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Abstract

The presence of extensive calcification is a primary concern when planning and implementing a 

vascular percutaneous intervention such as stenting. If the balloon does not expand, the 

interventionalist must blindly apply high balloon pressure, use an atherectomy device, or abort the 

procedure. As part of a project to determine the ability of Intravascular Optical Coherence 

Tomography (IVOCT) to aid intervention planning, we developed a method for automatic 

classification of calcium in coronary IVOCT images. We developed an approach where plaque 

texture is modeled by the joint probability distribution of a bank of filter responses where the filter 

bank was chosen to reflect the qualitative characteristics of the calcium. This distribution is 

represented by the frequency histogram of filter response cluster centers. The trained algorithm 

was evaluated on independent ex-vivo image data accurately labeled using registered 3D 

microscopic cryo-image data which was used as ground truth. In this study, regions for extraction 

of sub-images (SI’s) were selected by experts to include calcium, fibrous, or lipid tissues. We 

manually optimized algorithm parameters such as choice of filter bank, size of the dictionary, etc. 

Splitting samples into training and testing data, we achieved 5-fold cross validation calcium 

classification with F1 score of 93.7±2.7% with recall of ≥89% and a precision of ≥97% in this 

scenario with admittedly selective data. The automated algorithm performed in close-to-real-time 

(2.6 seconds per frame) suggesting possible on-line use. This promising preliminary study 

indicates that computational IVOCT might automatically identify calcium in IVOCT coronary 

artery images.
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1. INTRODUCTION

Vascular disease, which extracts a terrible toll on health in the developed world, is being 

treated percutaneously using a variety of methods that could be improved with the use of 

intravascular imaging. Heart attack and stroke are the major causes of human death, and 

almost twice as many people die from cardiovascular diseases than from all forms of cancer 

combined. Coronary calcified plaque (CP) is an important marker of atherosclerosis and as 

such, it is important to gain understanding into CP lesion formation, as it is associated with 

higher rates of complications and lower success rates after percutaneous coronary 

intervention (PCI).[1, 2] The CP lesion can provide an estimate of total coronary plaque 

burden for a patient[3–9], thus, concise analysis may be used to prevent and treat occlusions, 

which are caused by CP as soon as it is discovered.

An automatic method to segment and quantify CP in medical images would facilitate our 

understanding of its role in the clinical cardiovascular disease risk assessment.[3] 

Furthermore, current concepts in interventional cardiology highlight the need for IVOCT. 

First, there is a need to guide plaque modification. The presence of calcium is the strongest 

factor affecting “stent expansion,” a well-documented metric for clinical outcome.[10, 11] 

IVOCT provides the location, circumferential extent, and thickness of calcium. Angiography 

gives no such details. IVUS detects calcium but gives no information about thickness, as the 

signal reflects from the front surface. As interventional cardiologists tackle ever-more 

complex vascular lesions and use bioresorbable stents, there is a recent growing interest in 

using atherectomy devices for lesion “preparation.” Since there is a substantial economic 

cost and risk of complications with atherectomy[12], we should un-blind physicians with 

IVOCT and provide them with improved assessment of the need for atherectomy and with 

angular location for “directed” atherectomy. Second, there can be a geographic miss, where 

the stent either misses the lesion along its length or is improperly expanded, affecting its 

ability to stabilize the lesion and/or provide appropriate drug dosage. There is well-

documented impact on restenosis.[13] Plaque dissections at the edge of a stent clearly visible 

in IVOCT were detected by angiography in only 16% of cases.[14] Edge dissection happens 

almost exclusively in areas with eccentric calcium/lipid[14], characteristics only available 

with intravascular imaging. Under IVOCT guidance, one can use a longer stent or apply a 

second stent to reduce effects of geographic miss. Third, plaque sealing is the treatment of a 

remote lesion that is hemodynamically insignificant (<50% stenosis) but that may appear 

vulnerable under intravascular imaging. Because approximately 50% of coronary events 

after stenting happen at remote, non-stented sites, plaque sealing is an attractive concept 

under investigation in trials. IVOCT’s high sensitivity for lipid plaque will be advantageous 

for guidance of plaque sealing.

