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Abstract

T1-weighted magnetic resonance imaging (MRI) generates contrasts with primary sensitivity to 

local T1 properties (with lesser T2 and PD contributions). The observed signal intensity is 

determined by these local properties and the sequence parameters of the acquisition. In common 

practice, a range of acceptable parameters is used to ensure “similar” contrast across scanners used 

for any particular study (e.g., the ADNI standard MPRAGE). However, different studies may use 

different ranges of parameters and report the derived data as simply “T1-weighted”. Physics and 

imaging authors pay strong heed to the specifics of the imaging sequences, but image processing 

authors have historically been more lax. Herein, we consider three T1-weighted sequences 

acquired the same underlying protocol (MPRAGE) and vendor (Philips), but “normal study-to-

study variation” in parameters. We show that the gray matter/white matter/cerebrospinal fluid 

contrast is subtly but systemically different between these images and yields systemically different 

measurements of brain volume. The problem derives from the visually apparent boundary shifts, 

which would also be seen by a human rater. We present and evaluate two solutions to produce 

consistent segmentation results across imaging protocols. First, we propose to acquire multiple 

sequences on a subset of the data and use the multi-modal imaging as atlases to segment target 

images any of the available sequences. Second (if additional imaging is not available), we propose 

to synthesize atlases of the target imaging sequence and use the synthesized atlases in place of 

atlas imaging data. Both approaches significantly improve consistency of target labeling.
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1. Introduction

T1-weighted MRI derives contrast from the local T1, T2, and Proton Density (PD) of the 

imaging subject. The signal intensity is then read out as a function of those tissue 

characteristics and the sequence definition. In some cases, such as the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), very strict sequence definitions are available to insure data 

consistency [1]. On the other hand, many studies consider cross-site, scanner, or sequence 

analyses but do not necessarily consider the effect those changes may have on the imaging 

[2]. Further, perceived anatomic differences may be visually present both to humans and 

automated techniques, derived from the subtle changes in the imaging sequence parameters 

(Figure 1). Thus these changes may result in systematic differences in study results 

depending on the sequence used and the techniques used for analyzing and processing the 

data.

To quantitatively investigate this problem, we begin with a simple assumption that a 

particular algorithm has been accepted as sufficiently accurate for a single T1-weighted MRI 

acquisition. Specifically, we assume that the multi-method of Asman et al [3, 4] with the 

widely used BrianCOLOR atlases is representative of an ADNI compliant 3T MPRAGE 

(herein “TI - 891”). Note that this specific assumption has been made by others, e.g., [5]. We 

then look at two other, similar 3T MPRAGE sequences with slightly different acquisition 

parameters, but that were also designed and used for research into whole-segmentation 

(herein, “TI - 624” and “TI - 927” with details to follow).

The remainder of this paper is organized as follows. First we describe the data acquisition 

sequences used for both application and validation. Second, we propose a solution using our 

acquired dataset as atlas with comparable sequences for segmentation. Third, we present a 

quantitative solution to the problem of varying sequence acquisitions where we start from 

the foundational signal equations defining MPRAGE signal and we synthesize new atlas 

images better matching the contrast of our target images. We validate both of these methods 

against a reference segmentation and show that both presented techniques show significant 

improvement when using atlases of the same sequence when compared to atlases of differing 

sequences.

2. Methods and theory

This section is organized as follows. First we describe our acquired dataset where each 

subject was scanned with three T1-weighted MPRAGE sequences. Second, we describe our 

protocol for image synthesis using a standard Dual Spin Echo image and MPRAGE with 

known sequence parameters. Third, we characterize the open-access dataset used for 

synthetic atlas generation and the synthesized atlases. Last, we describe the procedure used 

for segmentation in the results.

