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Abstract

Automatic thalamus segmentation is useful to track changes in thalamic volume over time. In this 

work, we introduce a task-driven dictionary learning framework to find the optimal dictionary 

given a set of eleven features obtained from T1-weighted MRI and diffusion tensor imaging. In 

this dictionary learning framework, a linear classifier is designed concurrently to classify voxels as 

belonging to the thalamus or non-thalamus class. Morphological post-processing is applied to 

produce the final thalamus segmentation. Due to the uneven size of the training data samples for 

the non-thalamus and thalamus classes, a non-uniform sampling scheme is proposed to train the 

classifier to better discriminate between the two classes around the boundary of the thalamus. 

Experiments are conducted on data collected from 22 subjects with manually delineated ground 

truth. The experimental results are promising in terms of improvements in the Dice coefficient of 

the thalamus segmentation over state-of-the-art atlas-based thalamus segmentation algorithms.
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1. INTRODUCTION

The thalamus is an important subcortical structure in the brain of vertebrates.1 Its primary 

function is to relay sensory and motors signals to the cerebral cortex. Thalamic size or 

volume is useful for tracking the progression of neurodegenerative diseases.2 There is a need 

to automatically segment the thalamus from magnetic resonance images (MRI) in order to 

compute the thalamic volume.

One common method to find the thalamus is to transform the T1-weighted (T1-w) MRI into 

an atlas domain and use labels from the atlas to identify the subcortical structures in the 

original image. For example, Bazin and Pham3 proposed combining statistical and 

topological atlases to find such subcortical structures. More sophisticated methods 
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incorporate shape or spatial priors, such as shape models, topological correction, or spatial 

information. A method proposed by Patenaude et al.4 incorporates prior anatomical 

information using explicit shape models. Fischl et al.5 proposed using spatial information of 

relative locations of subcortical structures as a spatial prior. However, none of these 

algorithms incorporate the strong connectivity properties of the thalamus.

Diffusion tensor imaging (DTI) is an MRI sequence used to understand connectivity 

between structures within the brain.6 DTI images the diffusion rate of water molecules 

across multiple directions, which reflects the interactions of water molecules with fibers and 

membranes and reveals the microscopic details of the tissue structure. Diffusion occurs more 

strongly along the direction of neural fibers that make up these connections. Since the 

thalamus has more connections than its immediate surrounding tissues, a rich set of features 

derived from DTI can help identify the thalamus.

Sparse representation uses a learned dictionary to represent the feature vectors as a linear 

combination of a small subset of atoms or elements in the dictionary. Sparse Representation 

Classification (SRC) proposed by Wright et al.7 uses the feature vectors as dictionary atoms 

and has been applied to segmentation of the prostate from computed tomography images.8 

However, SRC relies on representative training data to form the dictionary atoms and hence 

the performance is affected by noisy training data. Other algorithms proposed for dictionary 

learning include Label-Consistent K-SVD9 and Online Dictionary Learning,10 which has 

been applied to hippocampus segmentation.11 However, both methods perform joint 

optimization by concatenation of the dictionary and the classifier parameters and thus the 

recovery performance is not guaranteed.12 Task-Driven Dictionary Learning (TDDL)13 

forms the problem into a bi-level optimization, with the dictionary and linear classifier 

optimized concurrently using a stochastic gradient descent method. TDDL has been found to 

produce results comparable to other dictionary learning methods, is robust to noisy training 

data, and converges quickly.

The proposed algorithm uses a modified TDDL framework to learn a dictionary to classify 

voxels as belonging to the thalamus class. The dictionary is learned from a set of features 

extracted from T1-w and DTI MRI. Due to the small size of the thalamus compared to the 

rest of the brain, a modified sampling scheme is used when learning the dictionary, which 

preferentially samples voxels belonging to the thalamus and boundary classes, compared to 

voxels far from the thalamus. When presented with a test data set, the learned dictionary and 

classifier are used to classify each voxel independently, producing a binary mask consisting 

of voxels belonging to the thalamus class. A morphological operator and connected-

component analysis is applied to the image to obtain the final thalamus segmentation.