To meet this unmet clinical need, we will develop a methodology for automatic detection of 

calcified plaques. The methodology we propose is a new approach for CP segmentation and 

is intended to perform robustly with IVOCT images encountered in the clinical environment, 

in real time, without the need for user interaction. In previous study done in our lab[15] we 

came to the realization that, in the case of plaque characterization, due to the complexity of 

the different plaque compositions, when attempting to discriminate a specific, well defined 

plaque type (positive), all positive examples are alike, yet each negative example is negative 
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in its own way. This led to our proposed algorithm, where we use a one-plaque classifier that 

tries to identify CP amongst all other plaques.

A CP region appears as a signal-poor or heterogeneous region with a sharply delineated 

border (leading, trailing, and/or lateral edges).[16] Calcium is darker than fibrous plaque with 

greater variation in intensity level inside the region. A few major contributors to the variance 

in appearance of the different plaques are also artifacts as discussed in[17] including multiple 

reflection, saturation, motion etc.

In our approach, a CP image is modelled by the joint distribution of filter responses 

combined with edge data as derived by using a canny edge detector. This distribution is 

represented by texton (cluster center) distribution. Classification of a new image proceeds by 

mapping the image to a texton distribution and comparing this distribution to the learned 

models. We further enhance this unique approach by increasing robustness by introducing 

methods novel to plaque analysis. First, we created a dictionary using images containing all 

possible variations of calcium encountered in a clinical environment. In addition, we 

introduced an approach that minimizes the reliance on edge orientation and avoids the 

reliance on visible structures. In the next section, we describe the algorithms in detail. Then, 

we describe the validation experiments, and analyze results of the comparison with human 

experts.

2. ALGORITHMS

Classification algorithms based on distribution of filter responses have been used in the past 

with various level of success.[18, 19] Our algorithm enhances this concept by adding various 

features at various stages of the algorithm. Specifically, when extracting features, we add a 

very plaque-specific feature set we name DGAS (stands for Distance, Gradient, Average and 

Smoothness) as described below. Our algorithm is divided into four main steps: processing 

for extraction of image-wide features, dictionary creation, model creation (training) and 

classification (prediction).

Image Processing for extraction of DGAS features

In the initial step, before the SI’s are extracted, all images are passed through canny edge 

detector[20] preceded by blood vessel mask extraction (the mask includes all pixels between 

the lumen border and the back border[21] and guidewire artifact removal.[22] This enables 

each pixel to be assigned a global edge feature vector (features of edges extending over a 

length in the image) set referred to as DGAS feature set (these are five real-valued features). 

The DGAS feature set includes distance of the pixel from the lumen, continuous edge 

gradient magnitude, continuous edge gradient direction (together, they express the acutance 

of the edge), average edge intensity and edge smoothness computed as the second derivative 

of the image (i.e. Laplacian).[23] Notice that these features are assigned based on edge which 

are found by processing the complete frame, thus, continuity across SI’s is preserved. 

Following this step, SI’s are extracted as described below.
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Calcium Texton Dictionary Creation

In the dictionary creation step (Algorithm, part 1), we obtain a finite set of local structural 

features that can be found within a large collection (40 randomly selected from the CA-DS 

set describe below) of calcium SI’s from various pullback images. We follow the hypothesis 

that this finite set, which we call the calcium texton dictionary, closely represents all 

possible local structures for every possible calcium instance in a pullback.

Textons—We characterize a calcium SI by its responses to a set of linear filters (filter bank, 

F) combined with edge features (DGAS feature set). We seek a set of local structural 

features (filter responses) which is targeted towards having largest response representing the 

calcium specifically. This approach leads to our main four-part proposal: First, to use a filter 

bank containing edge and line filters in different orientations and scales. Second, optionally, 

select a subset taking into account only the strongest responses across all orientations (thus 

providing orientation invariance). Third, based on the concept of textons and its 

generalizations introduced by Malik et al.[24] we use the concept of clustering the pixel 

responses into a small set of prototype response vectors we refer to as textons. Note that by 

adding to each filter response vector the DGAS feature set, we enable the addition of spatial 

relationships between adjacent SI’s in the form of continuous borders within the image.

Algorithm, part 1

Dictionary creation

Init split CA-DS into 2 disjoint sets: dictionary, training&testing (for model creation)

input 40 calcium sub-images.

output dictionary of textons (∈ ℝK×n)

for each sub-image {

a. Create filter bank, F

b. Convolve with filter bank, F (∈ □nf) and record convolution value.

c. Combine with DGAS feature set - ℝn for each pixel

}

Concatenate all calcium pixel responses

Create K clusters for each group via K-means (Identify K via “elbow” method).

