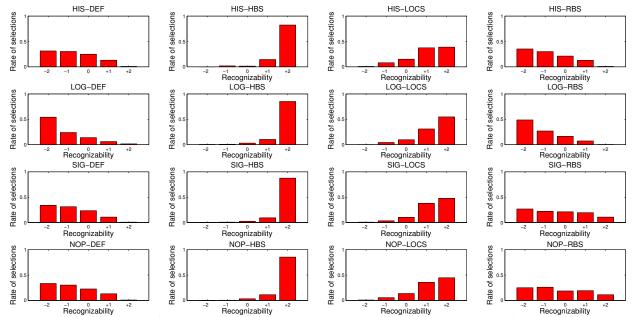


Figure 4: Cumulative results of the subjective experiments. The x-axis represents the recognizability values and the y-axis represents participants' normalized selection counts.

original image on the left and the false color images in random order appearing as a 4 by 4 grid on the right. Under each false color image there was a drop-down list with the following options:

- +2: Very likely to be recognizable
- +1: Likely to be recognizable
- **0:** May or may not be recognizable
- -1: Unlikely to be recognizable
- -2: Very unlikely to be recognizable

The experiment was comprised of 10 sessions, whereby a different input face image was used in each session. Each session ended when a participant indicated his or her responses for all of the 16 visualizations. The order of the sessions and the visualizations in each session were randomized to avoid any order-specific bias. The experiment had a web interface and therefore each participant took the experiment using his or her own computer system. The duration of a single experiment was approximately 15-20 minutes. A total of 50 naïve subjects (36 males and 14 females) completed all sessions in full and their results were analyzed.

4.2.1 Results

The cumulative results of the subjective experiment are depicted in Figure 4. Each histogram in this figure indicates the responses for a single visualization method aggregated over all participants and face images. The y-axis is normalized to indicate the rate of selections. As can be seen from this figure, both DEF and RBS scales gave rise to right-skewed distributions whereas HBS and LOCS produced left-skewed ones. This suggests that the former two color scales are found less likely to be recognizable whereas the latter two are more likely to be recognizable. Similar to the results of objective evaluation, for all color scales, the compression/expansion methods do not seem to have a significant influence.

In order to obtain a global score for all methods, responses with values -2, -1,+1, and +2 were added together to obtain one single value. Therefore, a global score with large negative value means that the corresponding method produces less recognizable faces. The global scores computed for all false color protection methods are shown in Table 3, where

	DEF	RBS	LOCS	HBS
LOG	-352	-341	407	472
SIG	-267	-93	408	479
HIS	-238	-258	337	475
NOP	-249	-103	370	481

Table 3: The global scores for each method. More negative scores indicate less recognizable methods. For example, LOG-DEF was rated as -2 or -1352 times out of a total of 500 ratings.

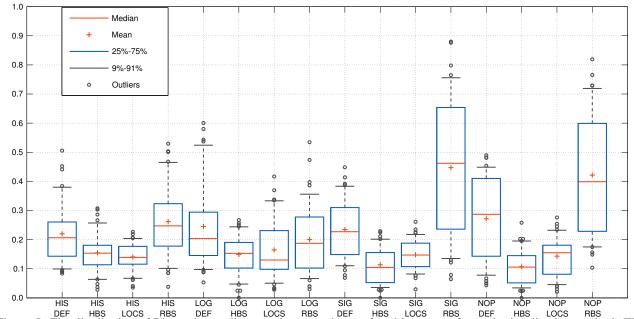


Figure 5: The distribution of Bhattacharya distances between the per-face histograms for each visualization method. The smaller the values of a distribution are the more consistent the corresponding method is for different faces.

the two largest negative scores are highlighted in bold. The table shows that LOG-DEF and LOG-RBS scales produce the least recognizable faces, while LOCS and HBS color scales lead to the easiest recognizable faces irrespective of the prior compression transformation.

