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Abstract

Segmentation of the thalamus and thalamic nuclei is useful to quantify volumetric changes from 

neurodegenerative diseases. Most thalamus segmentation algorithms only use T1-weighted 

magnetic resonance images and current thalamic parcellation methods require manual interaction. 

Smaller nuclei, such as the lateral and medial geniculates, are challenging to locate due to their 

small size. We propose an automated segmentation algorithm using a set of features derived from 

diffusion tensor image (DTI) and thalamic nuclei location priors. After extracting features, a 

hierarchical random forest classifier is trained to locate the thalamus. A second random forest 

classifies thalamus voxels as belonging to one of six thalamic nuclei classes. The proposed 

algorithm was tested using a leave-one-out cross validation scheme and compared with state-of-

the-art algorithms. The proposed algorithm has a higher Dice score compared to other methods for 

the whole thalamus and several nuclei.
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1. INTRODUCTION

The thalamus is an important subcortical structure that plays a crucial role in relaying 

sensory and motor signals to the cerebral cortex and regulating consciousness, sleep, and 

alertness.1 It has connections to nearly every major region in the brain. Changes in thalamic 

volume are correlated with many neurodegenerative diseases, including multiple sclerosis,2 

Alzheimer’s disease,3,4 and schizophrenia.5 The thalamus is composed of myelinated fibers 

and can be divided into thalamic nuclei. The thalamic nuclei include the anterior (ANT), 
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medial dorsal (MD), ventral nuclear group (VNG), pulvinar (PUL), lateral geniculate 

(LGN), and medial geniculate (MGN). Nuclei are clusters of neurons grouped based on 

histological or functional criteria.6 Diffusion tensor imaging (DTI) is a magnetic resonance 

(MR) imaging modality that images the diffusion rate of water and can be used to infer the 

orientation of neural fibers.7 With the strong connections that the thalamus has with other 

structures, DTI offers a rich set of features to use to segment the thalamus and its nuclei.

Several existing whole thalamus segmentation methods use T1-weighted (T1-w) MRI8,9 and 

do not take advantage of DTI features. Existing thalamic nuclei methods require manual 

interaction in order to initialize the segmentation algorithm.10–13 In our previous work,14,15 

a comprehensive set of features derived from DTI were used to segment the thalamic nuclei. 

However, segmenting the LGN and MGN is still challenging due to their small size and 

remote locations relative to the rest of the thalamus. Structure location priors derived from a 

manual delineated atlas have been used to segment subcortical structures by registering the 

brain template to the subject image. We propose deriving thalamic nuclei location priors for 

each nucleus using a manually delineated brain atlas to augment the classification features 

and better resolve the lateral and medial geniculates.

We present a fully automatic multi-modal thalamus segmentation algorithm that incorporates 

DTI features and nuclei location priors. Our method first identifies a region of interest (ROI) 

containing the thalamus from location priors derived from a delineated brain template. For 

each voxel in the ROI, a set of features is derived from the DTI, T1-w, T2-weighted (T2-w) 

MRI, and priors. A hierarchical random forest (RF) classifier framework is trained to first 

distinguish between thalamus and non-thalamus voxels in the ROI. A second RF classifies 

the thalamus voxels as one of six thalamic nuclei.

2. METHOD

The initial subject images first undergo standard neuroimaging preprocessing: 

inhomogeneity correction,16 skull stripping,17 isotropic resampling18 to 0.8 mm cubic 

voxels, and distortion correction.19

2.1 Thalamus Localization and Thalamic Nuclei Priors

An initial estimate of the location of the thalamus is determined by registering a brain atlas 

to the subject’s T1-w using the Elastix deformable registration algorithm20 and deforming 

the atlas labels to be aligned with the subject’s image to give us an initial segmentation for 

each nucleus,  for i ∈ {ANT, MD, VNG, PUL, LGN, MGN}. The union of these is the 

initial thalamus segmentation, . The ICBM Brain Template21 is used as the brain atlas.

These initial segmentations are used to calculate both the ROI and nuclei priors. All initial 

segmentations are divided into left and right segmentations along the midsagittal plane22 

giving  and . However, to simplify notation and because the algorithm is applied to left 

and right sides independently, we will drop the subscript and continue to use  to refer to 

the initial segmentation of the thalamus on either side. The ROI for the thalamus is found by 

constructing a bounding box,  that encompasses all voxels labeled as thalamus.  is 

defined as
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where vector x is a voxel coordinate in the image domain Ω, the lower and upper extents of 

the thalamus are given by  and  respectively, and r = 0.2 × 

(h − l) pads the bounding box by 20% along each axis.

The set of nuclei location priors {Pi} is constructed from the initial thalamic nuclei 

segmentations  by convolving  with a 3-D Gaussian kernel with standard deviation 

σ. Similarly, the thalamus location prior PT is constructed by convolving  with the 

Gaussian kernel.

2.2 Feature Extraction

Various features are extracted from the T1-w, T2-w, and DTI. The first features are the voxel 

location, x, and the T1-w intensity and T2-w intensity, denoted as IT1(x) and IT2(x).

A set of features is derived from the DTI. DTI is acquired from a set of diffusion weighted 

MRI with known b-value and gradient direction g. The diffusion signal at a particular b and 

g is an attenuated version of the signal S0 recording in absence of the any diffusion 

weighting, whose relationship can be expressed using the Stejskal-Tanner equation

The diffusion tensor D is represented by a 3×3 symmetric tensor matrix that quantifies the 

diffusivity at a voxel. Alternatively, the tensor can be expressed in terms of its eigenvalues 

and eigenvectors. Two features derived from the eigenvalues of D are the fractional 

anisotropy FA(x) and mean diffusivity MD(x).7

The direction of maximum diffusion corresponds to the principal eigenvector (PEV), u = 

(u1, u2, u3). Since diffusion can occur with equal probability along u and the opposite 

direction −u, it is convenient to use the Knutsson space instead to represent the PEV.23 The 

Knutsson transformation maps u and −u to the same 5-D vector {K(x)} in Knutsson space. 