Output dictionary

Filter bank, F—We designed a special filter bank, in an attempt to capture the qualitative 

description of calcium as signal-poor or heterogeneous region with a sharply delineated 

border.[17, 25] We then investigate the maximum response filters over the orientation (MR8) 

versus the entire filter bank. It is shown that by doing that we reduce computation effort 

significantly with minimal loss in performance. The full filter bank (Figure 1) consists of a 

Gaussian and a Laplacian of Gaussian filters, an edge filter at three scales and six 

orientations and a bar filter (a symmetric oriented filter) at the same three scales and 

orientations, giving a total of 38 filters. When using the maximum response filters, the 

output dimensionality is reduced by recording only the maximum filter responses across all 

scales, therefore, yielding one response for each of the upper six rows in Figure 1, where the 
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Gaussian and Laplacian of Gaussian are recorded always, hence MR8. In the MR8 case, the 

final vector of filter responses consists of eight numbers.

Model Creation

In the model creation step (Algorithm, part 2), the remaining mt SI’s subset from the CA-DS 

is used. Each of these training SI’s is convolved with F, generating a vector of filter 

responses which is concatenated with the DGAS feature set, thus creating a pixel response 

vector (∈ ℝn) for each of the SI’s pixels. This vector is compared with the dictionary 

described above using k-nearest neighbors (k-NN) thus each pixel of the SI’s pixels is 

assigned a label creating a label vector whose length is the number of pixels in the SI. We 

then quantized this label vector into a histogram (with L bins) of texton frequencies. Finally, 

the texton frequency histogram is converted into a texton probability distribution, by 

normalizing the texton frequency histogram to sum to unity. The reason we normalize the 

histogram is to avoid the need of the various SI’s to have the same size or shape. This 

process is repeated for all mt training SI’s, thus the final outcome of this process is a matrix 

whose dimension is mt x L which is used as the training dataset for one class Support Vector 

Machine classifier (OC-SVM) as described below.

Texton probability distribution (normalized histograms)—The histogram of image 

textons is used to encode the global distribution of the local structural attributes (i.e. the 

filter bank’s responses and the DGAS feature set) over the calcium texture image while 

ensuring that every shape and size of SI can be part of the experiment. This representation, 

denoted by H(l), is a discrete function of the labels l derived from the texton dictionary. Each 

SI is filtered using the same filter bank, F, and its DGAS feature set is computed the same 

way. Each pixel within the SI is represented by a one-dimensional (∈ ℝn) feature vector 

which is labeled (i.e. assigned a texton number) by determining the closest image texton 

using k-NN algorithm. The spatial distribution of the representative local structural features 

over the image is approximated by computing the normalized texton histogram.

The dimensionality of the histogram is determined by the size of the texton dictionary, K, 

which should be comprehensive enough to include large range of calcium appearances and 

the number of bins, L, used to create the histogram. Therefore, the histogram space is high 

dimensional and a compression of this space is suitable since computation time is a factor at 

the event of on-line processing. This may be an essential requirement, provided that the 

properties of the histogram are preserved.

Algorithm, part 2

Model creation.

input dictionary & training sub-images

output calcium plaque model

For each training sub-image {

a. Convolve with filter bank, F and record convolution value.

b. Combine with DGAS feature set (ℝn for each pixel)

c. Label each pixel response by comparing to the dictionary (using k-NN)
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d. Create histogram of label frequencies

e. Normalize to get distribution (hence, sub-images do not need to be of the same size)

}

Assemble all histogram vectors into a single matrix (∈ ℝmt×k)

Train a one-class SVM to get the model

Algorithm, part 3

Classification rule for new data.

input test sub-images, dictionary, model.

output label (calcium, non-calcium)

For each new sub-image {

a. Convolve with filter bank, F and record convolution value.

b. Combine with DGAS feature set (ℝn for each pixel)

c. Label each pixel response by comparing to the dictionary (using k-NN)

d. Create a histogram of label frequencies

e. Normalize to get distribution (hence, sub-images do not need to be the same size)

f. Predict using OC-SVM model

}

Classification Rule: One-class Support Vector Machine (OC-SVM)

For classifying new data, we use a one-class classifier. In this step, (Algorithm, part 3), we 

do not have stand-alone SI’s since the only input to the automated algorithm is an IVOCT 

pullback. We scan the pullback within the blood vessel mask, one frame after the other in (r-
θ) view, with a window whose size was determined by the size of smallest calcium region 

required for measurement (100×100 in our experiments) and with a step which is equal to 

half the window size (ensuring 50% overlap). Each window is treated as an SI. The same 

procedure as done in the training step is followed to build a histogram corresponding to the 

new SI. This histogram is the new data point, which is used by the trained OC-SVM 

classifier for classification, producing the final SI’s classification as calcium or non-calcium 

as described below.