To understand whether a given method's preferences vary across faces, we conducted further analysis of the subjective results. We computed the Bhattacharya distances between pairs of histograms that are obtained for different faces. For 10 faces used in the subjective study, we have C(10,2)=45 pairs, resulting in 45 different distance values for each of 16 methods. These distances are plotted in Figure 5, where different false color methods are shown in x-axis and and Bhattacharya distances in y-axis. In this figure, the smaller the values of a distribution, the more consistent the corresponding method is for different faces. However, a method can be consistently recognizable or consistently unrecognizable. The two most unrecognizable methods, similarly to objective evaluations, are LOG-DEF and LOG-RBS, with the latter varying slightly less across different faces. Hence, we conclude that LOG-RBS is the winner method in the subjective experiments with LOG-DEF being the close second.

The conclusion that the LOG-RBS method was found to produce the least recognizable images may be explained as follows. The logarithmic compression clumps together different intensity values more so than the other compression methods. Furthermore, the yellow colors dominate the RBS color space which has a masking effect over other hues due to the higher sensitivity of the human visual system to yellow. Finally, yellow has the smallest number of saturation steps which make it difficult to distinguish small saturation variations. These properties of LOG-RBS may have resulted in certain facial features to be lost when a face is visualized using this method, rendering it less recognizable.

We also investigated the correlation between the rankings of the user study and the rankings obtained by using the face recognition algorithms. For this purpose, we computed Spearman's rank correlation coefficient,²¹ which is a commonly

Figure 6: Interpolation between an original image and its false color visualization. The numbers indicate the weights given to the false color result. LOG-DEF is used as the visualization method.

used measure to compare ranked variables. We obtained a correlation value of $\rho=0.8645$ with LBPH and $\rho=0.8195$ with 'Eigen' and 'Fisher' algorithms. Such high correlation values indicate that false colored faces are perceived similarly by both human observers and face recognition algorithms, which is an important finding, since for more typical distortions (blurring or pixelization) the perception by humans and computers is different.²²

Finally, we show the amount of privacy protection by using false colors is adjustable as the final result can be computed by interpolating the false color image with the original with different degrees of interpolation. For some applications where intelligibility is more important than privacy, a lower weight can be given to the false colored result to produce more intelligible images as shown in Figure 6.

5. CONCLUSION AND FUTURE WORK

Privacy protection in video surveillance is an important problem, and it will become even more important, as video surveillance is gains in popularity. However, simple methods for protecting privacy are not sufficient as they do not contain all the desired attributes that is expected from a good privacy protection algorithm. Privacy protected videos must be reversible if the need arises to view them as unprotected (e.g., during a criminal investigation). Furthermore, protected videos should not prohibit non-private statistics to be extracted. Also, the protected content should not be visually disturbing as it is the case with some of the existing privacy protection methods, such as scrambling and warping. Perhaps most importantly, the protection must be continuous: that is faces even in a single frame of a video should not remain unprotected. The algorithms that rely on computer vision techniques may therefore be vulnerable to this problem: if an algorithm fails to detect a sensitive region, it will remain unprotected.

This paper proposed false color based method, which aims to achieve the balance between the above mentioned desired attributes. The method is reversible since the compression and color scale tables can be inverted and is secure because these tables can be encrypted using a private key. The false colored representations do not prohibit collecting non-private information (for instance one can still count the number of people in an area without knowing their identities). And since the method does not rely on computer vision, it therefore is not affected by potential failures of detection or tracking algorithms.

The objective and subjective evaluations show that DEF and RBS color scales are the most suitable for privacy protection for both use cases, when face recognition algorithms and human subjects are the main observers of the protected images. Also, compression/expansion schemes demonstrate a significantly less effect on the strength of privacy protection compared to the color scales.

Several future research directions are possible. Firstly, the proposed algorithm can be evaluated using crowdsourcing. This would involve input from a large number of participants from very different backgrounds. The experimental task can be varied: instead of directly asking the degree of recognizability, one can design a task that indirectly evaluates this attribute. For example, one can ask whether a person whose images was previously shown appears in a given video clip. Such a design is likely to represent a more realistic surveillance scenario. Finally, the design of other compression algorithms and color palettes that are customized for protecting privacy can be an studied.