Data Acquisition

Data for seven subjects (6 male, 1 female, ages 21–62) were acquired particularly for this 

study. Each subject was scanned with three unique sequences on a single trip into the 

scanner. All scans were acquired on a 3T Philips Achieva MRI (Philips Medical Systems, 
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Best, The Netherlands) with a 32-channel receive coil. The first acquisition sequence was an 

MPRAGE T1-weighted MRI with TR/TE/TI/flip angle 7.9/3.65/927ms/5°. The second 

acquisition sequence was an MPRAGE T1-weighted MRI with TR/TE/TI/flip angle – 

8.2/3.7/891ms/8°. The third acquisition sequence was an MPRAGE T1-weighted MRI with 

TR/TE/TI/flip angle – 8.9/4.6/624ms/8°. For the remained of this work we refer to these 

different sequences by their inversion time (TI – 927, TI – 891, and TI – 624 respectively), 

and we note that the second acquisition fits within the ADNI standards for an MPRAGE 

sequence [1]. After acquisition, for each subject TI – 927 and TI – 624 were rigidly 

registered to TI – 891 with NiftyReg to create a consistent space [6].

Image Synthesis

The goal of image synthesis is to generate new atlases with pulse sequence parameters more 

closely related to the target image than the target image. To do this, we start with the 

MPRAGE equation defined by Deichmann et al [7]

(1)

where SM(x) is the signal from the MPRAGE sequence at location x, GM is the scanner gain, 

PD(x) is the proton density at x, TI is the inversion time, TD is the delay time, τ is the slice 

timing, and T1(x) is the T1-relaxation time at x. In order to synthesize a new image with new 

pulse parameters thus we must know PD(x) and T1(x). To estimate PD(x) we begin with a 

Dual Spin Echo sequence which has signal is defined as [8]

(2)

where SDSEn(x) is the signal from the nth echo time at voxel x, GDSE is the scanner gain for 

the Dual Echo sequence, and TEn is the echo time for the nth echo. If we assume TR is 

significantly greater than TE, which is standard practice for Dual Echo sequences, the 

component of the signal effected by T1 (x) approaches 1 and the equation reduces to

(3)

from which we can solve for T2(x) as

(4)

which is the slope of the log-fit of the echo times. From this solution we solve for 

GDSEPD(x) by

(5)
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which is simply a constant factor times PD(x). With a solution for PD(x) we can now solve 

for the remaining parameters in (1). First we solve for GM as

(6)

(7)

where GN is simply  since neither parameter needs to be explicitly solved for. Thus GN 

can be solved as

(8)

Though this equation still contains the parameter T1(x) we simply use the median intensity 

of the gray matter, white matter, and csf with known T1-relaxation values for these regions 

to estimate the gain and take the average gain from those estimates [9]. To estimate the T1-

relaxation, since in typical T1-weighted imaging is on the order of hundreds of milliseconds 

and TD and τ are typically on the order of milliseconds for 3T T1-weighted sequences, we 

assume that  and thus T1(x) we solve for in closed form as follows 

from (1)

(9)

For simplicity we define

(10)

for the remainder of the derivation. Continuing from (9) with the simplification

(11)

(12)
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(13)

(14)

By solving for the parameters, GDSEPD(x) and T1(x), we can use (1) to synthesize new T1-

weighted MPRAGE images.

Synthetic Atlas Generation

To generate synthetic atlas images we consider the Multi-Modal Kirby21 open-source data 

resource since it has the requisite Dual Echo (TR/TE1/TE2=6653ms/30ms/80ms) and 

MPRAGE (TR/TE/TI=6.7/3.1/842ms) for synthesis [10]. All images were bias corrected 

with the N4 bias correction algorithm as a preprocessing step [11]. 10 subjects with T2-

relaxation times most closely matching the known times for gray matter and what matter 

were selected for synthesis [9]. Synthetic images were generated on the selected images to 

match the three acquired atlas sets (TI – 624, TI – 891, and TI – 927). Example results for 

the intermediary calculations of PD, T1-relaxation, and T2-relaxation can be seen in Figure 

2.

Multi-Atlas Segmentation

All multi-atlas segmentations in this study follow an identical procedure. Atlas and target 

images are first bias corrected with the N4 Bias Correction algorithm [11]. Altas images are 

then non-rigidly registered to the target image with the Advanced Normalization Tools 

package and the Symmetric Image Normalization Algorithm (SyN) [12]. Image and label 

volumes for the atlas were then deformed to the target space with bi-cubic and nearest-

neighbor interpolation respectively. After deformation, the registered label volumes were 

fused together with Non-Local Spatial STAPLE [3, 4].