The transformation from  to Knutsson space  is

To distinguish between thalamic nuclei, we are interested in finding locations with large 

changes in the direction of the PEV. Letting v be the PEV transformed to the Knutsson 

space, then the amount of change in the PEV direction can be quantified as the Frobenius 

norm ||G(K(x))||F of the edge map of the Knutsson space,24 as follows:
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The final set of features is the location and thalamus prior, resulting in a feature vector fT 

with the following 14 features: fT (x) = {x, IT1(x), IT2(x), FA(x), MD(x), {K(x)}, ||
G(K(x))||F, PT(x)}. Similarly, to classify the thalamus voxels as belonging to one of the six 

thalamic nuclei, we include the six nuclei priors in the feature vector fN, resulting in 19 

features: fN(x) = {x, IT1(x), IT2(x), FA(x), MD(x), {K(x)}, ||G(K(x))||F, {Pi(x)}} Figure 1 

shows the features extracted for segmenting the thalamus with the ground truth outlined in 

red.

2.3 Hierarchical Random Forest Classification

Our hierarchical RF approach consists of two steps. First, the feature vectors fT for each 

voxel in B are used to build a collection of trees that distinguish thalamus from non-

thalamus. The result of this RF is a binary classification. The largest connected component 

in the binary map is smoothed using a morphological closing operation with a 3 × 3 × 3 

structuring element. This gives the final thalamus segmentation. The second RF is trained 

using fN as the feature vectors to classify voxels inside the final thalamus segmentation as 

belonging to one of the six thalamic nuclei classes. Separate RFs are trained for the left and 

right sides.

3. RESULTS AND DISCUSSION

Our data consists of five subjects from an multiple sclerosis (MS) study with manually 

delineated ground truth. Three of the subjects are diagnosed with MS and the remaining two 

are healthy controls (HC). A leave-one-out cross validation scheme is used to train and test 

the proposed algorithm. The thalamus segmentation results are compared with two state-of-

the-art algorithms; TOADS8 and FreeSurfer.9 Both are atlas-based subcortical segmentation 

algorithms and provide a whole thalamus label. Results are also compared with the initial 

thalamus segmentation determined by transferring labels from the ICBM brain template21 

(referred to as Label Transfer), as is done to acquire the priors.

Examples of whole thalamus segmentation using the proposed algorithm and other state-of-

the-art algorithms are shown in Figure 2. The mean Dice scores are provided in Table 1 with 

the proposed algorithm outperforming the other algorithms. The label transfer algorithm has 

the second best Dice scores. However, the label for the lateral geniculate in the brain atlas is 

not contiguous with the rest of the thalamus, resulting in the thalamus being split into 

separate parts. The proposed algorithm uses a set of manual delineations with the lateral 

geniculate joined with the rest of the thalamus to train the random forest and as a result, the 

lateral geniculate is connected to the thalamus. A connected-component analysis ensures 

that only a single connected component is returned as the final thalamus segmentation.
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An example of the thalamic nuclei segmentation using the proposed algorithm and the label 

transfer algorithm is shown in Figure 3. The Dice scores of the proposed algorithm and the 

ICBM algorithm for each of the nuclei are provided in Table 2. The proposed algorithm 

outperforms the label transfer algorithm for eleven of the twelve thalamic nuclei. Only the 

left medial geniculate Dice score is lower using the proposed algorithm. This is due to the 

location of the medial geniculate, as the proposed algorithm often misclassifies MGN as the 

pulvinar. Other errors in the proposed algorithm’s nuclei parcellation are caused by the 

hierarchical random forest scheme. The nuclei segmentation relies directly on the 

segmentation of the thalamus. This is especially relevant to the LGN and MGN, which has 

the lowest nuclei Dice scores because many of the voxels are classified as non-thalamus and 

are excluded from the nuclei classification step.

4. CONCLUSION

We have presented a fully automatic thalamic parcellation algorithm using multi-modal 

imaging data and nuclei priors. The algorithm extracts a set of features derived from T1-w, 

T2-w, and DTI to train a hierarchical RF framework. For whole thalamus segmentation, the 

proposed algorithm has higher Dice scores of 0.881 and 0.859 for the left and right 

thalamus, respectively. The proposed algorithm also improved Dice scores for individual 

thalamic nuclei, in particular the smaller nuclei, such as the lateral and medial geniculates.
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Figure 1. 
Shown are several of the features used in our approach. The red outline indicates the 

manually delineated ground truth.
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Figure 2. 
From left to right are: T1-w; manually delineated ground truth; TOADS; FreeSurfer; Label 

Transfer from the ICBM atlas; and our proposed algorithm.
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Figure 3. 
Example thalamic nuclei segmentation from left to right are: T1-w; manually delineated 

ground truth; Label Transfer from the ICBM atlas; and our proposed algorithm. Nuclei 

shown are: VNG (blue); MD (green); PUL (purple); LGN (turquoise); and MGN (pink).
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Table 1

Mean (standard deviation) of Dice scores comparing whole thalamus segmentation.

Structure TOADS FreeSurfer Label Transfer Proposed

Left Thalamus 0.522 (0.120) 0.811 (0.025) 0.766 (0.055) 0.881 (0.024)

Right Thalamus 0.566 (0.130) 0.783 (0.074) 0.779 (0.055) 0.859 (0.040)
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