There is a reason for selecting the one-class paradigm: The traditional multi-class 

classification paradigm aims to classify an unknown data object into one of several pre-

defined categories (two in the simplest case of binary classification). A problem arises when 

the unknown data object does not belong to any of those categories. When analyzing plaque 

in IVOCT images, it is challenging to decide what the plaque type is, especially because 

there are many plaques types other than the main three plaque types typically being analyzed 

(calcium, lipid, fibrous). One-class classification algorithms aim to build classification 

models when the negative class is absent, either poorly sampled, or not well defined (where 

the latter describes our case). This unique situation constrains the learning of efficient 

classifiers by defining class boundary just with the knowledge of positive class. In our 
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problem, the calcium plaque type is defined as positive and everything else is negative. We 

decided to use one-class-SVM (implemented using libsvm library[26]) because of the 

following reasons: First, it is effective in high dimensional spaces even in cases where 

number of dimensions is greater than the number of samples, second, it is very versatile 

since different kernel functions can be specified for the decision function including custom 

kernels.

One-class SVM was suggested by Scholkopf et al.[27] where the approach is to adapt the 

binary support vector machine classifier (SVM) methodology to one-class classification 

problem, which only uses examples from one-class, instead of multiple classes, for training. 

The one-class SVM algorithm first maps input data into a high dimensional feature space via 

a kernel function, Φ(·), and treats the origin as the only example from other classes. Then the 

algorithm learns the decision boundary (a hyperplane) that separates the majority of the data 

from the origin. Only a small fraction of data points, considered outliers, are allowed to lie 

on the other side of the decision boundary. The hyperplane is found iteratively such that it 

best separates the training data from the origin. The kernel that guarantees the existence of 

such a decision boundary is the Gaussian kernel[27] and, therefore, was selected to be the 

kernel used in this study.

Considering that our training dataset x1, x2, …, xl ∈ X, Φ(·) is the feature mapping X→F to 

a high-dimensional space. We can define the kernel function as:

Using kernel functions, the feature vectors need not be computed explicitly, greatly 

improving computational efficiency since we can directly compute the kernel values and 

operate on their images. We used the radial basis function (RBF) kernel:

Solving the one-class SVM problem is equivalent to solving the dual quadratic programming 

(QP) problem:

subject to

where ρ is the bias term and w is the vector perpendicular to the decision boundary. ξi is the 

slack variable for point i that allows it to lie on the other side of the decision boundary. ν is a 

parameter that controls the trade-off between maximizing the number data points contained 

by the hyperplane and the distance from the hyperplane to the origin. It has two main 
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functions: it sets an upper bound on the fraction of outliers (training examples regarded out-

of-class) and, it is a lower bound on the number of training examples used as support 

vectors. Finally, the following function is the decision rule of the OC-SVM: It returns a 

positive value for normal examples xi points (i.e. positive) and negative otherwise.

3. EXPERIMENTAL METHODS

IVOCT Image Acquisition and selection of regions for SI extraction

Images were collected on the C7-XR system from St. Jude Medical Inc., Westford, MA. It 

has an OCT Swept Source having a 1310 nm center wavelength, 110 nm wavelength range, 

50 kHz sweep rate, 20 mW output power, and ~12 mm coherence length. The pullback 

speed was 20 mm/s and the pullback length was 54 mm. A typical pullback consisted of 271 

image frames spaced ~200 µm apart. Images used in this study were selected from the 

database available at the Cardiovascular Core Lab of University Hospitals Case Medical 

Center (Cleveland OH). They consisted of 35 IVOCT pullbacks of the Left Anterior 

Descending (LAD) and the Left Circumflex (LCX) coronary arteries of patients acquired 

prior to stent implantation. These images were manually analyzed by an expert from the 

Core Lab to identify images of calcium, lipid, and fibrous plaques. See Figure 2 for a few 

examples of the CP appearance as compared to the other plaque types in a typical pullback 

(r-θ) view.