6. ACKNOWLEDGMENTS

This work was conducted in the framework of the EC funded Network of Excellence VideoSense. We are grateful to Okan Tarhan Tursun for his help with the experimental framework and all the anonymous participants who took our experiment.

REFERENCES

- [1] Larson, G. and Shakespeare, R., [Rendering with Radiance: The Art and Science of Lighting Visualization], Computer Graphics and Geometric Modeling Series, Morgan Kaufmann (1998).
- [2] Korshunov, P., Melle, A., Dugelay, J.-L., and Ebrahimi, T., "A framework for objective evaluation of privacy filters in video surveillance," in [SPIE Applications of Digital Image Processing XXXVI], 8856, Spie-Int Soc Optical Engineering, San Diego, California, USA (Aug. 2013).
- [3] Rogowitz, B. and Kalvin, A. D., "The "which blair project": a quick visual method for evaluating perceptual color maps," in [Visualization, 2001. VIS'01. Proceedings], 183–556, IEEE (2001).
- [4] Phillips, J. P., Moon, H., Rizvi, S. A., and Rauss, P. J., "The FERET Evaluation Methodology for Face-Recognition Algorithms," *IEEE Transactions on Pattern Analysis and Machine Intelligence* **22**(10), 1090–1104 (2000).
- [5] Korshunov, P. and Ebrahimi, T., "Using Warping for Privacy Protection in Video Surveillance," in [18th International Conference on Digital Signal Processing (DSP)], 1–6 (2013).
- [6] Korshunov, P. and Ebrahimi, T., "Using Face Morphing to Protect Privacy," in [IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS)], 208 213 (Aug. 2013).
- [7] Benson, P. J., "Morph transformation of the facial image," *Image and Vision Computing* 12(10), 691 696 (1994).
- [8] Dufaux, F. and Ebrahimi, T., "Scrambling for Privacy Protection in Video Surveillance Systems," *IEEE Trans. on Circuits and Systems for Video Technology* vol. 18(no. 8), 1168–1174 (2008).
- [9] Cheung, S.-C., Venkatesh, M., Paruchuri, J., Zhao, J., and Nguyen, T., "Protecting and managing privacy information in video surveillance systems," in [*Protecting Privacy in Video Surveillance*], 11–33, Springer (2009).
- [10] Martin, K. and Plataniotis, K. N., "Privacy protected surveillance using secure visual object coding," *Circuits and Systems for Video Technology, IEEE Transactions on* **18**(8), 1152–1162 (2008).
- [11] Erdélyi, A., Barát, T., Valet, P., Winkler, T., and Rinner, B., "Adaptive cartooning for privacy protection in camera networks," in [*Proceedings of the International Conference on Advanced Video and Signal Based Surveillance*], **6** (2014).
- [12] Akyüz, A. O., "False color visualization for hdr images," in [HDRi2013 First International Conference and SME Workshop on HDR imaging], (April 2013).
- [13] Reinhard, E., Stark, M., Shirley, P., and Ferwerda, J., "Photographic tone reproduction for digital images," *ACM Transactions on Graphics* **21**(3), 267–276 (2002).
- [14] Gonzalez, R. C. and Woods, R. E., [Digital Image Processing], Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd ed. (1992).
- [15] Levkowitz, H. and Herman, G. T., "Color scales for image data," *IEEE Comput. Graph. Appl.* 12, 72–80 (Jan. 1992).
- [16] Rogowitz, B. and Treinish, L. A., "Data visualization: the end of the rainbow," Spectrum, IEEE 35(12), 52–59 (1998).
- [17] Turk, M. A. and Pentland, A. P., "Face recognition using eigenfaces," in [Computer Vision and Pattern Recognition, 1991. Proceedings CVPR 91., IEEE Computer Society Conference on], 586–591, IEEE (June 1991).
- [18] Belhumeur, P. N., Hespanha, J. a. P., and Kriegman, D. J., "Eigenfaces vs. fisherfaces: Recognition using class specific linear projection," *IEEE Trans. Pattern Anal. Mach. Intell.* **19**, 711–720 (July 1997).
- [19] Ahonen, T., Hadid, A., and Pietikainen, M., "Face description with local binary patterns: Application to face recognition," *IEEE Trans. Pattern Anal. Mach. Intell.* **28**, 2037–2041 (Dec. 2006).
- [20] Wang, L., Giesen, J., McDonnell, K. T., Zolliker, P., and Mueller, K., "Color design for illustrative visualization," *Visualization and Computer Graphics, IEEE Transactions on* **14**(6), 1739–1754 (2008).
- [21] Myers, J. L., Well, A., and Lorch, R. F., [Research design and statistical analysis], Routledge (2010).
- [22] Korshunov, P. and Ooi, W. T., "Video quality for face detection, recognition, and tracking," *ACM Trans. Multimedia Comput. Commun. Appl.* 7, 14:1–14:21 (Sept. 2011).