2. METHODS

The proposed algorithm consists of three steps. A set of features are extracted at each voxel 

in the volume. Next, given a set of training data with a manually delineated thalamus, a 

dictionary is learned to sparsely represent the feature vectors and a linear classifier is trained 

to distinguish between thalamus and non-thalamus feature vectors. Finally, when provided 
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with a set of test volumes, each voxel is classified by the linear classifier and simple post-

processing steps generate the final segmentation.

2.1 Feature extraction

Eleven features are extracted at each voxel from T1-weighted MRI (T1-w) and DTI. Let the 

vector s be defined as a voxel coordinate in 3D space, then s ≜ (x, y, z)T. The first set of 

features depends on the spatial difference between the voxel coordinate and the volume 

center voxel sc. Let the absolute difference of a voxel to the center voxel be defined as Δs = 

(|x − xc|, |y − yc|, |z − zc|)T. The first three features of d(s) are the non-increasing function for 

each element of Δs with σ2 as a smoothing factor,

The fourth feature is the T1-w intensity at s, denoted as I(s). The T1-w volumes are 

normalized using white-matter peak normalization to account for variations in intensities 

between different image volumes.

The remaining seven features are derived from the diffusion tensor. The diffusion tensor is a 

matrix that represents the diffusivity at a voxel and can be expressed in terms of its 

eigenvalues and eigenvectors. Fractional anisotropy FA(s) and mean diffusivity MD(s) are 

two features derived from the eigenvalues of the tensor at s.

Five features are based on the direction of maximum diffusion, which corresponds to the 

principal eigenvector u = (u1, u2, u3)T of the diffusion tensor. However, diffusion occurs in 

the direction of u and −u with equal probability, so we represent u as an orientation in the 

Knutsson space,14

The eleven aforementioned features: d(s), I(s), FA(s), MD(s), and K(u) are concatenated to 

construct the final feature vector f(s). Examples of these features are shown in Fig. 1 and the 

red contour highlights the ground truth of the thalamus.

2.2 Algorithm

The proposed algorithm adapts the TDDL framework13 for use with a large set of training 

data. Given a dictionary D, the sparse coding procedure aims to find a sparse representation 

of the feature vector f(s) using D, denoted as α★(f(s), D). It is found by solving the 

following minimization problem known as Basis Pursuit15 or Least Absolute Shrinkage and 

Selection Operator (LASSO),16
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(1)

The sparse vector α★ and manual delineation y(s) are used to jointly learn the dictionary D 
and the linear classifier weights W that minimizes the prediction error of y(s). In our 

implementation, we measure the prediction error as the empirical squared error over a set 

of samples from the training data set. This gives the following objective function,

(2)

where the first term is the empirical risk and the Frobenius norm penalty prevents over-

fitting of the model. Due to the size of the training data, we take  to be a random subset of 

voxels from the training data and the stochastic gradient descent algorithm is used to 

optimize (2).

After learning the dictionary and classifier parameters, each voxel in a new test volume are 

classified independently as belonging to either the thalamus or non-thalamus class. Let the 

voxel coordinate of the test voxel be given as sτ. Then, we extract a test feature vector f(sτ) 
and solve for α★(f(sτ), D★) using (1). Using the classifier weights, the predicted class ĉ(sτ) 
is given by

(3)

where  is the rth row of W★.

After voxel-wise classification, post-processing is applied to the resulting binary map to 

remove small holes and find the largest connected component, which is assumed to be the 

thalamus. Small holes and small connections between components are removed by applying 

the morphological opening operator, followed by the morphological closing operator. Both 

operators use a spherical structuring element with a radius of 2 voxels. Next, the binary map 

is divided equally into left and right volumes along the midsagittal plane.17 The largest 

connected component in either hemisphere is found. These two components are assumed to 

correspond to the left and right thalamus and voxels not belonging to these components are 

classified as non-thalamus.

