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ABSTRACT 

Deformable image registration is currently predominantly solved by optimizing a weighted linear combination of 
objectives. Successfully tuning the weights associated with these objectives is not trivial, leading to trial-and-error 
approaches. Such an approach assumes an intuitive interplay between weights, optimization objectives, and target 
registration errors. However, it is not known whether this always holds for existing registration methods. To investigate 
the interplay between weights, optimization objectives, and registration errors, we employ multi-objective optimization. 
Here, objectives of interest are optimized simultaneously, causing a set of multiple optimal solutions to exist, called the 
optimal Pareto front. Our medical application is in breast cancer and includes the challenging prone-supine registration 
problem. In total, we studied the interplay in three different ways. First, we ran many random linear combinations of 
objectives using the well-known registration software elastix. Second, since the optimization algorithms used in 
registration are typically of a local-search nature, final solutions may not always form a Pareto front. We therefore 
employed a multi-objective evolutionary algorithm that finds weights that correspond to registration outcomes that do 
form a Pareto front. Third, we examined how the interplay differs if a true multi-objective (i.e., weight-free) image 
registration method is used. Results indicate that a trial-and-error weight-adaptation approach can be successful for the 
easy prone to prone breast image registration case, due to the absence of many local optima. With increasing problem 
difficulty the use of more advanced approaches can be of value in finding and selecting the optimal registration 
outcomes. 
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1. INTRODUCTION 
Deformable image registration is the task of finding the optimal nonlinear transformation to align two images. Of interest 
in deformable registration is not only similarity, but also anatomical correctness achieved by realistic deformations. 
Often, deformable image registration is formulated and solved as a single-objective optimization problem. As such, there 
is one objective function to be optimized, which is most commonly defined as a weighted linear combination of two or 
more terms that describe the objectives of interest, such as image similarity and deformation magnitude. Before the start 
of the registration, many parameters have to be manually defined and tuned. An important subset of these parameters is 
the set of weights associated with the terms that constitute the objective function, because they implicitly define the 
trade-off between the often conflicting objectives. Therefore, successfully tuning the weights that express the right trade-
off is very important for finding the best registration outcome. However, the relation between the different objectives in 
deformable image registration and thus the nature of these trade-offs, are not fully understood. As a consequence, there is 
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little to no insight into how these weights can be determined a priori. A spatially adaptive regularization technique where 
the weight associated with the regularization term is adaptively determined during the optimization run, has been 
proposed.1 Other methods employ machine-learning techniques to learn hundreds of registration parameters for a 
specific task.2 These methods have been tested on synthetic data as well as on brain image registration problems with 
little amount of deformation but a high degree of regularization needed. In this work, we focus on another class of 
problems, the challenge of which lies in the large amount of deformation that is required in order to achieve a good 
registration outcome. Furthermore, for the vast majority of the currently widely used registration methods, one still must 
rely on intuition to determine the weight that best expresses the preference of the user. As a consequence, weights are 
usually tuned manually for each specific registration task via trial-and-error.  

The success of such trial-and-error approaches relies on a sensible and smooth relation between the conflicting 
objectives, which corresponds to expected changes when weights change. However, since there is little to no insight into 
the nature of these inherent trade-offs, it is not guaranteed that trial-and-error approaches always succeed, especially in 
hard deformable image registration cases, such as prone-supine breast image registration. For this reason, we approach 
deformable image registration from a multi-objective optimization standpoint. We aim to study the interplay between 
key objectives used in deformable image registration by comparing weight distributions, registration outcomes and 
associated registration error distributions obtained in three different ways, on three problems of increasing difficulty. 

2. METHODS 
2.1 Registration as an optimization problem 

Deformable image registration is predominantly formulated as a single-objective optimization problem, where the goal is 
to find the optimal transformation from one image (referred to as the moving image) to the other image (referred to as 
the fixed image). The cost function to be optimized can consist of multiple terms that express objectives of interest, such 
as image similarity, smoothness of the transformation, volume preservation etc. A cost function for deformable image 
registration that is to be minimized in case of two objectives is typically of the following form:3 

 

 𝐂 𝐱 =   𝐒 𝐈𝐟, 𝐈𝐦 ∘ 𝐓(𝐱) + 𝛌  𝐑 𝐓(𝐱) . (1) 