The training dataset was created from de-identified clinical images in the set described 

above. An expert reviewed pullbacks and identified regions containing plaques (fibrous, 

lipid, or calcified) utilizing consensus criteria descried.[16] This was followed by identifying 

sub-images (SI’s) which were generated by cropping a region in the image and the rest of 

the image was regarded as background data which was discarded. All processing is done on 

these cropped regions we refer to as sub-images (SI’s).

For validation testing, we created an independent (not used in training) image dataset with 

each voxel accurately labeled and validated by 3D cryo-imaging.[28] To create this dataset, 

we obtained coronary arteries (LADs) of human cadavers within 72 hours of death and 

stored at 4 °C. Arteries were treated and stored in accordance with federal, state, and local 

laws by the Case Institutional Review Board. To prepare for IVOCT imaging, arteries were 

trimmed to approximately 10 cm in length. A luer was then sutured to the proximal end of 

each vessel which was flushed with saline to remove blood from the lumen. Major side 

branches and the distal end of each artery were sutured shut. Using super glue, the artery 

was adhered to the sides and bottom of a rig that was used to minimize motion between cryo 

and IVOCT imaging procedures. IVOCT imaging conditions mimicked the in-vivo 
acquisitions described above. Sutures were placed on the vessel to identify ROIs (1.5–2cm 

in length) that would later be analyzed using cryo-imaging. Following IVOCT imaging, the 

entire imaging rig containing the artery was flash frozen in liquid nitrogen, and stored at 

−80 °C until cryoimaging was performed. Prior to cryo-imaging, arteries were cut into 

blocks corresponding to the ROIs determined during IVOCT imaging. Blocks were placed in 
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the cryo-imaging system and allowed to equilibrate to the −20 °C cutting temperature. The 

ROIs were then alternately sectioned and imaged at 20 µm cutting intervals and color and 

fluorescent cryo-images were acquired at each slice. The process was repeated until the 

whole specimen was imaged.

Training, Testing and Dictionary Datasets

The following four datasets, which were assembled from the above pool of SI’s, were used 

in the experiments: CA-DS (stands for Calcium Data Set) composed of 316 calcium-only 

SI’s, LI-DS composed of 250 lipid-only SI’s, FI-DS composed of 250 fiber-only SI’s and 

NON-DS, composed of approximately 750 SI’s which are neither one of the main plaque 

types.

In addition, we also created an independent (in the sense that data from it were not part of 

the training or any other experiment) dataset which is extracted from a cadaver where each 

pixel is annotated using cryo-based ”ground-truth” images as a confirmation of annotation, 

thus removing reliance on expert’s interpretation of qualitative plaque description. We name 

this dataset “validation dataset”.

Experiments

We compare the performance of the method using two filter banks, the full filter bank and 

the MR8 version of it (see below for a full description). In the following experiments, a 

positive example is an example that came from calcified dataset and a negative example is an 

example that is drawn from any dataset other than calcified dataset.

1. Stratified five-fold cross validation (SFV-CV) experiment: In one-class classifier, 

class boundary (model) is determined by just using the knowledge of the positive 
class, allowing some outliers (negatives) to be present.[29] To create the one-class 

model, we combine the CA-DS with 15 negative examples (2–3 from each type). 

Then perform stratified 5-fold cross validation.

2. Leave-one-pullback-out (LOPO): The idea is to quantify the generalization 

capability of the classifier to new pullbacks. Although this approach repeats the 

same logic as the SFV-CV approach described above, there is one important 

difference: the left out set is not randomly selected from the dataset but is chosen 

such that all samples belong to the same pullback are held out. This represents a 

much more realistic condition in our application, thus is a better indication of the 

estimator’s ability to. We use 35-fold (because we have data from 35 different 

pullbacks) cross validation where we use the CA-DS set combined with a small 

number (2–3) examples from each of the other sets. For each of the folds, the 

dataset corresponding to one pullback’s images is held out and constitutes the 

cross validation set, while the other datasets constitute the training set. Note that 

this is a much more stringent and realistic condition as opposed to randomly 

partitioning the dataset as done in the SFV-CV experiment, since in real usage, 

we expect the system to see and classify plaque types from entirely new 

pullbacks.
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3. Next experiment is intended to measure the confusion between calcium and the 

other plaque types. We combine the CA-DS with each of the other datasets 

described above and run a classification experiment. We create two mixed sets 

(CA-DS and FI-DS when testing against fiber and CA-DS and LI-DS when 

testing against lipid) and we perform internal stratified 5-fold cross validation. 

