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Abstract

The current clinical standard for measuring Bone Mineral Density (BMD) is dual X-ray 

absorptiometry, however more recently BMD derived from volumetric quantitative computed 

tomography has been shown to demonstrate a high association with spinal fracture susceptibility. 

In this study, we propose a method of fracture risk assessment using structural properties of 

trabecular bone in spinal vertebrae. Experimental data was acquired via axial multi-detector CT 

(MDCT) from 12 spinal vertebrae specimens using a whole-body 256-row CT scanner with a 

dedicated calibration phantom. Common image processing methods were used to annotate the 

trabecular compartment in the vertebral slices creating a circular region of interest (ROI) that 

excluded cortical bone for each slice. The pixels inside the ROI were converted to values 

indicative of BMD. High dimensional geometrical features were derived using the scaling index 

method (SIM) at different radii and scaling factors (SF). The mean BMD values within the ROI 

were then extracted and used in conjunction with a support vector machine to predict the failure 

load of the specimens. Prediction performance was measured using the root-mean-square error 

(RMSE) metric and determined that SIM combined with mean BMD features (RMSE = 0.82 

± 0.37) outperformed MDCT-measured mean BMD (RMSE = 1.11 ± 0.33) (p < 10−4). These 

results demonstrate that biomechanical strength prediction in vertebrae can be significantly 

improved through the use of SIM-derived texture features from trabecular bone.

Keywords

spinal vertebrae; trabecular bone; biomechanical strength prediction; multi-detector computed 
tomography; bone mineral density; Scaling Index Method (SIM); support vector regression

This work is not being and has not been submitted for publication or presentation elsewhere.

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 January 22.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2016 ; 9785: . doi:10.1117/12.2216898.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. MOTIVATION/PURPOSE

Osteoporosis, one of the most common age-related diseases among elderly people, often 

leads to fractures which increases the mortality rate and lowers the quality of life. Studies 

predict that the number of people at risk for osteoporotic fractures worldwide will reach over 

6 million by 2050 [1]. Due to the large demographic affected and the current rates of aging 

in our population, osteoporosis is becoming a significant health problem. The diagnosis and 

treatment of osteoporosis creates a substantial financial burden [7]. Accurate prediction of 

osteoporotic fracture risk can be of significant clinical benefit when assessing and managing 

osteoporosis. Although reduced bone mineral density (BMD) derived from dual X-ray 

absorptiometry (DXA) is considered a clinical standard for fracture prediction, it has been 

shown to be susceptible to interference from cortical shells, surrounding tissue and fat. A 

more thorough characterization can be provided using volumetric quantitative computed 

tomography (QCT). In this study we demonstrate that using image-based features 

characterizing the trabecular bone structure, can aid in diagnosing and monitoring 

osteoporotic bone changes [2–4]. This work is embedded in our group’s endeavor to 

expedite ‘big data’ analysis in biomedical imaging by means of advanced pattern recognition 

and machine learning methods for computational radiology and radiomics, e.g. [9–33].

Our study focuses on characterization of trabecular bone structure for the purpose of fracture 

risk assessment. Correlations between BMD and spinal fracture status have been shown in 

studies with volumetric QCT. However, while BMD has been a key clinical factor for 

fracture risk estimation, it does not completely account for individual fracture risk since it 

does not provide a complete description of bone quality. Here, Scaling index method (SIM)-

derived measures are used for multidimensional trabecular bone characterization. Such 

features are then used as inputs for supervised learning algorithms to construct models for 

fracture load prediction. The goal is to evaluate whether SIM-derived descriptors of 

trabecular bone structure can improve bone strength prediction.

2. DATA

2.1 Specimens

The study was designed to biomechanically test spinal segments with intact ligaments, 

intervertebral discs and posterior elements. Twelve patient specimens were selected, each 

including 3-segment spinal units. The donors had dedicated their body for educational and 

research purposes to the local Institute of Anatomy (Technical University of Munich), in 

compliance with local institutional and legislative requirements. Donors with a history of 

pathological bone changes other than osteoporosis (such as bone metastases, hematological 

or metabolic bone disorders) were excluded. The surrounding muscle and fat tissue was 

completely removed spinal segments. Then, half of the upper and lower vertebra of the 

spinal segment units was removed with a band saw to create functional spinal segment units 

with intact ligaments, inter-vertebral discs, and posterior elements. For the purpose of 

conservation, all functional spinal segment units were stored in formalin solution during the 

study and degassed at least 24 h before imaging to prevent air artifacts. The functional spinal 

segment units were sealed in vacuum plastic bags during imaging.
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2.2 Imaging with Multi-detector Computed Tomography (MDCT)

