
 

 

 

ABSTRACT 

 

The pipeline industry has millions of miles of pipes buried along the length and breadth of the country. Since none of the 

areas through which pipelines run are to be used for other activities, it needs to be monitored so as to know whether the right-

of-way (RoW) of the pipeline is encroached upon at any point in time. Rapid advances made in the area of sensor technology 

have enabled the use of high end video acquisition systems to monitor the RoW of pipelines. The images captured by aerial 

data acquisition systems are affected by a host of factors that include light sources, camera characteristics, geometric 

positions and environmental conditions. We present a multistage framework for the analysis of aerial imagery for automatic 

detection and identification of machinery threats along the pipeline RoW which would be capable of taking into account the 

constraints that come with aerial imagery such as low resolution, lower frame rate, large variations in illumination, motion 

blurs, etc. The proposed framework is described from three directions. In the first part of the framework, a method is 

developed to eliminate regions from imagery that are not considered to be a threat to the pipeline. This method makes use of 

monogenic phase features into a cascade of pre-trained classifiers to eliminate unwanted regions. The second part of the 

framework is a part-based object detection model for searching specific targets which are considered as threat objects. The 

third part of the framework is to assess the severity of the threats to pipelines in terms of computing the geolocation and the 

temperature information of the threat objects. The proposed scheme is tested on the real-world dataset that were captured 

along the pipeline RoW. 
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1. INTRODUCTION 

Traditionally, pipeline surveillance is conducted qualitatively by aircraft, driving patrol, and walking inspection to record 

features along the RoW that are important to the pipeline’s safety and security. These manual techniques produce results that 

may not be sensitive or reach desired accuracy to localize or subtle problem identification. Considering the vast amount of 

area to be monitored in regions with less population, aerial monitoring is found to be the most viable option.  

Rapid advances made in the area of camera and sensor technology have enabled the use of video acquisition systems to 

monitor the RoW of pipelines. Huge amount of data is thus made available for analysis. However, it would be very expensive 

to employ analysts to scan through the data and identify threats to the RoW in the vast amount of wide area imagery. This 

warrants the deployment of an automated mechanism that is able to detect threats to the RoW and send out warnings when 

threats are detected. 

Machinery objects, such as construction equipment and heavy vehicles, have been major threats to pipeline infrastructure. 

Several vehicle detection algorithms have been proposed in the literature. Zhao and Nevatia [1] effectively utilized car body, 

edges of the front windshield, and the shadow as the features for cat detection. Moon et al. [2] introduces a simple vehicle 

detection algorithm by exploring four elongated edge operators. A top-down matching method is developed for vehicle 

detection from high resolution aerial imagery [3]. Grabner et al. [4] exploits on-line boosting with interactive training 

framework for automatic car detection. Sahli et al. [5] present an alternative approach to the car detection using scale-

invariant feature transform features and affinity propagation algorithm. Recently, a three-stage pattern recognition framework 

is proposed to detect construction equipment in various lighting conditions and different object orientations [6].  
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However, the majority of these techniques either computationally expensive or suffer from complex environment in aerial 

imagery, and neither of them consider the potential security issue of the detected objects for wide area surveillance. Thus, 

we present a multistage framework for the analysis of aerial imagery for automatic detection and identification of machinery 

threats along the pipeline right of way which would be capable of taking into account the constraints that come with aerial 

imagery such as low resolution, lower frame rate, large variations in illumination, motion blurs, etc.  

The rest of paper is organized as follows. In section 2, an implementation framework of the proposed scheme is provided. In 

section 3, experimental results are presented and discussed. Finally, section 4 outlines concluding remarks and future research 

direction in this technology. 

2. PROPOSED SCHEME 

The proposed machinery threat detection technology can be categorized into three phases, namely background elimination, 

part-based object detection and risk assessment.  Figure 1 depicts flow diagram of the proposed scheme.  

                    
 

2.1 Background elimination 

The aim of developing the background elimination model was to provide information regarding the contents of an image that 

could be used in the process of threat detection. Some of the key observations made in the study are: (a) aerial imagery 

consists of various kinds of regions, (b) the regions can be segmented based on the information content in image domain or 

in a transformed domain. It is observed that plain ground does not contain much information contents, while buildings in an 

image have strong edge features and the trees have strong textural contents. Based on these observations, an algorithm is 

designed to efficiently segment regions in an image. 

On the other hand, during the process of monitoring pipeline through a small aircraft, the experienced observers will 

adaptively eliminate most objects from their vision system that are no recognized as threats, such as houses, tress, etc., are 

less likely be a threat to pipeline. To mimic this kind of human vision system, we propose an automatic background 

elimination algorithm which can be broken into two parts: local textural features based segmentation (LTFS) and adaptive 

perception based segmentation (APS). The advantage of developing an automatic background elimination technique can be 

summarized as follows:  

• Eliminate background in aerial imagery for a faster threat identification. 