APPENDIX: COLOR PALETTES

					DE	CF											I	IBS					
	R	G	В		R	G	В		R	G	В		R	G	В		R	G	В		R	G	В
0	111 108	8 7	132 133	86 87	18 20	174 174	81 77	172 173	159 159	34 33	40 39	0	0 35	0	0	86 87	163 165	84 85	0	172 173	244 244	150 150	0
2	105	7	134	88	21	173	73	174	160	32	38	2	52	0	0	88	165	85	0	174	244	151	0
3	102	6	136	89	22	172	69	175	160	31	37	3	60	0	0	89	166	86	0	175	247	153	0
5	98 93	6 5	137 139	90 91	24 26	172 171	66 63	176 177	161 161	29 28	37 36	5	63 64	1 2	0	90 91	166 166	86 86	0	176 177	247 248	153 154	0 0
6	89	4	141	92	28	170	60	178	162	27	35	6	68	5	0	92	168	87	0	178	250	155	0
7	84	3	143	93	30	169	58	179	162	26	34	7	69	6	0	93	168	87	0	179	251	156	0
8 9	79 74	2	145 148	94 95	32 34	168 167	57 56	180 181	163 163	25 24	33 33	8 9	72 74	8 10	0	94 95	170 170	89 89	0	180 181	251 253	156 158	0 0
10	68	0	150	96	37	166	55	182	164	23	32	10	77	12	0	96	171	90	0	182	255	159	0
11	63	0	153	97	40	165	54	183	165	22	31	11	78	14	0	97	171	90	0	183	255	159	0
12 13	57 52	0	155 157	98 99	42 45	164 163	54 54	184 185	165 168	21 18	31 29	12 13	81 83	16 17	0	98 99	173 173	91 91	0	184 185	255 255	160 161	0 0
14	46	0	160	100	48	162	55	186	170	16	28	14	85	19	0	100	174	93	0	186	255	163	0
15	41	0	162	101	52	160	55	187	172	13	26	15	86	20	0	101	174	93	0	187	255	163	0
16 17	36 31	0	164 166	102 103	55 58	158 157	56 57	188 189	175 177	11 9	25 24	16 17	89 91	22 24	0	102 103	176 176	94 94	0	188 189	255 255	164 165	0 0
18	26	0	168	103	62	155	57	190	180	7	23	18	92	25	0	103	177	95	0	190	255	167	0
19	22	0	170	105	66	153	59	191	183	5	22	19	94	26	0	105	177	95	0	191	255	167	0
20	18	0	172	106	69	152	60	192	185	3	21	20	95	28	0	106	179	96	0	192	255	168	0
21 22	14 11	2 4	174 175	107 108	73 77	150 148	61 63	193 194	188 191	2	21 20	21 22	98 100	30 31	0	107 108	179 180	96 98	0	193 194	255 255	169 169	0 0
23	8	7	176	109	81	146	64	195	194	0	19	23	102	33	0	109	182	99	0	195	255	170	0
24	7	9	177	110	84	144	66	196	197	0	19	24	103	34	0	110	182	99	0	196	255	172	0
25 26	6 5	11 13	177 178	111 112	88 92	142 139	67 69	197 198	199 202	0	18 17	25 26	105 106	35 36	0	111 112	183 183	100 100	0	197 198	255 255	173 173	0 0
27	4	16	178	113	96	139	70	198	202	0	17	27	108	38	0	113	185	100	0	198	255	173	0
28	3	18	179	114	99	135	72	200	207	0	16	28	109	39	0	114	185	102	0	200	255	175	0