 
The first term 𝐒 is the objective describing the degree of (dis)similarity between the two images. It is dependent on the 
fixed and moving images 𝐈𝐟, 𝐈𝐦, and the transformation 𝐓 that deforms the moving image and is parameterized by 𝐱. The 
second term 𝐑 is related to the deformation magnitude, which it	
   controls by regularizing the transformation 𝐓 and 
penalizing large deformations. 𝛌 is the weight associated with the deformation objective that determines the trade-off 
between deformation magnitude and dissimilarity. These two objectives are conflicting; lower dissimilarity often 
requires a highly non-regular deformation field, but by allowing deformation fields to become too irregular, optimization 
may lead to overfitting the dissimilarity objective with undesirable nonrealistic deformations. Therefore, dissimilarity 
needs to be minimized while also the objective related to the deformation magnitude remains as low as possible. It is 
clear then that the underlying optimization problem in deformable image registration is actually multi-objective, i.e., 
there are multiple, conflicting, objectives that need to be optimized simultaneously, and optimal decisions need to be 
taken in the presence of trade-offs between these objectives. 

2.1.1 Multi-objective deformable image registration 

In multi-objective optimization, a vector of m objective functions 𝐅(𝐱) = (  𝐟𝟎 𝐱 , 𝐟𝟏 𝐱 ,… , 𝐟𝐦!𝟏 𝐱 )  needs to be 
optimized. These objectives are usually conflicting; as a result, there is no unique optimal solution to this problem and 
the notion of optimality is redefined. To this end, the concepts of Pareto domination and Pareto optimality are 
introduced. Without loss of generality, we assume that all objectives are formulated in such a way that they need to be 
minimized. A solution 𝐱𝟏is said to (Pareto) dominate a solution 𝐱𝟐 if and only if 𝐟𝐢 𝐱𝟏 ≤ 𝐟𝐢(𝐱𝟐) holds for all 𝐢 ∈
𝟎,𝟏,… ,𝐦 − 𝟏   and 𝐟𝐢 𝐱𝟏 < 𝐟𝐢(𝐱𝟐) holds for at least one 𝐢 ∈ 𝟎,𝟏,… ,𝐦 − 𝟏 . A Pareto set of size n is a set of 

solutions 𝐱𝐣 ∈ 𝟎,𝟏,… ,𝐧 − 𝟏   in which no solution dominates any other solution. A Pareto front corresponding to a 
Pareto set is the mapping of the solutions to the m-dimensional objective space, i.e., the set of all m-dimensional vectors 
𝐅 𝐱𝐣 , 𝐣 ∈ 𝟎,𝟏,… ,𝐧 − 𝟏 .   A solution 𝐱𝟏 is said to be Pareto optimal if and only if there is no other solution 𝐱𝟐 that 
(Pareto) dominates it. Further, the optimal Pareto set is the set of all Pareto-optimal solutions and the optimal Pareto 
front is the Pareto front that corresponds to the optimal Pareto set.  
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Figure 1. Schematic visualization of (a) a convex Pareto front, (b) Pareto front with a concave part in a bi-objective problem. 
Optimal solutions corresponding to different linear combinations are depicted in red. 

Following from the above, in a bi-objective problem the objective space is a plane and each solution can be represented 
as a point in that plane. The optimal Pareto front can then be visualized as a curve in the plane. A schematic visualization 
of optimal Pareto fronts and (non-)optimal solutions in objective space can be seen in Figure 1. 

One of the most common methods for solving multi-objective optimization problems, including deformable image 
registration, is linear scalarization. With linear scalarization multiple objectives are combined into a single-objective 
function via a weighted linear combination (as, e.g., in (1)), which is subsequently solved by single-objective 
optimization algorithms. A prerequisite then is to a priori define the weights that represent the desired trade-off between 
the objectives. However, having limited knowledge of the problem, it is not trivial for the decision maker to choose the 
weight that best expresses their preference.  Furthermore, such an approach will be highly sensitive to the shape of the 
optimal Pareto front. If the optimal Pareto front is convex, then any weight combination will yield an outcome on the 
optimal Pareto front, assuming that the optimization algorithm used can find the global optimum. However, it is proven 
that linear scalarization cannot reach optimal trade-offs that lie in concave parts of the optimal Pareto front (Figure 1).4 
Furthermore, a uniform sampling of weights may not necessarily lead to a uniform sampling of solutions on the optimal 
Pareto front.4 Finally, although this paper focuses on bi-objective problems, it should be noted that these issues with 
linear scalarization are exacerbated if more objectives are introduced (which is not uncommon in deformable image 
registration). 