We divide the CA-DS into 5 folds and the mixed set into 5 folds. In each of the 

folds, we use a fold which is composed of only CA-DS examples for training and 

then we do the prediction on the rest of the CA-DS folds combined with the FI-

DS/LI-DS folds. This gives a better balanced dataset and enables us to create 

accuracy results (as opposed to F1 score) since the data is minimally skewed. The 

goal of this experiment is to quantify the amount by which the calcium can be 

discriminated from the other main plaque types. This also helps focus our 

attention on the more “problematic” plaque type, thus increase the overall 

performance of the classifier.

4. Finally, we use the validation dataset to classify never-seen-before datasets.

As performance measure, we use F1 score, which can be interpreted as a weighted average 

of the precision and recall values. We follow standard nomenclature where we use TP (true 

positives), FN (false negative), FP (false positive), and TN (true negative) to make 

assessments of (P)recision = TP/(TP+FP), (R)ecall = TP/(TP+FN), F1 = 2PR/(P+R). 

(ACC)uracy = (TP+TN)/(TP+FN+FP+TN).

4. RESULTS

Before analyzing the algorithm’s performance, it is essential to determine all of its 

parameters to ensure good performance. We show that using the MR8 as opposed to the full 

filter bank, does not impact significantly the final outcome, yet the speed is improved.

Algorithm Parameters

We optimized algorithm parameters in multiple steps. First, we determined the two OC-

SVM parameters to be used in all subsequent analyses. These parameters are σ, the RBF 

kernel’s bandwidth and ν, which according to[27] can be viewed as either the upper bound 

on the fraction of outliers (in our case, we simply set this value to be the number on non-

calcium SI’s used in the training divided by the total number of training SI’s). Or, it can also 

be viewed as a lower bound on the number of training examples used as support vectors. 

This good initial value enables us to perform an efficient grid search for best parameters for 

the OC-SVM. In this grid search we were able to find the best σ for the radial basis function 

(RBF) and fine-tune the initial ν. The final values were: ν=0.0896 and σ=0.0313.

Second, we verified that the number of training examples was sufficient to enable efficient 

training of the OC-SVM. We performed a learning curve analysis where we varied the 

number of samples and compared the training and the cross validation F1 score until they 

converged (Figure 3). This gave us a good starting point to ensure minimal over/under fitting 

is minimized. We selected to use the F1 score as performance matrix, since, as it is typical 

with one-class classification, the number of negative examples is very small compared to the 

positive examples, causing the overall dataset to be skewed. It is shown that for cross 
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validation F1 score to reach that of training F1 score, approximately 280 examples are 

sufficient (each point is a point in feature space, meaning, it represents a single SI).

Third, to find the best number of textons to be used in the dictionary, we used the “elbow” 

approach by plotting the sum of the within-cluster square of Euclidean distances versus 

increasing number of clusters and observed where the “elbow” occurred. As shown in Figure 

4, the optimal number of textons for the calcium dictionary was K=29. This value was used 

in all subsequent processing of SI’s.

Fourth, we determined the optimal size of the kernel to be used in the filter bank. To do that, 

we created a dictionary of 29 calcium clusters and then ran the classification algorithm on 

CA-DS set using the full kernel and then using the MR8 version of the filter bank’s 

responses. The idea was to be able to derive the best kernel size rather than get the optimal 

performance measure. We ran 5-fold cross validation of the created datasets for varying 

values of filter kernel (Figure 5). The optimal kernel size, which was found in this 

experiment, was 19 × 19 for full filter bank and 15 × 15 for the MR8 filter bank.

Training and Model Creation using Regions from Clinical Dataset

Results of the SFV-CV and the LOPO experiments are shown in Table 1. First, we note that, 

the MR8 performs as well as the full filter bank. This is a clear indicator that orientation 

invariant description is not a disadvantage (i.e. salient information for classification is not 

lost). Second, the fact that MR8 does as well as the full filter bank is also evidence that it is 

detecting the most distinctive features. These results are encouraging since reduction of the 

features space down to 8 from 38 is a significant computational advantage, making the 

process more suitable for on-line usage.

