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Abstract

We propose a 3D prostate segmentation method for transrectal ultrasound (TRUS) images, which 

is based on patch-based feature learning framework. Patient-specific anatomical features are 

extracted from aligned training images and adopted as signatures for each voxel. The most robust 

and informative features are identified by the feature selection process to train the kernel support 

vector machine (KSVM). The well-trained SVM was used to localize the prostate of the new 

patient. Our segmentation technique was validated with a clinical study of 10 patients. The 

accuracy of our approach was assessed using the manual segmentations (gold standard). The mean 

volume Dice overlap coefficient was 89.7%. In this study, we have developed a new prostate 

segmentation approach based on the optimal feature learning framework, demonstrated its clinical 

feasibility, and validated its accuracy with manual segmentations.
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1. INTRODUCTION

Prostate cancer is the second leading cause of cancer death for U.S. male populations [1]. 

Transrectal ultrasound (TRUS) is the standard imaging modality for the image-guided 

prostate-cancer interventions (e.g., biopsy and brachytherapy) due to its versatility and real-

time capability. Accurate segmentation of the prostate plays a key role in biopsy needle 

placement [2], treatment planning [3], and motion monitoring [4]. For example, the 

segmentation of the prostate will help physicians to measure the volume of the prostate 

gland and to generate High-Dose-Rate (HDR) and Low-Dose-Rate (LDR) brachytherapy 

plan [5]. Ultrasound segmentation is very challenging due to the inherent speckle and 

artifacts such as shadows, attenuation and signal dropout.

Many methods were proposed to automatically segment the prostate in TRUS images [2, 6–

15]. A semiautomatic method by warping an ellipse to fit the prostate on TRUS images was 

*Corresponding authors: xiaofeng.yang@emory.edu and tliu34@emory.edu. 

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 August 29.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2016 ; 9784: . doi:10.1117/12.2216396.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



presented [9]. A level set based method [12, 16] were used to detect the prostate surface 

from 3D TRUS images. Gabor support vector machine (G-SVM) and statistical shape model 

were used to extract the prostate boundary [13, 17]. A 2D semiautomatic discrete dynamic 

contour model was used to segment the prostate [10]. Hodge et al. [18] described 2D active 

shape models for semiautomatic segmentation of the prostate and extended the algorithm to 

3D segmentation using rotational-based slicing. Ding et al. [19] described a slice-based 3D 

prostate segmentation method based on a continuity constraint, implemented as an 

autoregressive model. Tutar et al. [20] proposed an optimization framework where the 

segmentation process is to fit the best surface to the underlying images under shape 

constraints. Hu et al. [21] used a model-based initialization and mesh refinement for prostate 

segmentation. Zhang et al. [22] improved the prostate boundary detection system with a tree-

structured nonlinear filter, directional wavelet transforms and tree-structured wavelet 

transform. Chiu et al. [23] introduced a semiautomatic segmentation algorithm based on the 

dyadic wavelet transform and the discrete dynamic contour. Even though advanced 

segmentation methods have been proposed for prostate ultrasound images, manual 

segmentation is still the gold standard and widely used in most clinical applications because 

of reliability. However, manual segmentation is time consuming, highly subjective, and often 

irreproducible in procedures such as biopsy and treatment. Therefore, there is still unmet 

clinical need to develop reliable, automatic, 3D prostate segmentation methods due to the 

low contrast between the prostate and non-prostate tissue and the low signal-to-noise ratio of 

TRUS images [6, 8, 24–26].

In this paper, we propose a new segmentation method for 3D prostate TRUS images. We 

integrate multi-atlas registration and anatomical signature into machine learning framework 

to perform prostate segmentation. This approach has 2 distinctive strengths: 1) Instead of 

using the voxel intensity information alone, the patch-based representation in the 

discriminative feature space is used as anatomical signature to deal with low contrast and 

SNR problem in TRUS images. 2) In order to improve the KSVM training efficiency, a 

feature selection mechanism is introduced to identify the more informative and salient 

features in the anatomical signature of each voxel through minimizing the logistic sparse 

LASSO energy function. Finally, the selected features with higher discriminative power are 

used to train the KSVM. In summary, the proposed method allows many-to-one 

correspondences to identify a set of good candidate voxels in the atlases to perform machine 

learning.