29	2	21	180	115	103	133	73	201	210	2	16	29	111	40	0	115	187	103	0	201	255	177	0
30 31	1	24 28	180 181	116 117	107 110	131 128	75 76	202 203	213 215	3 6	15 14	30 31	112 114	42 43	0	116 117	187 188	103 104	0	202 203	255 255	178 179	0 0
32	0	31	181	118	113	126	77	204	217	8	13	32	115	44	0	118	188	104	0	204	255	181	0
33	0	35	182	119	117	124	78	205	219	11	13	33	117	45	0	119	190	105	0	205	255	181	0
34 35	0	38 42	182 183	120 121	120 123	121 119	79 80	206 207	220 222	13 17	12 11	34 35	119 119	47 47	0	120 121	191 191	107 107	0	206 207	255 255	182 183	0 0
36	0	46	184	122	126	117	80	208	224	20	11	36	120	48	0	122	193	108	0	208	255	184	0
37	0	50	184	123	128	114	81	209	226	24	10	37	122	49	0	123	193	108	0	209	255	187	7
38 39	0	54 58	184 185	124 125	131 133	112 110	81 81	210 211	227 229	28 32	9	38 39	123 125	51 52	0	124 125	194 196	109 110	0	210 211	255 255	188 189	10 14
40	0	63	185	126	135	108	80	212	231	37	7	40	125	52	0	126	196	110	0	212	255	191	18
41	0	67	186	127	136	106	80	213	232	42	6	41	126	53	0	127	197	112	0	213	255	192	21
42 43	0	71 76	186 186	128 129	137 138	105 104	80 79	214 215	234 236	47 52	5	42 43	128 129	54 56	0	128 129	197 199	112 113	0	214 215	255 255	193 195	25 29
44	0	80	187	130	139	102	79	216	237	57	4	44	129	56	0	130	200	114	0	216	255	197	36
45	0	84	187	131	140	101	79	217	239	63	3	45	131	57	0	131	200	114	0	217	255	198	40
46 47	0	89 93	187 187	132 133	141 142	100 98	78 78	218 219	240 242	68 74	2 2	46 47	132 134	58 59	0	132 133	202 202	116 116	0	218 219	255 255	200 202	43 51
48	1	93	187	134	143	96	77	220	242	79	1	48	134	59	0	134	202	117	0	220	255	202	54
49	1	102	187	135	144	95	76	221	245	85	0	49	136	61	0	135	205	118	0	221	255	206	61
50	1	106	187	136	144	93	76	222	246	91	0	50	137	62	0	136	205	118	0	222	255	207	65
51 52	2 2	110 114	187 187	137 138	145 146	92 90	75 74	223 224	247 248	96 102	0	51 52	137 139	62 63	0	137 138	207 208	119 121	0	223 224	255 255	210 211	72 76
53	3	118	186	139	146	89	73	225	250	108	0	53	139	63	0	139	208	121	0	225	255	214	83
54	3	122	186	140	147	87	73	226	251	113	0	54	140	65	0	140	210	122	0	226	255	216	91
55 56	4	126 130	186 185	141 142	148 148	85 84	72 71	227 228	252 253	118 123	0	55 56	142 142	66 66	0	141 142	211 211	123 123	0	227 228	255 255	219 221	98 105
57	4	133	185	143	149	82	70	229	254	128	0	57	143	67	0	143	213	124	0	229	255	223	109