• Extract semantic information from scenes that can aid in threat detection. 

• Utilize context cues to identify proper landmarks for better accuracy during change detection processes. 

• Gather intelligence from a scene to aid in decision making for users. 

 

 

2.1.1 LTFS 

Image segmentation plays an important role in enhancing the object detection rate. We herein introduce a new segmentation 

method, named LTFS, which is expected to improve both the accuracy and efficiency of our present threats detection 

algorithm. The LTFS is based on the property of the neighborhood area around every pixel within an image. The output of 

the LTFS only contains prominent information of the input image, such as abnormal regions or full connected inhomogeneous 

area.   

The concept of the proposed algorithm is illustrated in Fig. 2. Let P be a point on the edge of an object in an image, and the 

edge separates the pixel points into two groups, so that the neighbor pixel around P can be separated into two classes. Each 

class has the same intensity value as shown in Fig. 2 as represented in two colors. Thus, the average intensity of all the 

neighbor pixels will be larger than the intensity values of one group of pixel points, and less than the other group of pixel 

Input image
Backgaround 
elimination

Part-based 
object detection

Risk assessment

Figure 1: Block diagram of the proposed scheme. 
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points. If the neighbor pixels are thresholded by the average intensity, one group of the points will be 1, the other group will 

be 0, so that the sequence of P, contributed by the threshold pixels, will be a uniform pattern [7] in the circular direction. 

 

For a given image, let 𝐼𝑝 (𝑝 = 1,2, … ,8) be the intensity value of a pixel in a 3 × 3 neighborhood. Then the average intensity 

of the related neighbor pixels is computed by 

𝐼𝑎𝑣𝑒 =
𝐼1 + 𝐼2 + … + 𝐼6 + 𝐼7 + 𝐼8

8
.                                                       (1) 

If 𝐼𝑝 > 𝐼𝑎𝑣𝑒, 𝐼𝑝 = 1, otherwise 𝐼𝑝 = 0, expressed as  

                                                                      𝐼𝑝 = {
1       𝐼𝑝 > 𝐼𝑎𝑣𝑒 

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 .                                                            (2) 

Thus, the related neighbor pixel values are 0 and/or 1. Let 𝐼𝑛𝑒𝑤 𝑝
 be the new value of the 𝑝th neighbor pixel (1 or 0), then, the 

new value of the center pixel is concatenated by all the neighbor pixels, expressed by  

𝐼𝑛𝑒𝑤𝑐
= 𝐼𝑛𝑒𝑤1

𝐼𝑛𝑒𝑤2
𝐼𝑛𝑒𝑤3

… 𝐼𝑛𝑒𝑤6
𝐼𝑛𝑒𝑤7

𝐼𝑛𝑒𝑤8
.                                          (3) 

If 𝐼𝑛𝑒𝑤𝑐
 is a uniform pattern (except 00000000 and 11111111), then 𝐼𝑛𝑒𝑤 𝑐

= 1, otherwise, 𝐼𝑛𝑒𝑤 𝑐
= 0. The last step of the 

LTFS is to perform morphological operation to remove imperfections in the binary image. 

 

Even though the threat objects are not single intensity object, the intensity levels of the most pixel points have less differences 

so that if the difference between the average intensity level and the neighbor pixel’s intensity level is within a small range, 

we consider the neighbor pixels as one intensity level.  The output of the LTFS only contains prominent information of the 

input image, such as abnormal regions or full connected inhomogeneous area. As shown in Fig. 3, the majority of background 

is eliminated and only some protruding regions are remained which indicates the possible location of the target.  

 

 

Figure 3: Sample output of the LTFS algorithm. (a) Original RGB image, and (b) LTFS output. (Yellow circle: target location)  

(a)                                                                                       (b) 

Figure 2: The concept of the LTFS algorithm. 

 Edge Pixel P 

Proc. of SPIE-IS&T  Vol. 9408  940802-3



Training Data

a

â"0'

Object Class

Extract Local Phase
and local contrast

Information

Training Phase

-->

- - Other Class

Histogram
Representation

V
Extract Local Phase Histogram> and local contrast Representation --> ClassifierTest Image ->

Information

Testing Phase Detection
Output

 

 

2.1.2 APS 

The LTFS method provides global background elimination. However, it cannot be trained to eliminate specific regions in a 

given image. Therefore it is necessary to develop an advanced algorithm for semantic segmentation purpose. Thus, we 

propose the APS which is an artificial neural net based segmentation algorithm that can be trained to segment out specific 

objects from images. 