Images were acquired using a whole-body 256-row CT scanner (iCT, Philips Medical Care, 

Best, The Netherlands). A tube voltage of 120 kVp and a tube load of 585 mAs was used to 

create an image matrix of 1024 × 1024 pixels and a field view of 150 mm. Transverse 

sections were reconstructed using a high-resolution bone kernel (YE). The interpolated 

voxel size was 146 × 146 × 300 μm3 and the real spatial resolution, as determined at q50 of 

the modulation-transfer-function was 250 × 250 × 600 μm3. A dedicated calibration 

phantom (Mindways Osteoporosis Phantom, San Francisco, CA, USA) was placed in the 

scanner mat beneath the functional spinal units as seen in Figure 1. The reference phantom 

was used to derive the calcium hydroxyapatite values in BMD (mg/cm3).

2.3 Image Processing and Volume of Interest (VOI) Selection

The central vertebra of each specimen was used for VOI insertion. For each slice the outer 

surface of the cortical shell of the spinal segment was isolated automatically based on 

attenuation differences between cortical and trabecular bone in each image. In a small 

percentage of specimens, the segmentation mask was improperly calculated by errors 

induced by high-grade focal bone loss or penetration of adjacent anatomical features. These 

features include blood vessels and excess tissue remaining after the segments were removed 

from the donor patients. One of two radiologists performed the manual correction of the 

segmentation if errors occurred.

2.4 BMD Calculations

Voxel attenuations (Hounsfield Units or HU) on MDCT images were converted to values 

indicative of BMD using a reference calibration phantom (as seen in Fig 1). The image voxel 

intensities were converted from HU to BMD units using the following equation as 

previously outlined in [7]:

(1)

The numerator values represent the bone and water densities of the calibration phantoms (E 

and A), respectively, and HUE and HUA are the voxel attenuation values in HU of the 

corresponding locations of the phantom in the acquired images. HUvoxel is the voxel value 

corresponding to the voxel to be converted to BMD.

2.5 Biomechanical Testing

The half-dissected upper and lower vertebrae of the functional spinal segment units were 

embedded in resin (Rencast Isocyanat and Polyol, Huntsman Group, Bad Säckingen, 

Germany) up to 2 mm above, respectively, below their vertebral endplates. The fixation was 

performed with parallel alignment of the upper and lower endplate of middle vertebra with 

the outer surface of the resin chock to guarantee strict axial loading conditions of the middle 

vertebra during the uniaxial biomechanical test. After embedding, the functional spinal 

segment units were fixed in a mechanical testing system (Wolpert Werkstoffprüfmaschinen 

AG, Schaffhausen, Switzerland). Ten pre-conditioning cycles with uniaxial tension–
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compression up to a load between 10 and 400 N with a rate of 5 mm/min was applied. Then 

a monotonic, uniaxial compression was performed at the same rate. The load–displacement 

curve was recorded and vertebral failure load was defined as the first peak of the load–

displacement curve with a subsequent drop of >10 %. Further details regarding the processes 

performed to acquire the actual failure load measurements can be seen in [8].

3. METHODS

3.1 BMD Features

The BMD distribution within each VOI was represented by its mean distribution. The 

measure of BMD on MDCT, using the conversions as shown above, has been shown to be 

highly correlated to conventional DXA-derived mean BMD values [3].

3.2 Scaling Index Method (SIM) Features

The SIM is a geometrical feature extraction technique proposed by Jamitzky et al. [9]. These 

can be used to characterize the structural properties of the bone based on its 

microarchitecture. Briefly, we consider N pixels in a VOI represented by a four-dimensional 

vector ui = (xi, yi, zi, gi), i = {1, …, N}, where xi, yi and zi are the geometric coordinates and 

gi is the gray-level intensity of the ith pixel, i.e., gi = g(xi, yi, zi). A local scaling property 

index α is calculated for each vector ui as

where dij=||ui, uj|| is the Euclidean distance between the ith and jth four-dimensional vector 

and R defines the width of the Gaussian centered on the ith vector. The weighting of 

geometric and gray-level intensity values for each four-dimensional vector is specified by a 

scaling factor (SF), which can be optimized for best feature representation. The scaling 

factors SF = {0.01, 0.1, 1, 10, 100, 200} were applied to the geometric coordinates. Indices 

α were then calculated for each SF and for the set of radii R = {1, 2, 3}. The alpha values 

extracted were distributed evenly into 19 quantiles, which serve as the 19-dimensional 

feature vector that characterizes each specimen.

3.3 Function Approximation

After geometrical feature computation of trabecular bone, the ability to predict the 

biomechanical strength, as determined by the failure load according to section 2.5, was 

evaluated. Machine learning algorithms, namely multiple regression and support vector 

regression with a linear kernel, were used for the function approximation.