58	5	137	184	144	149	80 79	69	230 231	254 255	133	0	58 59	143	67	0	144	214	126	0	230	255	225 228	116
59 60	5 6	140 143	183 182	145 146	150 150	77	68 67	231	255	138 143	0	60	145 145	68 68	0	145 146	214 216	126 127	0	231 232	255 255	228	123 134
61	6	146	181	147	151	75	66	233	255	148	2	61	146	70	0	147	217	128	0	233	255	234	142
62	6 7	149	180	148	151	73 72	65	234 235	255 255	154	3	62	146	70	0	148	217	128	0	234 235	255	237 239	149
63 64	7	151 154	179 178	149 150	151 152	72	64 63	235	255	159 165	4 6	63 64	148 148	71 71	0	149 150	219 221	130 131	0	235	255 255	239	156 160
65	7	156	177	151	152	68	62	237	255	170	7	65	149	72	0	151	221	131	0	237	255	243	167
66	8	158	175	152	153	66	61	238	255	176	9	66	149	72	0	152	222	132	0	238	255	246	174
67 68	8	161 163	172 169	153 154	153 153	65 63	60 59	239 240	255 255	181 187	11 13	67 68	151 151	73 73	0	153 154	224 224	133 133	0	239 240	255 255	248 249	182 185
69	9	165	165	155	154	61	58	241	255	192	15	69	153	75	0	155	225	135	0	241	255	252	193
70	9	167	161	156	154	60	57	242	255	198	17	70	153	75	0	156	227	136	0	242	255	253	196
71 72	9 10	169 170	157 153	157 158	154 154	58 56	56 55	243 244	255 255	203 208	20 22	71 72	154 154	76 76	0	157 158	227 228	136 137	0	243 244	255 255	255 255	204
73	10	172	148	159	155	55	54	245	255	213	24	73	154	76	0	159	230	138	0	245	255	255	211
74	10	173	143	160	155	53	53	246	255	218	26	74	156	77	0	160	230	138	0	246	255	255	218
75 76	11 11	174 174	138 133	161 162	155 156	51 50	51 50	247 248	255 255	223 227	28 30	75 76	156 157	77 79	0	161 162	231	140 141	0	247 248	255 255	255 255	222
77	11	175	127	163	156	48	49	249	255	232	32	77	157	79	0	163	233	141	0	249	255	255	229
78	12	175	122	164	156	46	48	250	255	236	34	78	159	80	0	164	234	142	0	250	255	255	233
79 80	12 13	176 176	117 111	165 166	157 157	45 43	47 46	251 252	254 254	240 243	35 37	79 80	159 159	80 80	0	165 166	236 236	144 144	0	251 252	255 255	255 255	236 240
81	13	176	106	167	157	43	45	252	254	243	38	81	160	81	0	167	238	144	0	252	255	255	240
82	14	176	101	168	158	40	44	254	254	249	39	82	160	81	0	168	239	146	0	254	255	255	247
83	15	175	95	169	158	39	43	255	254	252	40	83	162	82	0	169	241	147	0	255	255	255	255
84 85	16 17	175 175	90 86	170 171	158 159	37 36	42 41					84 85	162 163	82 84	0	170 171	241 242	147 149	0				
						Tobl		Cala			for I)EE	ond 1					1					