2.3 Implementation Details

The proposed algorithm uses a non-uniform sampling scheme to find the training set  in 

stochastic gradient descent because of the discrepancy between the number of non-thalamus 

voxels and thalamus voxels, This is to encourage the dictionary to learn more information 
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about the thalamus voxels and non-thalamus voxels near the thalamus boundary (henceforth 

called boundary voxels). To do this, we partition the training data into three subsets: 

thalamus voxels, boundary voxels, and all other non-thalamus voxels. Non-thalamus voxels 

within 5 voxels of the thalamus boundary are considered to be boundary voxels. Then 

training samples are drawn uniformly from each subset with a certain ratio. We set the ratio 

to be 3/8, 3/8, and 2/8 respectively. We draw 5000 samples per stochastic gradient descent 

iteration in our experiments.

Other algorithm parameters for the optimization algorithm include: ℓ1 norm regularization 

weight λ = 0.1; Frobenius norm regularization weight μ = 0.9; stochastic gradient descent 

step size ρ = 0.0001; dictionary size n = 400; and the total number of iterations of gradient 

descent for training T = 8000. σ2 of the spatial absolute difference feature d(s) is chosen to 

be 100. All these parameters were determined empirically.

3. EXPERIMENTS

3.1 Dataset

The data consists of 22 patients from a study of cerebellar ataxia with manual delineated 

ground truth.18 The subject images were acquired on a 3T MR scanner (Intera, Philips 

Medical Systems, Netherlands).

3.2 Comparison with state-of-art segmentation algorithms

We compared the proposed algorithm with a set of state-of-art segmentation and 

classification algorithms. We use a two-fold cross validation scheme for testing. Results are 

compared with two state-of-art algorithms: TOADS3 and FreeSurfer.5 Both are atlas-based 

subcortical segmentation algorithms that provide labels for the thalamus.

The performance of the segmentation algorithms is quantified using the Dice coefficient 

(DC):19

DC measures the overlap between a segmentation algorithm’s result A and the ground truth 

G. Figure 2 shows example results of the proposed algorithm. Box plots showing median 

and range of Dice coefficients for the proposed and comparison algorithms are in Fig. 3. The 

proposed algorithm performs better than TOADS and FreeSurfer, with a median DC of 

0.8057, compared with 0.6104 for TOADS and 0.6875 for FreeSurfer. A paired Wilcoxen 

signed rank test comparing our method with TOADS has a p-value < 0.001 and comparing 

with FreeSurfer has a p-value of 0.0017, indicating significant improvement. However, the 

proposed algorithm is also prone to producing outliers if the post-processing steps remove 

too many or too few misclassified voxels. See Fig. 2(d) for an example of an outlier (DC = 

0.5740) where a large amount of thalamus voxels were classified as non-thalamus.
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4. CONCLUSIONS

In this paper, we explore the a task-driven dictionary learning algorithm to perform voxel-

wise classification with features derived from T1-w and DTI MR data. The results show that 

the algorithm performed better than two state-of-the-art atlas-based methods. However, in 

cases where the post-processing steps failed to remove misclassified voxels, the algorithm 

performance can suffer slightly. Future improvements include incorporating more intelligent 

outlier rejection and segmentation refinement methods.
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Figure 1. 
Examples of features used in f(s). The red contour is the ground truth delineation of the 

thalamus.
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Figure 2. 
Examples of the resulting segmentation: (a) shows our best result with our proposed 

algorithm; whereas (b) and (c) show typical results for the proposed algorithm; and (d) is an 

outlier for the proposed method, where post-processing removed too many thalamus voxels.
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Figure 3. 
Thalamus segmentation Dice coefficients. The proposed algorithm has a median DC of 

0.8057, higher than TOADS (median DC of 0.6104) and FreeSurfer (median DC of 0.6875).
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