In this work, we consider deformable image registration as a problem with two objectives as formulated in (1). The 
specific objectives we consider are image dissimilarity and deformation magnitude that both need to be minimized. For 
this problem, we have limited knowledge of the shape of the optimal Pareto front. Moreover, the gradient-based 
optimization algorithms that are widely used to solve it, albeit powerful, especially when combined with multi-resolution 
schemes, can still get stuck in local optima. Therefore, it is not guaranteed that solutions on the optimal Pareto front will 
be obtained by solving the problem for different linear scalarizations. For this reason we do not know if a change in 
weights leads to an expected change in outcome, in terms of objective values and target registration error (i.e., a 
clinically relevant difference in location of corresponding anatomy). This is however crucial to determine the true utility 
of tuning weights by trial and error for existing single-objective optimization-based registration methods and to what 
extent multi-objective optimization is desirable. We will investigate how weight distribution translates in solution 
distribution in objective space as well as in registration error distribution for a typical single-objective registration 
method in various ways. We will use an open-source, single-objective registration method, to perform registration for 
multiple randomly sampled linear combinations. We will also use a multi-objective evolutionary algorithm (EA) to 
directly search for the best possible linear combinations to use with elastix. Further, we will use a true multi-
objective, i.e., weight-free, image registration method that directly approximates the entire optimal Pareto front, i.e., not 
using linear combinations at all. 
 

Table 1.  Overview of test cases and methods. 

Test datasets elastix Weight-free 
multi-objective method Random sampling Optimized linear combinations 

A Prone-prone 3D 3D 2D 2D 
B Volunteer prone-supine 3D 3D 2D 2D 
C Patient prone-supine 3D 3D 2D 2D 

Optimal Pareto front
Non-optimal solutions
Optimal solutions

0 0



A 

B 

C 

2.2 elastix 

As our primary single-objective-based registration tool we used elastix, a well-known intensity-based image 
registration toolbox.5 Within elastix, we used a B-spline transformation model6 and an adaptive stochastic gradient 
descent algorithm7 as the optimizer. We varied the weight 𝛌 associated with the deformation magnitude objective. Each 
𝛌 corresponds to a different linear combination. In principle, a low value for this weight should lead to solutions with 
low dissimilarity and relatively large deformation. The similarity metric we used is the normalized correlation coefficient 
(NCC), whereas the deformation magnitude objective is the bending energy penalty,6 which depends on the second order 
derivatives of the B-spline transformation. Moreover, for the registration problems at hand we used a multi-level 
pyramid scheme. Here, 3 registration levels were used for an easy test case, and 5 levels were used for two more 
challenging test cases. 

2.2.1 Random sampling of linear combinations 

We first randomly sampled one thousand weights, which correspond to one thousand different linear combinations. In 
this way, we can observe how the value of the weights is related to the location of the solutions in objective space. The 
value of the randomly sampled weights ranged from 0 to 103. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. From left to right: moving image, fixed image. From top to bottom: test case A, test case B, and test case C. 

 

 

 

 

 

 

Figure 3. Example of annotated slices from the volunteer prone-supine breast MRI case (test case B). 



2.2.2 Optimized linear combinations 

Given that a random weight 𝛌 does not necessarily lead to a solution on the optimal Pareto front, it makes sense to 
consider only weights that lead to the optimal solutions in objective space. This does however require an additional 
optimization loop. To do so, we employed a multi-objective EA. EAs are state-of-the-art in multi-objective optimization, 
being global, population-based optimization methods.8 These properties make them very suitable for solving multi- 
objective optimization problems, since they are able to evolve populations of solutions altogether to approximate the 
optimal Pareto front in one run. The EA we used in particular is an Estimation-of-Distribution algorithm9, meaning that 
it builds a Gaussian distribution from the population. It subsequently samples the distribution, selects the best solutions 
and then adapts its estimation based on the sampled solutions. In this case, the EA was used to find weights that lead to 
registration outcomes with the best trade-offs (i.e., a Pareto front) between dissimilarity and deformation magnitude. The 
values for the objectives are obtained by running elastix, which performs the registration, during the run of the EA 
(as part of a multi-objective function evaluation). 