Table 4: Color palettes for DEF and HBS color maps.

					I	ocs											R	BS					
0	R	G	B	86	R 135	G	B	172	R 135	G 200	B	0	R 251	G	B 255	86	R	G 178	B 255	172	R 96	G 255	B
1 2	0	0	0	87 88	135 135	8 9	0	173 174	135 135	203 205	0	1 2	246 241	0	255 255 255	87 88	0	183 188	255 255	173 174	101 106	255 255	0
3	1	0	0	89	135	10	0	175	135	210	0	3	236	0	255	89	0	193	255	175	111	255	0
5	2 2	0	0	90 91	135 135	11	0	176 177	135 135	214 218	0	5	231 226	0	255 255	90 91	0	198 203	255 255	176 177	116 121	255 255	0
6 7	3	0	0	92 93	135 135	13 15	0	178 179	135 135	222 226	0	6 7	221 216	0	255 255	92 93	0	208 213	255 255	178 179	126 131	255 255	0
8	4	0	0	94	135	17	0	180	135	231	0	8	211	0	255	94	0	218	255	180	136	255	0
9 10	5 5	0	0	95 96	135 135	17 19	0	181 182	135 135	236 239	0	9 10	206 201	0	255 255	95 96	0	223 228	255 255	181 182	141 146	255 255	0
11 12	6 7	0	0	97 98	135 135	21 22	0	183 184	135 135	244 249	0	11 12	196 191	0	255 255	97 98	0	233 238	255 255	183 184	151 156	255 255	0
13	7	0	0	99	135	23	0	185	135	254	0	13	186	0	255	99	0	243	255	185	161	255	0
14 15	8 9	0	0	100 101	135 135	25 26	0	186 187	135 135	255 255	1 5	14 15	181 176	0	255 255	100 101	0	248 253	255 255	186 187	166 171	255 255	0
16 17	9 10	0	0	102 103	135 135	27 29	0	188 189	135 135	255 255	10 15	16 17	171 166	0	255 255	102 103	0	255 255	253 248	188 189	176 181	255 255	0
18 19	11 12	0	0	104 105	135 135	31 32	0	190 191	135 135	255 255	20 23	18 19	161 156	0	255 255	104 105	0	255 255	243 238	190 191	186 191	255 255	0
20	13	0	0	106	135	33	0	192	135	255	28	20	151	0	255	106	0	255	233	192	196	255	0
21 22	14 15	0	0	107 108	135 135	35 36	0	193 194	135 135	255 255	33 38	21 22	146 141	0	255 255	107 108	0	255 255	228 223	193 194	201 206	255 255	0
23 24	16 17	0	0	109 110	135 135	38 40	0	195 196	135 135	255 255	43 45	23 24	136 131	0	255 255	109 110	0	255 255	218 213	195 196	211 216	255 255	0
25	18	0	0	111	135	42	0	197	135	255	49	25	126	0	255	111	0	255	208	197	221	255	0
26 27	19 20	0	0	112 113	135 135	44 46	0	198 199	135 135	255 255	54 59	26 27	121 116	0	255 255	112 113	0	255 255	203 198	198 199	226 231	255 255	0
28 29	21 22	0	0	114 115	135 135	47 49	0	200 201	135 135	255 255	65 70	28 29	111 106	0	255 255	114 115	0	255 255	193 188	200 201	236 241	255 255	0
30 31	23 25	0	0	116 117	135 135	51 52	0	202 203	135 135	255 255	74 80	30 31	101	0	255 255	116 117	0	255 255	183 178	202 203	246 251	255 255	0
32	26	0	0	118	135	54	0	204	135	255	84	32	91	0	255	118	0	255	173	204	255	254	0
33 34	27 28	0	0	119 120	135 135	56 57	0	205 206	135 135	255 255	90 95	33 34	86 81	0	255 255	119 120	0	255 255	168 163	205 206	255 255	249 244	0
35 36	30 31	0	0	121 122	135 135	59 62	0	207 208	135 135	255 255	98 104	35 36	76 71	0	255 255	121 122	0	255 255	158 153	207 208	255 255	239 234	0
37	33	0	0	123	135	63	0	209	135	255	110	37	66	0	255	123	0	255	148	209	255	229	0
38 39	34 35	0	0	124 125	135 135	65 67	0	210 211	135 135	255 255	116 120	38 39	61 56	0	255 255	124 125	0	255 255	143 138	210 211	255 255	224 219	0
40 41	37 39	0	0	126 127	135 135	69 72	0	212 213	135 135	255 255	125 131	40 41	51 47	0	255 255	126 127	0	255 255	133 128	212 213	255 255	214 209	0
42	40	0	0	128	135	73	0	214	135	255	137	42	42	0	255	128	0	255	123	214	255	204	0