3.4 Prediction Performance

Iteratively, a cross-validation scheme using randomly selected training set of VOIs (70%) 

was used to approximate the target function, i.e., the failure load. The resulting model was 

then used to predict the failure load of the remaining independent test set. The independent 
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test set allowed for unbiased testing of the performance of the bone strength prediction 

model as calculated by the regression model. The average residual error between the 

predicted failure load FLpred and the true failure load FLtrue for the VOIs in this test set Ti, i 
= 1,..., Niter was measured by the root-mean-square error (RMSE)

This calculation was repeated iteratively Niter = 50 times using randomly chosen train and 

test sets resulting in a RMSE distribution for each bone feature. A Wilcoxon Signed-Rank 

Test was used to compare the RMSE distributions and determine statistical significance in 

performance prediction.

The image processing, feature extraction, machine learning function approximation, 

evaluation of performance and significance testing were conducted in MATLAB, version 

R2014a (MathWorks, Natick, MA).

4. RESULTS

The results from evaluation of different machine learning techniques are shown in Figure 2. 

This study was interested in the relationship between overall prediction performance and the 

model based on different scaling factors and radius R. Different sets of scaling factors and 

radius values were chosen and the results can be compared between prediction model types. 

The best feature performance was obtained for SF = 200 and R = 1 when combined with 

mean BMD features (RMSE = 0.82 ± 0.37). The geometric features outperformed MDCT-

measured mean BMD (RMSE = 1.11 ± 0.33) (p < 10−4).

5. NEW AND BREAKTHROUGH WORK

BMD measurements derived from MDCT or DXA do not account for a complete 

characterization of trabecular bone with regard to the micro-architecture, which could limit 

the accuracy of BMD in predicting bone strength. Here, we demonstrate that SIM features in 

conjunction with machine learning can be used for accurate prediction of vertebral body 

fracture load. Advanced characterization of trabecular bone as described in this study may 

contribute to an improved diagnosis of osteoporosis-related fractures.

This study proposes an automated approach to predict biomechanical strength of spine 

specimens through the use of BMD analysis in combination with non-linear geometric 

feature extraction and machine learning techniques. The results suggest that SIM derived 

properties (radius and scaling factors) are ideal for the application of machine learning 

models to failure load prediction in osteoporotic bone for diagnosis and monitoring purposes 

in spinal segments. Furthermore, it can be shown that support vector regression analyses 

outperform the conventional multiple regression model techniques. Such non-invasive 

methods for extracting accurate predictors from spinal segments makes this method 

attractive for use as biomarkers with the task of predicting and monitoring progression of 

osteoporosis in the spine. We note the certain limitations with this experimental study. The 

small sample size used reduces the statistical power of the analyses. The spine segments 
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used in the study were not scanned in situ and therefore only represent the soft tissue 

environment through the use of a water bath. The fact that the specimens were extracted 

from formalin-fixed cadavers may have affected the biomechanical properties of the 

segments.

6. CONCLUSION

In conclusion, the results presented in this study show that SIM-derived geometrical 

features, which characterize trabecular bone microarchitecture, could significantly improve 

the prediction of biomechanical strength of spinal vertebrae when compared to conventional 

methods. We hypothesize that our approach can contribute to the development of imaging 

biomarkers for improved clinical diagnosis and management of osteoporosis. With these 

biomarkers, disease progression may be tracked and patient response to therapeutic 

intervention can be monitored. Trabecular structure using high-resolution MDCT is not 

currently optimal for osteoporosis diagnostics and therapy monitoring due to the high levels 

of radiation that the patients experience during the image acquisition process. In the future, 

modalities of image acquisition will need to be implemented before larger controlled trials 

can be attempted in a clinical setting.
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Figure 1. 
The central axial slice from the middle vertebra. The calibration phantoms A-E are seen on 

the bottom; their equivalent H20 and K2HPO4 densities are specified in [4]. A 2D 

representation of a sample VOI selected for analysis of trabecular bone structure is outlined 

in red. The phantom portions A and E are used as equivalent bone and water phantoms 

respectively in line with [7].
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Figure 2. 
Prediction performance plotted for different scaling factors (SFs) for a radius R of 1, 2 and 3 

compared to the BMD mean (first column in blue); MultiReg – multiple regression, 

nuSVRlin – support vector machine with linear kernel. For each RMSE distribution, the 

central mark corresponds to the median and the edges are the 25th and 75th percentile. 

Multiple regression results for high dimensional SIM features cannot be represented in the 

graphs, as the RMSE values are higher than 1.5. Statistically significant results can be seen 

for an R = 1 and SF = 200 when using nuSVRlin.
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