2. METHODS

Figure 1 shows the schematic flow chart of the proposed segmentation method, which 

consists of four major steps. First, pre-processing is performed for the training and new 

TRUS images. Second, patch-based features are extracted from the registered training 

images with patient-specific information, because these training images have been mapped 

to the new patient’ images. Third, the most informative anatomical features are selected to 

train the kernel support vector machine (KSVM). Finally, the selected informative 

anatomical features are extracted from newly acquired images as the input of the well-

trained KSVM and the output of the trained KSVM is the segmented prostate of the new 

patient. These major steps are briefly described below.
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2.1 Pre-processing

Pre-processing is performed to the training TRUS dataset, which includes reducing speckle 

noise, bias correction and grayscale normalization. The same processing is performed for the 

new patient’s images that will be segmented. Such pre-processing steps are implemented to 

improve the accuracy of the prostate registrations. During the alignment processing of 

training set, we first select one TRUS image as the template, detect probe center, position 

and radius, and align other TRUS images to the template image. And we use the 

corresponding transformation obtained from the training image alignment to align the 

segmented prostates (binary mask) to the template prostate. Since the segmented prostate of 

each training image is available, in order to optimize the alignment of training set we again 

align each training image to the template image by registering the binary segmentation 

prostates to the template prostate. A Gaussian filtering process is performed on the 

segmented binary prostates before registration in order to enforce the proper optimization of 

the cost function during registration [27]. The segmented prostates are binary images with 

relatively simple shapes; therefore the optimal deformable transformations to warp the 

binary segmentation prostates to the template prostate can be robustly estimated. When a 

newly acquired TRUS image comes, all aligned training images in training set are registered 

to this new image. The deformable registration methods [6, 24, 28–30] are used to obtain the 

spatial deformation field between the new TRUS image and the training images. The same 

transformations are applied to the segmented prostates in the training set.

2.2 Patch-based feature extraction

Patch-based representation has been widely used as voxel anatomical signature in computer 

vision and medical image analysis. The principle of the conventional patch-based 

representation is to first define a small image patch centered at each voxel and then use the 

voxel intensities of image patch as the anatomical signature of each voxel. However, due to 

the noise and anatomical complexity of prostate ultrasound images, patch-based 

representation using voxel intensities alone may not be able to effectively distinguish the 

prostate and non-prostate voxels. Hence, we propose to use patch-based anatomical features 

as signatures for each voxel to characterize the image appearance. Three types of images 

features, namely, the Gabor wavelet feature, the histogram of gradient (HOG) feature, and 

the local binary pattern (LBP) feature, are extracted from a small image patch centered at 

each voxel of each aligned training image. Gabor and HOG features can provide 

complementary anatomical information, and LBP can capture texture information from the 

input image. The 16 Gabor feature is used in this study. For the HOG feature, it is the 3×3 

gradient orientation histogram, resulting in a 9D feature vector. The LBP feature is extracted 

in three resolution levels and it has a dimension of 30. Therefore, each voxel is represented 

by a 55 dimensional feature signature. Although the features are extracted from the 2D slice 

for each voxel due to the larger voxel size (1mm) along the sagittal direction than the sizes 

(0.12×012 mm2) along axial and coronal directions, the proposed framework is operated on 

3D prostate TRUS images.
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2.3 Feature selection

Based on the above features, we can obtain patch-based representation of each voxel. It 

should be noted that the patch-based anatomical signature may contain noisy and redundant 

features which could affect the segmentation accuracy. Therefore, a feature selection needs 

to be implemented to identify the most informative and salient features in the anatomical 

signature of each voxel. This feature selection can also be considered as a binary variable 

regression problem with respect to each dimension of the original feature. Therefore, a 

logistic function is used as the regression function. The logistic function [31] represents a 

conditional probability model defined by

P(y | β , b, f ( x )) = 1
1 + exp( − y( β

T
f ( x ) + b))

(1)

where f ( x ) denotes the original feature signature of voxel x , and y is a binary variable 

with y = +1 denoting that is belonging to the prostate region and y = −1 otherwise. β  and b 
are parameters of the model.