 

 
 

 
 

The idea of APS model comes from the key observations in aerial imagery. One of the main observations during data analysis 

is the fact that most of the regions in the image do not contain a lot of information. There are also a lot of regions where the 

probability of finding threats are considerably low. In order to reduce the computational load on the object detection, we 

design a framework to segment out non-salient regions of an input image. A complete architecture of the algorithm is shown 

in Fig. 4. A test image is divided into various segments and passed through the trained model to detect the presence of an 

object. In Fig. 4, the local phase and local contrast are contextual features that are computed from the monogenic signal [8], 

expressed separately by  

 

                                                              𝐴(𝒙) =  √𝑓2(𝒙) + 𝑓1
2(𝒙) + 𝑓2

2(𝒙)                                                                      (4) 

and 

                                                              𝜑(𝒙) =  𝑎𝑟𝑐𝑡𝑎𝑛 (
√𝑓1

2(𝒙)+𝑓2
2(𝒙)

𝑓(𝒙)
) , 𝜑 ∈ [0, 𝜋)                                                        (5) 

where  𝐴(𝒙) represents the local phase, and 𝜑(𝒙) is the local amplitude. To obtain 𝑓(𝒙),  𝑓1(𝒙) and 𝑓2(𝒙), we assume that 

an image 𝑆(𝒙) is represented by  

                                                                  𝑆(𝒙) =   𝐴(𝒙)cos (𝜑)                                                                                           (6) 

Figure 4: Architecture for the proposed APS algorithm. 
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where 𝒙 = (𝑥, 𝑦) is the spatial coordinates of the signal 𝑆. Then if 𝑆 is convolved with the transform function of even and 

odd pairs of spherical quadrature filters (SQFs) as shown in Eqs. (7), (8) and (9), we can obtain the components of the 

monogenic signal representation (𝑓(𝒙), 𝑓1(𝒙), 𝑓2(𝒙)). 

                                                                  𝑓(𝒙) = 𝑆(𝒙) ∗ 𝑔𝑒(𝒙)                                                                                            (7) 

                                                                 𝑓1(𝒙) = 𝑆(𝒙) ∗ 𝑔𝑜1(𝒙)                                                                  (8) 

                                                                        𝑓2(𝒙) = 𝑆(𝒙) ∗ 𝑔𝑜2(𝒙)                                                     (9) 

where ‘∗’ represents the 2D convolution, 𝑔𝑒(𝒙) is the spatial domain representations of log Gabor filter, and  𝑔𝑜1(𝒙) and 

𝑔𝑜2(𝒙) are the odd set of SQFs, respectively. In terms of physical interpretation, the local phase contains the structure 

information of the objects while the local contrast information is represented by the local amplitude. In this research, the 

local phase and the local amplitude are used to represent regions of the image both in training and testing phases. For 

illustration, a sample result of the APS algorithm is shown in Fig. 5. In this specific example, buildings are being segmented.  

 

 

 
 

 

 

2.2 Part-based object detection 

In aerial imagery, a major challenge for detection is when the object of interest is partially occluded by shrubs, trees, 

buildings, etc. The part-based model has been shown attractive performance in object recognition due to its ability to cope 

with partial occlusions and large appearance variations [9-10]. Our proposed part-based model is demonstrated in Fig. 6. At 

first, an object is partitioned into a certain number of parts that varying by the size of object, then local phase information is 

used to extract informative attributes for describing individual parts. Next, object parts represented using local phase are 

converted into a larger number of clusters, similar parts are grouped into same cluster and then represented by histogram of 

oriented phase to describe specific pattern of the parts. The next step is to organize each of the detected parts and their 

Figure 5: Illustration of the APS segmentation. 
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attributes as an integrated entity. Since a target can be represented by certain number of patterns, we can train a classifier to 

detect such local patterns of the target, so that an occluded object can be detected by parts in the input scene. 
 

          
 

2.3 Risk assessment 

The part- based object detection technique outputs the pixel location of the threat object in the input image. However, in real 

world, a pipeline operator has to know the geolocation of an object for preventing any damage to the pipeline. This requires 

a registration process between images and geographical map. In addition, some detected machinery threats may be placed 

far away from the pipeline or even they are not being operated where the probability of that to be a threat is significantly 

low. Considering this issue, we designed a framework, as shown in Fig. 7, which can automatically analyze the geolocation 

and temperature of the detected object and assign risk level of a threat as high, medium and low.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If a threat is assigned as a “high” which delivers a meaning that this object is the more potential threat to the pipeline, whereas 

if it is marked as a “low”, then the detected object has less risk to the pipeline. In Fig. 8, assume that a detected object located 

in 𝑃1 in an input image (rectangular region in blur color), and 𝑃2 is the nearest point to 𝑃1 and it locates on the pipeline 

centerline with geo coordinates, then we compute the shortest distance between pipeline centerline and the object, denoted 

as 𝐷. Notice that the coordinates of 𝑃1 is the spatial location in the image. In order to compute the physical distance between 

