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Abstract

At the core of many neuro-imaging studies, atlas-based brain parcellations are used for example to 

study normal brain evolution across the lifespan. These atlases rely on the assumption that the 

same anatomical features are present on all subjects to be studied and that these features are stable 

enough to allow meaningful comparisons between different brain surfaces and structures These 

methods, however, often fail when applied to fetal MRI data, due to the lack of consistent 

anatomical features present across gestation. This paper presents a novel surface-based fetal 

cortical parcellation framework which attempts to circumvent the lack of consistent anatomical 

features by proposing a brain parcellation scheme that is based solely on learned geometrical 

features. A mesh signature incorporating both extrinsic and intrinsic geometrical features is 

proposed and used in a clustering scheme to define a parcellation of the fetal brain. This 

parcellation is then learned using a Random Forest (RF) based learning approach and then further 

refined in an alpha-expansion graph-cut scheme. Based on the votes obtained by the RF inference 

procedure, a probability map is computed and used as a data term in the graph-cut procedure. The 

smoothness term is defined by learning a transition matrix based on the dihedral angles of the 

faces. Qualitative and quantitative results on a cohort of both healthy and high-risk fetuses are 

presented. Both visual and quantitative assessments show good results demonstrating a reliable 

method for fetal brain data and the possibility of obtaining a parcellation of the fetal cortical 

surfaces using only geometrical features.

 1. INTRODUCTION

Neuro-imaging studies often use the assumption that distinct brain regions can be identified 

and analyzed in a consistent way on all brains that are analyzed. Surface-based analysis of 

the cortex is often used to study normal cerebral cortical development and evolution across 

the lifespan and the impact of neurodegenerative diseases on cortical integrity. This type of 

approach, based on a time-consuming surface registration through diffeomorphisms and 

guided by anatomical features such as sulcal depth and cortical curvature,1, 2 often fail when 

dealing with fetal MRI data. Indeed, fetal brain development is very prolific throughout 

pregnancy3 and anatomical features do not remain consistent across gestation. As illustrated 

in Figure 1, brain features evolve with increasing gestational age and classical landmarks 

such as sulci are not reliable throughout gestation as they do not exist early in gestation, but 

appear gradually. Moreover, the age of appearance of these landmarks tend to vary from one 

patient to another.
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The ability to define an anatomically coherent parcellation that is consistent and stable 

throughout all ages remains an ongoing challenge While the parcellation of the cortical 

surface into brain lobes can be justified throughout gestation, the use of a higher number of 

parcels, as is done for adult brain atlases, raises the question of what the anatomical meaning 

of these parcels is, as the anatomical regions are not yet differentiated in the developing fetal 

brain.

To address the issue of lack of temporally coherent landmarks, manually delineated sulcal 

landmarks have been used by Auzias et al.4 as constraints in a model-driven 

parameterization scheme. To counter-balance the lack of many of the sulci landmarks at the 

earlier gestational ages,5 additional geometric constraints such as the barycenter of the most 

anterior and most posterior points of the cortex are used. In the work by Pepe et al.,6 spectral 

clustering based on the computation of the Laplace-Beltrami eigenfunctions computed on 

the cortical surface is used to define a parcellation of the brains to be segmented, and the 

resulting maps are then mapped into a common spherical space to perform parcels matching. 

While this method presents interesting results, the reproducibility appears to depend on the 

number of regions used in the spectral clustering procedure, and the authors suggest using a 

number equal to 6 or 7 parcels.

The use of such geometry-aware features has become increasingly popular for adult brain 

matching7 (combined with anatomical features) or non-rigid shape matching.8 A major 

drawback of the descriptors based on the eigenfunctions and eigenvalues of the Laplace-
Beltrami operator is their ambiguity to sign flips for each eigenfunction which requires a 

reordering of the spectra.9 In order to circumvent this issue, the Heat Kernel Signature 
(HKS) has been proposed.10 Based on the heat kernel, a solution of the heat equation, the 

HKS is a collection of low-pass filters, thus dominated by the lower frequencies which limits 

its ability to precisely localize features within one shape.9 To enhance spatial localization, a 

descriptor based on the Schrödinger equation governing the temporal evolution of quantum 

mechanical particles, the Wave Kernel Signature (WKS), was proposed by Aubry et al.11 As 

a collection of delta filters in the Fourier domain, the WKS descriptor allows a better spatial 

resolution than HKS. Both HKS and WKS achieve state-of-the-art performance in shape 

analysis.9

In order to overcome the lack of consistently present anatomical brain features across all 

gestational ages, and in order to provide an age-independent consistent parcellation of the 

fetal brain, we propose to take advantage of the good discrimination properties of the WKS. 