2.3 Weight-free multi-objective image registration method 

Multi-objective optimization can also be used directly to solve the registration problem, i.e., to serve as the optimization 
component of an image registration method. The advantage of this is that by nature of the iterative search and refinement 
process underlying the EA, an approximation of the optimal Pareto front of solutions is found that represents relatively 
smooth transitions between solutions that are near each other in objective space. In our current early implementation, 
which is only available for 2D images,10 the registration method consists of the EA as the optimizer, a dual-dynamic B-
spline transformation model, and two objectives: the dissimilarity objective as expressed by the NCC and a deformation 
magnitude objective again expressed in terms of the second order derivatives of the transformation. The dual-dynamic 
transformation model handles large deformations well.11 Here, we do not use a multi-resolution scheme, as it is not yet 
available in this implementation. 

2.4 Test datasets 

In this work, we registered breast MR images. We investigated three test cases of increasing problem difficulty. The 
easiest case (test case A) consists of registering two healthy breast MR images, both in prone orientation, but acquired at 
different time points. Furthermore, we tested two prone-supine cases. Aligning images of the breast in prone and supine 
orientation is a very challenging problem, due to the large deformation that the breast undergoes. 

The first prone-supine case (test case B) is a pair of images acquired from a healthy volunteer, while the second one (test 
case C) is acquired from a patient suffering from breast cancer. In both cases there is a very large deformation, however 
the volunteer images have structures that are more easily identifiable. The patient images were acquired by use of a 
different scan protocol that was optimized for tumor visualization. In this case, the images are noisier, leading to an even 
more challenging deformable image registration problem. 

Lastly, after per test case rigidly registering the MR scans on the bony anatomy, we chose a pair of 2D slices from each 
test case with which we tested both elastix, and the weight-free multi-objective image registration method, since the 
latter is currently available only for 2D image registration.  The slices were chosen so that a good spatial correspondence 
via registration was obtainable, with out-of-plane motion as small as possible. An overview of all test cases and 
comparisons can be found in Table 1 and Figure 2. 

2.5 Registration accuracy 

The registration accuracy was quantified by the mean target registration error (TRE) of expert-defined landmarks. For 
this purpose, an experienced breast radiologist annotated eight pairs of landmarks in each of the 3D images. For the 2D 
images, fewer pairs (5) were used (see, e.g., Figure 3), since fewer structures were visible. The mean TRE was then 
calculated by averaging the Euclidean distances between the locations of the landmarks in the fixed image and the 
transformed locations of the landmarks in the deformed moving image. The annotation of the landmarks was highly 
accurate for the first two cases, due to the images being taken with the patient in the same positioning (test case A) and 
the presence of identifiable structures in both test cases A and B. Annotation was much more challenging for test case C 
due to the large difference in positioning in combination with the noisiness of the image.  
 



3. RESULTS 
3.1 Weight value and solution distribution in objective space 

For the simple prone-prone test case, the outcomes of the random sampling of weights already form a Pareto front, 
indicative of the absence of clear local minima (Figure 4, test case A). The solutions found by the optimized linear 
combinations approach are therefore in this case similar. Further, we can see that for all cases, the values of the weights 
and their associated solutions are mostly logically correlated in objective space, i.e., the lower the value for the weight, 
the smaller the dissimilarity and the larger the deformation (Figure 4). Therefore, iterative adjustment of the weights with 
a trial-and-error approach in such a situation leads to expected changes in registration outcomes.  

However, in truly hard cases, such as test case C, even if the weight value follows approximately the same pattern, one 
cannot be sure at all that an optimal solution is obtained by random sampling. Indeed, the majority of the weights with 
small values (which should lead to solutions in the most interesting part of the Pareto front, due to the large deformation 
needed to find a good match) do not lead to solutions forming a Pareto front (Figure 4, test case C). This solution 
distribution indicates that there are multiple local minima that are not overcome by the optimization algorithm used. This 
could partially be due to the inability of the transformation model to solve such a hard case, but is also due to the local-
search nature of the stochastic gradient-descent optimizer used. For the solutions on the Pareto front found by the 
optimized linear combinations approach, there is a much smoother transition from larger weights to smaller weights 
(Figure 4) and furthermore, superior solutions. In this case, the assessment of the final results is much easier. 

3.2 Error distribution in objective space 

We observed before that a lower weight in principle leads to solutions with larger deformation and lower dissimilarity 
value. However, one should be careful, since solutions associated with very low weights are not the best ones in terms of 
mean TRE, as seen in the 2D patient prone-supine case (Figure 5, test case C, see tail of the Pareto front), due to 
implausible deformations taking place, likely as a result of overfitting. This pattern in error distribution can also be 
observed in the results found by the weight-free multi-objective registration method (most clearly visualized in Figure 5 
test case A). The final desirable registration result will typically be where the registration error is low, which is a unique 
identifiable part of the Pareto front for the simple problems. Hence, for simple cases trial-and-error is clearly viable.  