In the next experiment, we tested the calcium against each of the other main plaque types 

(Table 2). It is evident that calcium and fibrous are more easily discriminated compared to 

calcium and lipid. It suggests that we should consider designing additional filters that not 

only favor the calcium plaque characteristics but also favor the lipid characteristics. 

Moreover, we see that the results when using the responses of the full filter are better than 

when we just use the maximum responses.

Evaluation on Independent Validation Dataset

We evaluated our algorithm performance on the independent validation dataset confirmed 

with cryo-imaging. Example result (Figure 7) show cryo and IVOCT input images, manual 

plaque annotations, and classifier outputs. For the purpose of quantifying the automatic 

calcification on the validation dataset, we counted the number of SI’s scanned where 

classification is considered TP if more than 25% of the SI covered a true calcified region. 

Using this criterion, the performance of the scanned image shown in Figure 7 is shown in the 

form of a confusion table (Figure 6). Clearly, due to the fact that the majority of the SI’s 

scanned, using accuracy will not reflect the performance accurately, so we choose to 

compute the F1 score as described above, yielding F1 = 0.72;

Finally, in terms of time performance, the MR8 yielded a classifier which is more than 30% 

faster, yet, as can be seen in the results above, the accuracy measurements are not 
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significantly affected. When using MR8 filter bank, the average time to compute features 

(histogram) for a single frame is 2.6 seconds and for full filter bank 3.7 seconds (measured 

by running Matlab). This means that the feature creation using MR8 filter bank is 30% less 

expensive than full filter bank, thus making the algorithm suitable for on-line application.

5. DISCUSSION

The presence of calcium in the coronary arteries is an indication of intimal atherosclerosis.
[30] Because of the demonstrated value of coronary calcium detection in predicting 

significant coronary disease and because of its independent predictive value for coronary 

events[31], it is important to be able to precisely and efficiently detect and quantify coronary 

calcium.

Automated calcium plaque classification, represents the key step to help in treatment 

decision making in clinical settings and reduce the human interaction during post-procedure 

analyses. We have presented a novel approach for completely automatic intravascular 

calcium classification in close to real time performance which significantly improves on the 

state of the art.[32] It presents the following advantages. First, our model representation 

captures efficiently “texture like” visual structures where we do not impose any constraints 

on, or requiring any a priori knowledge of, the catheter type, IVOCT machine type or any 

other conditions under which the images were acquired. The second is the learning 

algorithm which does not require manual extraction of objects or features. The third is the 

independence of region segmentation and feature extraction, which are never perfect. 

Finally, we have shown that the results of the reduced filter bank (MR8) do not significantly 

affect the performance, yet speed is improved by more than 30%, a very important parameter 

to consider when an on-line application is required.

In Figure 7, we note two important “artifacts” which are caused by the scanning algorithm: 

First, the classifier’s output looks bulky. This is due to the way we extract SI’s from a new 

pullback: we scan the image with a scanning window that is being labeled in its entirety as 

calcium or non-calcium, there is no partial-window labeling. This results in over estimation 

of the calcified region however, it preserves the ratio between different sizes of 

circumferential calcified regions. Second, the farther the scanning window is from the 

catheter in r-θ view, the larger the size in Cartesian view is (a square in r-θ view is 

transformed into an arc in Cartesian view). This causes the area in Cartesian view to look as 

if it is larger. This characteristic is also shown in the false positives (part b). Another thing to 

note is the fact that the classifier can discriminate calcium from any other plaque type (in 

this case, fiber). This emphasizes the advantage of using a one-class classifier, where the 

classifier does not have to classify one class or the other, but it simply indicates if a plaque 

belong to the class of interest (calcium) or not, a very elegant solution to a problem other 

researchers encountered.[21, 32–34]

Our choice of one-class classifier approach can be proven useful in another aspect. Because 

a one-class classifier defines class boundary just with the knowledge of positive class 

(“positive” being the class of interest, calcium in our case), we can use its parameter such 

that they reflect expert annotation quality. For example, we can create a one-class classifier 
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model, using cryo-imaging as annotation tool (as done in our study as escribed above). We 

can then compare the classifier results to, say, three experts, and quantify the quality of their 

annotation according to their deviation from the model. Since we assume that cryo-based-

imaging is a reliable ground truth, this quantification can be used a scoring mechanism for 

expert annotation.