The aim here is to propose a method that allows a comparison of the different regions of the 

cortical surface without any assumptions on anatomical features.

A new mesh signature, based on both the WKS and the Euclidean coordinates of the nodes 

of the mesh, is used in a k-means clustering scheme to define a consistent segmentation on a 

set of fetal cortical surfaces. These parcellations are then learned using Random Forests.12 

New cortical surfaces can then be parcellated and are further refined using an alpha-

expansion graph-cuts framework.13 Qualitative and quantitative assessment of the 

reproducibility and stability of our parcellation scheme across individuals for different 

cluster numbers and at different ages is then performed.
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 2. METHOD

 2.1 Mesh signature

In order to compute a consistent signature for all the surfaces to be studied, one surface is 

chosen as reference and the others are roughly registered to it using a Principal Component 

Analysis on the normal field of the mesh. All meshes are then re-scaled to the unit box.

Let G = {V,A}, the graph built from the set of vertices V and edges A of a closed surface 

model S ⊂ R3. The rationale behind the WKS computation is to characterize each node x ∈ 

V by the probability WKSe(x) to measure a quantum particle with an initial energy 

distribution fe(v) on this point. e represents the energy level, which is directly related to the 

eigenvalues of the Laplace-Beltrami operator, giving thus an intrinsic interpretation of the 

shape. f belongs to a family of log-normal energy distributions.

For each point on the surface, we can thus associate a wave kernel signature of the form:9

(1)

where N is the number of evaluation energies of the WKS and e1, …, eN are logarithmically 

sampled.

While the WKS vector demonstrates good localization performances, the sole use of it in a 

clustering scheme would result in spatially disconnected clusters, given that different points 

of the mesh can present similar WKS descriptors. Although useful for finding similar parts 

in the segmentation of articulated shapes, this feature becomes problematic when dealing 

with brain parcellation where spatial connectivity has to be enforced.

We subsequently decided to combine the intrinsic information provided by the WKS with 

the extrinsic one provided by the spatial coordinates of the nodes of the mesh in a unique 

signature of the meshes to be studied. The mesh signature can then be written as:

(2)

with k a parameter to balance both spatial and WKS features. Indeed, without it, the greater 

number of evaluation energies we use, the less the impact of the spatial coordinates in the 

final signature, which would lead us to decrease or discard the spatial localization ability.

To obtain a signature taking both types of information into account, we decided to set k to 

.

 2.2 Cortical surfaces parcellation learning and inference

 2.2.1 Cortical surfaces parcellation learning—Since the aim here is to propose a 

consistent parcellation of the fetal brain throughout gestation and a brain matching method 
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to propagate this parcellation, we decided to build the parcellation simultaneously on all the 

brains of a learning set instead of building it independently on each brain.

As described previously, a brain signature is defined as a collection of feature vectors 

computed on each node of the cortical mesh. A training set signature tr is then defined as an 

unordered collection of m brain signatures sig in RN+3.

(3)

Noteworthy, there is no assumption made on the number of nodes of the training set meshes, 

each sigi being of a different size |V| × (N + 3).

This training set is then clustered using the K-means++ algorithm.14 Figure 2 illustrates the 

result of this clustering on brains at different gestational ages.