Moreover, the aim of feature selection is to select a small subset of most informative feature 

as anatomical signatures, which can be well accomplished by enforcing the sparsity 

constraint during the logistic regression process. Therefore, the feature selection problem 

can be finally formulated as a logistic sparse LASSO problem [32]. It is defined as,

J( β , b) = ∑
c = 1

P
log(1 + exp( − Lc β

T
f ( x c) + b))) + λ β

1
(2)

where f ( x ) denotes the original feature signature of voxel x c. Label Lc = +1 denoting that 

x c is belonging to the prostate region and Lc = −1 otherwise. β  is the sparse coefficient 

vector, β 1 is the L1 norm, b is the intercept scalar, and λ is the regularization parameter. 

The first term of (2) is obtained by inputting the label values of drawn samples and their 

original feature signatures to the logistic function in (1), and then taking the logarithm for 

the maximum likelihood estimation. The second term of (2) is the L1 norm which aims to 

enforce the sparsity constraint for LASSO. Through minimizing the logistic sparse LASSO 

energy function (2) the features with superior discriminant power are selected. Based on the 

selected features, we can directly measure their discriminant power to separate the prostate 

and non-prostate voxels quantitatively, based on the Fisher’s score.

2.4 Support vector machine (SVM) training and segmentation

SVM is a popular supervised machine learning model with associated statistical learning 

algorithms that analyze data and recognize patterns for classification and regression analysis. 

The idea behind SVMs is to map the original data points from the input space to a high-

dimensional (hyperplane) feature space such that the classification problem becomes simpler 
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in the hyperplane space. The training phase of SVMs looks for a linear optimal separating 

hyperplane as a maximum margin classifier with respect to the training data [28]. Since the 

training data are not linearly separable, kernel-based SVM methods are employed to classify 

these features. In this study, the kernel-based SVM is used to identify the features of the 

prostate glandular tissues. We use the multiple selected features as well as the transformed 

prostate volumes to train the RBF kernel-based SVM [33]. In order to segment the prostate 

for newly acquired TRUS images, we perform the same selected feature extraction process 

for the new TRUS. The multiple features of the new TRUS images are the input of the 

trained kernel-based SVM, and the trained SVM adaptively label the prostate tissue based on 

its texture and location. The output of trained SVM is a binary image (volume) consisting of 

many “0” (non-prostate tissues) and “1” (prostate tissue) points. After a morphological 

processing, we can obtain the 3D segmented prostate.

3. EXPERIMENTS AND RESULTS

The proposed prostate segmentation method was tested with TRUS images of 10 prostate-

cancer patients. All TRUS images were acquired using a Hitachi ultrasound scanner and a 

7.5MHz bi-plane probe. Each 3D B-mode TRUS data sets consisted of 1024×768×75 voxels 

and the voxel size was 0.12×0.12×1.00 mm3. All prostate glands were contoured in TRUS 

images by an experienced physician. A leave-one-out cross-validation method was used to 

evaluate the performance of the proposed segmentation algorithm. In other words, we used 

the 9 training images and segmented prostates as the training set and applied the proposed 

method to process the remaining subject. The resulted segmentations were compared with 

the manual results using Dice volume overlap. As demonstrated in Figure 2, the proposed 

segmentation method works well for 3D TRUS images of the prostate and achieved similar 

results as compared to manual segmentation. We successfully performed the segmentation 

method for all enrolled patients. Figure 3 shows Dice volume overlaps between our and 

manual segmentations for each patient. Overall the prostate volume Dice Overlap coefficient 

was 89.7±2.3%, which demonstrated the accuracy of the proposed segmentation method.

4. DISCUSSION AND CONCLUSION

We report a novel 3D TRUS prostate segmentation method based on the patch-based feature 

learning framework. Patient-specific anatomical features are extracted from aligned input 

images and adopted as signatures for each voxel. The most robust and informative features 

are then identified by the feature selection process to train the KSVM. This trained KSVM is 

used to help localize the prostate of a new patient. In this study, we have demonstrated its 

clinical feasibility, and validated its accuracy with manual segmentations (gold standard). 

This segmentation technique could be a useful tool in image-guided interventions for 

prostate-cancer diagnosis and treatment.
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Figure 1. 
Schematic flow chart of 3D prostate segmentation.
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Figure 2. 
Comparison of the proposed method and manual segmentations: (a) Axial, (b) coronal and 

(c) sagittal TRUS images. The manual prostate segmentation is shown in the yellow dotted 

line and the automated segmentation is shown in red dotted line.
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Figure 3. 
Dice volume overlaps between the automated and manual segmentations.
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