Finally, we are continuously working to improve the results in several ways: We will 

improve the visualization of the scanning window such that when switching between r-θ 
view and Cartesian view, the classified area is preserved. Pixel-based feature set will be 

improved using a different or enhanced feature set (i.e. improved dictionary). SI-based 

feature set will be enhanced by modifying histogram creation combined with additional SI-

specific features. Dimension reduction will be addressed to adjust the method to cope with 

very large pullbacks. In addition, we will address the incorporation of a post-processing step 

in the third dimension (i.e. along the pullback direction). This way, the impact of the spatial 

variability of coronary cross-sectional morphology will be reduced, thus increase the 

accuracy of the classification.

6. CONCLUSION

We have demonstrated an automatic method for calcified plaque segmentation. The 

promising results show that the method has the potential to be used in the clinic to facilitate 

quantitative analysis of intravascular IVOCT images. Although additional validation is 

needed, the presented method holds great promise for reliable, robust, and clinically 

applicable segmentation of calcium in IVOCT image sequences on and off line, thus change 

clinical practice.
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Figure 1. 
Filter bank designed to capture the calcium characteristics. Each row represents a different 

scale, where the upper three rows are bar filters in 6 orientations, the three middle rows are 

edge filters in six orientations and in the last row, Gaussian and Laplacian of Gaussian 

filters. To generate the MR8 filter responses, only 8 responses are recorded by taking 

maximal response at each orientation, the Gaussian, and the Laplacian of Gaussian.
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Figure 2. 
Images in (r-θ) view showing the different appearance of the main three plague types: left, 

fiber; middle, lipid; right, calcium. It is shown that the calcium has a few distinctive 

characteristics which are apparent in the images: sharp borders with low average intensity 

and low attenuation (beam goes from left to right) within the calcified region.
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Figure 3. 
Learning curve analysis for a OC-SVM. Here we use F1 score as performance measure. The 

vertical dashed line is the minimal number of data points which will enable high enough 

performance (280). The horizontal dashed line represents the steady state F1 score which is 

the best possible performance given the current training data.
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Figure 4. 
Finding the optimal number of textons by plotting the within-cluster sum of squared 

distances vs. the number of clusters.
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Figure 5. 
Determination of filter bank’s kernel size. 5-fold cross validation performance (using F1 

score as a statitical measure) performed by varying filter kernel size. (left) plot of F1 score 

variation for full kernel filter bank. (right) F1 score variation for MR8 filter bank. Red circles 

indicate the location of best performance size (full kernel, kernel is 19×19, MR8 kernel is 15 

× 15).
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Figure 6. 
Confusion table showing independent validation image classification results (Figure 7)
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Figure 7. 
Independent validation classification. a) Original IVOCT imaged where the guidewire 

(marked by yellow asterisk) and data beyond lumen and back border are masked out. Notice 

the calcified region with sharp borders. b) Results of automated classification. C) 

Corresponding registered cryo-image. Notice how the calcified region is much brighter when 

using fluoroscopy. D) Expert annotation of the plaque types present in the image (blue is 

fiber and red is calcium). e) IVOCT image with automated classification overlay. The yellow 

line represents the experts annotation of the calcified region (can also be seen in part a). Red 

represents the classification and the blue represents fiber, the “+” sign represents the center 

of the image.
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Table 1

Performance statistics for the two experiments (showing mean±sd), SFV-CV and LOPO.

SFV-CV LOPO

Full filter
bank

MR8 Full filter
bank

MR8

F1 Score 0.929±0.026 0.933±0.027 0.815±0.265 0.825±0.258

Precision 0.986±0.015 0.975±0.016 0.899±0.274 0.894±0.273

Recall 0.879±0.046 0.896±0.048 0.785±0.278 0.866±0.266
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Table 2

Performance of calcium classification versus classification of the other main plaque types.

5-fold cross validation

Full filter bank MR8

mean±sd mean±sd

Ca-v-lipid 0.762±0.07 0.743±0.004

Ca-v-fiber 0.835±0.016 0.814±0.018

Ca-v-all 0.778±0.012 0.759±0.010
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