Once this clustering is performed, the parcellation needs to be propagated to new cortical 

surfaces. Many learning techniques could be used to perform this task. Among them, RF12 

have received increasing attention due to the appealing trade off between efficiency, 

computational time, and ease of use. For example, RF has been used by Lombaert et al.15 to 

classify adult cortical surface data represented by their spectral coordinates combined with 

sulcal depth information. Such anatomical information, and thus the method cannot be 

reliably applied to fetal data as sulcal features are not stable across ages. Meng et al.16 

parcellated adult cortical surfaces by first registering surfaces using spherical demons and 

then learning Haar-like features using an incremental RF learning framework. The resulting 

parcels are then further refined using a curvature guided graph-cut procedure, using the 

assumption that curvature is a guiding force in manual segmentation for cortical data. This 

method thus relies strongly on the quality of the first registration, which is less reliable on 

fetal data as typical features such as sulcal depth cannot be used to guide it. Moreover, the 

assumption that changes in curvature allow a consistent separation of parcels on cortical 

surfaces is less straightforward. Indeed, due to brain growth, a same region at different ages 

can be completely smooth or fully gyrified, thus presenting really different curvature 

features.

Consequently, RF are extended here to use the mesh signatures defined earlier to both learn 

and infer the parcellation of the cortical surface. The idea is that an ensemble of decision 

trees makes probabilistic decisions on an input data set. In the training phase, multiple 

decision trees are grown by finding for each node the binary test that best splits the training 

data set, represented here by its vector of signatures tr. In the testing phase, nodes 

(represented by their signature sig) are classified using the maximum of the votes. As we can 

see in Figure 3 (a) and (b), this clustering produces a reasonable parcellation of the brain.

However, some disconnected regions still appear and need to be removed.

 2.2.2 Cortical surfaces parcellation refinement—The aim of this final step is 

twofold; first to remove the non-connected components so that each parcel represents a 

unique connected cluster; and second, to smooth boundaries between the different parcels 
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making them adhere to local mesh features. Inspired by previous work by Shapira et al.17 to 

obtain a final segmentation of non-rigid shapes based on the results of an Expectation-

Maximization segmentation process on the faces of the mesh, we decided to use an alpha-

expansion graph-cut method on the graph of labeled nodes to determine the final cortical 

parcellation. As mentioned previously, refinement based on an alpha-expansion graph-cut 

method on the graph of labeled nodes of cortical surfaces has also been performed.16

While the maximal voting provided by the Random Forest has been used to determine the 

initial segmentation, in the refinement process, a probability map P is computed from the 

voting information provided by all the trees for every point.

We can thus define the energy function to be minimized by the graph-cut optimization as:

(4)

with l, the label assigned to node x, L, the set of all possible labels, λ, a parameter defining 

the degree of smoothness, Θ(a), the dihedral angle of edge a, al,d, the edge where the first 

point belongs to cluster l and the second one to cluster d and Al,d the set of edges where one 

of the points belongs to cluster l and the second one to cluster d. In contrast to Shapira et 
al.,17 the smoothness term is not computed for each node but a global label transition 

information determined on the whole training set is used; g2 is only computed once on the 

whole training set. Using this refinement, spatial separation of clusters is enhanced as shown 

in Figure 3 (b) and (d).

 2.2.3 Quantitative evaluation—The reproducibility, stability and accuracy of the 

proposed automated parcellation and learning framework are assessed quantitatively through 

the use of the measurement described below.

 Parcellation reproducibility: In order to assess parcellation reproducibility, we define 

the reproducibility value DR(K) of a cortical parcellation with K clusters as the mean over 

all subjects of pair-to-pair Dice measurements as defined next.

(5)
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with p, q label maps with K parcels, M the number of subjects, and Dice, the usual Dice 

value between two different sets.

 3. RESULTS

 3.1 Data and pre-processing

Our database is composed of 218 fetal MRI scans with gestational ages ranging from 20 to 

37 weeks: 110 MRI studies from healthy control fetuses, and 108 fetuses diagnosed with 

complex congenital heart disease, which has been previously shown to alter the cortical 

gyrification process.18 All the scans have been semi-automatically segmented as described 

by Clouchoux et al.3 Two different processes have been involved for the surface 

reconstruction. First, brain surfaces were reconstructed using BrainSuite19 which provides 

us a set S1 of cortical surfaces with different number of nodes and topologies. In order to be 

able to compare parcellation results, a subset S2 ⊂ S1 of 38 brains (26 controls and 12 cases) 

were reconstructed and registered using the method proposed and validated by Clouchoux et 
al.3 While not perfect, the registration proposes a common ground to compare parcellation 

results on the different surfaces. This subset will thus constitute the testing set, as the 

registration process gives us a one-to-one correspondence between all the nodes of the 

different brains, allowing us the computation of performance metrics on the parcellation.