𝑃1 and 𝑃2, we need to convert the pixel coordinates of 𝑃1 into geo coordinates. Since we know the geo coordinates of pixels 

in the four-corner of the image, we can easily find a transformation matrix to map image spatial location to geolocation, so 

that the geo coordinates of the object will be attained. Moreover, the temperature information of the target is obtained using 

the pixel value of the object in corresponding infrared imagery.    

Object Partitioning Parts
Feature 

representation
Classification

Figure 6: Flowchart of the proposed part-based model. 

Figure 7: The proposed framework for risk assessment. 
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To evaluate accuracy of the proposed distance measurement technique, we embedded five sample targets in testing images, 

and the distances from targets to the pipeline are provided by Global Mapper, which is used as a ground truth for our analysis. 

The comparison of our proposed method with the ground truth is shown in Table 1.  

Table 1: Distance calculation statistic. 

3. EXPERIMENTAL RESULTS

In this section, we will show results of our automatic machinery threat detection technique on a real-world dataset. The 

images in the database have been captured at altitude around 1000 feet along the pipeline RoW and data capture was done 

by one infrared and one visible cameras pointing towards the pipeline centerline. The objective in this research is develop a 

full-fledged system that can automatically detect potential machinery threats and aid human analysts for subsequent actions. 

The results of our proposed method are presented in two stages. The first stage shows the performance of the proposed 

background elimination technique in varying background conditions. The second stage presents the detection output using 

the proposed part-based model after background elimination. Risk assessment results will be generated as a text file after 

these two stages, however, we are not showing it here.   

3.1 Results of background elimination 

In Fig. 9, the results are shown in sequential order for the proposed LTFS and APS algorithms. Fig. 9 (a) is a sample test 

image which contains a threat object (red circled) that closes to the pipeline RoW. Fig. 9 (b) shows the output of the LTFS 

algorithm, as seen in the result, most of undesired background has been removed but the object is kept in the output image. 

Next, the APS is applied to the output image of the LTFS. Fig. 9 (c) shows the local phase image which was used for training 

and testing during APS process as mentioned in Section 2.1.2. Fig. 9 (d) is the final output after LTFS and APS processes. 

At seen in Fig. 9 (d), there are only few regions of the original image are left, this output would significantly contribute to 

the object detection stage since only few patches of the image will be considered for searching the object.  

3.2 Part-based object detection 

After background elimination, the part-based object detection model described in Section 2.2 is used for threat object 

detection. In this model, the sliding windows technique is used for scanning the image while SVM is employed for finding 

the object. During the sliding windows, due to the background segmentation technique eliminates most of non-target regions 

      Method 

Object 

Ground truth (feet) Proposed  (feet) 
Average Mean 

Square Error 

Target 1      7.897684      7.928991 

 0.1768 feet 

Target 2      75.533661      75.173040 

Target 3      95.846070      95.086690 

Target 4     110.473560     110.194510 

Target 5      62.576181      62.262255 

Figure 8: Demonstration of the distance calculation method. 
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and sets the intensities of those regions are zero as shown in Fig. 10 (b), only if the amount of non-zero intensity values great 

that 30% in a local region is computed, this accelerates the processing speed as well as the detection rate. Figure 10 shows a 

sample result using the proposed part-based technique. As shown in Fig. 10 (c), the multiple parts of the object are detected 

without any false alarm.  

 

4. CONCLUSIONS 

In this paper, we have presented a new automated monitoring system to mimic human vision system on the application of 

machinery threat detection on pipeline RoW. The proposed technique has been simulated and tested on real-life dataset under 

various challenging conditions to investigate its reliability and feasibility. The proposed system yields above 85% accuracy 

for machinery threat detection and offers a practical candidate for a wide area surveillance to protect our pipeline 

infrastructure. Currently, work is in process to refine algorithm with respect to computation speed as well as accuracy. In 

addition, we are establishing a standard databased for construction vehicles detection which will be available to public soon. 
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Figure 9: Results of background elimination. (a) Original image, (b) LTFS, (c) local phase, and (d) LTFS+APS.  

(a) (b) 

 (c) (d) 
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Figure 10: The detection output of the proposed algorithm. (a) Original image (yellow circle: object location), (b) after 

background elimination, and (c) part-based detection output (red rectangular: multiple parts are detected).   

(a) 

(b) 

(c) 
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