43 44	43 45	0	0	129 130	135 135	76 78	0	215 216	135 135	255 255	144 149	43 44	37 32	0	255 255	129 130	0	255 255	118 113	215 216	255 255	199 194	0
45 46	46 49	0	0	131 132	135 135	80 82	0	217 218	135 135	255 255	154 158	45 46	27 22	0	255 255	131 132	0	255 255	108 103	217 218	255 255	189 184	0
47 48	51 53	0	0	133 134	135 135	84 87	0	219 220	135 135	255 255	165 172	47 48	17 12	0	255 255	133 134	0	255 255	98 93	219 220	255 255	179 174	0
49	54	0	0	135	135	88	0	221	135	255	179	49	7	0	255	135	0	255	88	221	255	169	0
50 51	56 58	0	0	136 137	135 135	90 93	0	222 223	135 135	255 255	186 191	50 51	0	0 3	255 255	136 137	0	255 255	83 78	222 223	255 255	164 159	0
52 53	60 62	0	0	138 139	135 135	95 98	0	224 225	135 135	255 255	198 203	52 53	0	8 13	255 255	138 139	0	255 255	73 68	224 225	255 255	154 150	0
54 55	64 67	0	0	140 141	135 135	101 103	0	226 227	135 135	255 255	211 216	54 55	0	18 23	255 255	140 141	0	255 255	63 58	226 227	255 255	145 140	0
56	69	0	0	142	135	106	0	228	135	255	224	56	0	28	255	142	0	255	53	228	255	135	0
57 58	71 74	0	0	143 144	135 135	107 110	0	229 230	135 135	255 255	232 240	57 58	0	33 38	255 255	143 144	0	255 255	48 43	229 230	255 255	130 125	0
59 60	76 80	0	0	145 146	135 135	113 115	0	231 232	135 135	255 255	248 254	59 60	0	43 48	255 255	145 146	0	255 255	38 33	231 232	255 255	120 115	0
61 62	81 84	0	0	147 148	135 135	118 121	0	233 234	135 140	255 255	255 255	61 62	0	53 58	255 255	147 148	0	255 255	28 23	233 234	255 255	110 105	0
63	86	0	0	149	135	124	0	235	146	255	255	63	0	63	255	149	0	255	18	235	255	100	0
64 65	89 92	0	0	150 151	135 135	127 129	0	236 237	153 156	255 255	255 255	64 65	0	68 73	255 255	150 151	0	255 255	13	236 237	255 255	95 90	0
66 67	94 97	0	0	152 153	135 135	133 135	0	238 239	161 168	255 255	255 255	66 67	0	78 83	255 255	152 153	0 2	255 255	3	238 239	255 255	85 80	0
68	100	0	0	154	135	138	0	240	172	255	255	68	0	88	255	154	7	255	0	240	255	75	0
69 70	103 106	0	0	155 156	135 135	141 144	0	241 242	177 182	255 255	255 255	69 70	0	93 98	255 255	155 156	12 17	255 255	0	241 242	255 255	70 65	0
71 72	109 112	0	0	157 158	135 135	148 150	0	243 244	189 192	255 255	255 255	71 72	0	103 108	255 255	157 158	22 27	255 255	0	243 244	255 255	60 55	0
73 74	115 117	0	0	159 160	135 135	155 157	0	245 246	199 204	255 255	255 255	73 74	0	113 118	255 255	159 160	32 37	255 255	0	245 246	255 255	50 45	0
75	122	0	0	161	135	160	0	247	210	255	255	75	0	123	255	161	42	255	0	247	255	40	0
76 77	126 128	0	0	162 163	135 135	163 166	0	248 249	215 220	255 255	255 255	76 77	0	128 133	255 255	162 163	47 51	255 255	0	248 249	255 255	35 30	0
78 79	131 135	0	0	164 165	135 135	170 174	0	250 251	225 232	255 255	255 255	78 79	0	138 143	255 255	164 165	56 61	255 255	0	250 251	255 255	25 20	0
80	135	0	0	166	135	177	0	252	236	255	255	80	0	148	255	166	66	255	0	252	255	15	0
81 82	135 135	2	0	167 168	135 135	180 184	0	253 254	240 248	255 255	255 255	81 82	0	153 158	255 255	167 168	71 76	255 255	0	253 254	255 255	10 5	0
83 84	135 135	3 4	0	169 170	135 135	188 192	0	255	255	255	255	83 84	0	163 168	255 255	169 170	81 86	255 255	0	255	255	0	0
85	135	6	0	171	135	195	0					85	0	173	255	171	91	255	0				

Table 5: Color palettes for LOCS and RBS color maps.