Regarding registration outcomes, the random sampling of weights approach with elastix obtained good results for 3D 
test case A (minimum mean TRE <1.0 mm), and acceptable results for 3D test case B (minimum mean TRE 4.2 mm). 
These results are also found by the optimized linear combinations approach. The results for the 3D test case C are worse; 
the optimized linear combination approach finds overall better solutions, including the best ones for this problem, with a 
minimum mean TRE of 9.1 mm. The random sampling approach for test case C resulted in large variability of the mean 
TRE (which fluctuated as much as 5.0 mm), making a trial-and-error approach here inefficient (Figure 5, test case C, see 
zoomed part). Among the 2D images, the direct multi-objective image registration method performed best for test case B 
(minimum mean TRE 2.0 mm), even without a multi-resolution strategy, possibly due to the use of the dual-dynamic 
transformation model; the difference in mean TRE between its solutions and the ones found by the optimized linear 
combinations approach is in the order of 0.7-0.9 mm. For case C in 2D, the optimized linear combinations approach as 
well as the weight-free method obtained solutions of comparable quality (mean TRE: ~7.1 mm), however the optimized 
linear combinations approach, aided by the multi-resolution strategy, obtained overall better solutions. 

Overall, weight tuning via the optimized linear combinations approach, along with the weight-free multi-objective 
registration method, yields the smoothest error distributions, thus facilitating the selection of a registration outcome. 
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Figure 5: Color-coded distribution of the mean TRE (mm) in objective space. Horizontal axis, deformation magnitude. 
Vertical axis, dissimilarity. Axis scale is the same per test case. Note: scales omitted because actual values are irrelevant. 
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Figure 4: Color-coded distribution of the value of weight λ in objective space. Location of selected registration outcomes are 
indicated by blue arrow. Horizontal axis, deformation magnitude. Vertical axis, dissimilarity. Axis scale is the same per test 
case. Note: scales omitted because actual values are irrelevant. 



4. DISCUSSION AND CONCLUSIONS 
In this work, we explored the interplay between weights and objectives in deformable image registration in order to 
determine the extent to which it can affect the success of trial-and-error approaches for weight tuning, which are mainly 
employed in deformable image registration. We used multi-objective optimization to investigate the nature of the trade-
off between objectives of interest, and how these are related to the choice of weights, on three problems of increasing 
difficulty. Further, we associated an indication of clinical relevance to the found solutions, by calculating the landmark-
based mean target registration error. Results indicate that an iterative trial-and-error approach, albeit inherently less 
powerful than a purely multi-objective approach due to limitations related to the problem landscape, is viable for 
deformable image registration problems that require only small deformations, and for which a logical relation between 
solution quality and weight values exists. For harder cases, where changes in weights lead to unexpected and highly 
variable registration outcomes, trial-and-error approaches are not likely to succeed. However, we found that explicitly 
optimizing the weights in a multi-objective fashion or solving the registration problem with a direct multi-objective 
approach does facilitate choosing a final registration outcome in an insightful manner because multiple solutions that 
represent efficient trade-offs between the objectives of interest can be inspected at once. Moreover, our results indicate 
that by using multi-objective optimization better solutions can be found than when many weight combinations are tried 
(i.e., random sampling).  

For test case C some of the best solutions in terms of mean TRE for the random sampling approach were not located on 
the Pareto front. This signals the existence of a somewhat hidden issue, namely that the objectives used, when optimized, 
do not necessarily provide registration outcomes that are ultimately the most desirable (i.e., have a mean TRE of 0.0 mm 
as well as a good balance between all objectives of interest). This is however an inherent problem in deformable image 
registration and not one specific to our multi-objective approach. 

The computational cost of the optimized linear combinations approach can be quite high, as each function evaluation can 
take several minutes, depending on the parameters of the registration such as number of resolution levels or maximum 
number of iterations given to the single-objective optimizer. On the other hand, the multi-objective EA that optimizes the 
weights in this setup, is well parallelizable. Given the long function evaluation time, the overhead of the EA itself is 
negligible, making the potential for parallel speedup excellent. 

Overall, we find that with a multi-objective optimization approach a logical selection of a final registration outcome is 
facilitated, possibly allowing solving hard problems such as prone-supine registration with existing single-objective 
deformable image registration tools accurately, reliably, and in a repeatable manner. This needs to be however further 
validated with a larger number of registration cases.	
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