 3.2 Qualitative validation

Figure 4 shows parcellation results at different ages and for different cluster numbers. Visual 

parcellations are consistent across gestational ages and cluster numbers. As a comparison, 

while the brain parcellations proposed by Pepe et al6 seem consistent for a low number of 

clusters (K ≤ 7) the error rate increased quickly for higher number of parcels. Noteworthy, 

the parcellation obtained with a number of clusters equal to 5 could be anatomically related 

to a parcellation of the brain into frontal, temporal and occipital lobes, with the frontal lobe 

sub-segmented into its most frontal and posterior parts.

Since we are dealing with fetal brains where sulci and gyri have not been formed yet, the use 

of these landmarks to define an anatomically correct parcellation into more than the main 

lobes remains an open question. Indeed, due to the absence of relevant anatomical landmarks 

throughout gestation, a highly parcellated fetal brain at one age cannot be consistently 

mapped to a fetal brain at another age with the assumption that corresponding regions will 

have the same function. However, in order to study growth trajectories or pathologic 

conditions, we might need a finer parcellation of the surfaces with a stable label 

correspondance accross all considered brains.

Thus, in the next section, we will investigate quantitatively the performances of the method 

for a growing number of parcels without any assumption on the anatomical relevance of the 

obtained parcels.

 3.3 Quantitative validation

In order to avoid over-fitting, 28 brain surfaces belonging to S1\S2 are used as a training set. 

Since the cortical surfaces have not been registered, they all present different topologies and 
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node numbers. Table 1 summarizes the results in terms of reproducibility, sensitivity and 

specificity indices for all the 38 brains of the testing set, with different numbers of clusters.

As seen through the reproducibility index, even for a high number of parcels, performances 

remain good. Our Sensitivity and Specificity indices illustrate the stability of the quality of 

the parcellation, even for a high number of parcels. As expected, the performance decreases 

as the number of clusters increases but remains high even for a number of clusters equal to 

40.

 4. CONCLUSION AND DISCUSSION

In this work, we propose a novel fetal cortical surface parcellation and learning framework 

based on a mesh signature combining both extrinsic and intrinsic geometrical information. 

This mesh signature is first used in a joint-segmentation framework on all the cortical 

meshes to define a coherent parcellation on the surface of the brain. It is then used to learn 

and propagate this parcellation. The method is fully automatic, computationally low 

consuming, and allows for a multi-resolution parcellation of the fetal brain as the number of 

clusters to be used is chosen by the user. As a solution to the inherent lack of consistent 

anatomical brain features present across gestation, we propose a geometrically-based 

alternative to anatomical atlas-based methods. Both qualitative and quantitative validations 

demonstrate the robust performance of the proposed method. However, being based solely 

on a joint-segmentation of the whole training set at once, the parcellation, while spatially 

coherent, tends not to take into account the local variabilities with respect to anatomy. 

Moreover, in the proposed method each cerebral hemisphere is processed separately and 

thus there is no correspondence between both parcellations. We plan to address both of these 

limitations in our future work.
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Figure 1. 
Left hemisphere suface of a (a) 26 week gestational age (GA) fetus (b) 28 week GA fetus (c) 

30 week GA fetus and (d) 34 week GA fetus.
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Figure 2. 
Left hemisphere parcellation into 5 classes from a (a) 20 week gestational age (GA) fetus (b) 

27 week GA fetus (c) 30 week GA fetus (d) 32 week GA fetus and (e) 37 week GA fetus.
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Figure 3. 
Left cerebral hemisphere parcellation into 6 classes in a (a-b) 29 week GA fetus after RF, 

and (c-d) after graph-cuts.
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Figure 4. 
Left hemisphere parcellation for fetuses at different gestational ages and for different 

number of clusters K.
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