For initial segmentations of both the acquired data and the synthesis data, 45 OASIS atlases 

were used from the 2013 MICCAI multi-atlas segmentation challenge [13]. These atlases are 

defined as anatomically consistently with images following the ADNI protocol (TI – 891 in 

our case) [1, 5]. For all of the acquired data and the Kirby 21 synthesis images, we 

performed a multi-atlas segmentation using the above procedure but only selecting the 15 

geodesically closest atlases for fusion.

3. Results

Multi-Acquisition Multi-Atlas Segmentation

For the seven subjects with three T1-weighted images acquired, we co-registered each 

subject’s scans to their TI – 891 [6]. We then segmented TI – 891 for each subject with the 

previously defined procedure for multi-atlas segmentation. In a leave-one-out study, we then 

segmented each acquisition for each subject with its paired acquisitions and separately with 
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the TI – 891’s resulting in five sets of segmentations per subject (i.e., TI – 624 segmented 

with TI 624, TI – 624 segmented with TI – 891, TI – 891 segmented with TI – 891, TI – 927 

segmented with TI – 927, and TI – 927 segmented with TI – 891). We then calculated the 

volumes of cortical gray matter, subcortical gray matter, and cerebral white matter for each 

of the five segmentations. Using TI – 891 segmented with TI – 891 as the reference value of 

the “true” volume, TI – 624 segmented with TI – 624 and TI – 927 segmented with TI – 927 

outperformed TI – segmented with TI – 891 and TI – 927 segmented with TI – 891 

respectively (figure 3; * indicates values were significantly closer to 1 than their counterpart, 

Wilcoxon sign-rank test). This result shows that though the anatomic boundaries differ in 

perception between the sets of scans, we can still produce segmentations more consistent 

with the desired boundaries by using a sequence more closely matching our target.

Image Synthesis Multi-Atlas Segmentation

We selected ten subjects from the Kirby 21 open-access data resource and used their Dual 

Spin Echo and MPRAGE acquisitions for synthesis [10]. For each of the ten Kirby 21 

subjects, we synthesized MPRAGE images with sequence parameters comparable to our 

acquired data (i.e. TI – 624, TI – 891, TI – 927). We then performed a multi-atlas 

segmentation between each set of newly synthesized atlases and our previously acquired 

data (see above), resulting in 9 segmentations for each of our seven subjects. For cortical 

segmentation of all acquisitions, using the synthetic atlas with an identical sequence to the 

target acquisition produced significant improvements over or comparable results to the 

segmentations with other synthetic atlases. For white matter segmentation, TI – 927 and TI – 

624 showed significant improvements when using their matched synthetic atlases but 

interestingly TI – 891’s white matter volume was closest to the target volume when 

segmented by atlases with TI – 927. In subcortical volume TI – 927 and TI – 891 did not 

show any significant improvement based on synthetic atlas selection whereas TI – 624 

segmented by TI – 624 produced segmentation volumes significantly closer to the target 

volume than with the other synthetic sequences (figure 4).

4. Discussion

In this work we evaluate the importance of T1-weighted MRI sequence variant in image 

processing work. We show significant perceived differences in structural information 

between scans of the same subject under different MRI sequence parameters. We then show 

that, if using structural information consistent with a target sequence variant and atlases of a 

sequence more similar to a target sequence, segmentation results are more parsimonious 

with the expectation than if we use atlases of an alternate variant. We also consider 

synthesizing atlas images of the ideal sequence variant from the underlying biological 

signals of T1-weighted MRI. We show that by generating synthetic atlases more similar to 

the target image we typically produce segmentation volumes more parsimonious with the 

target volume.
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Figure 1. 
Example segmentation results for three T1-weighted MPRAGE sequences with different 

inversion times. The red line corresponds to the contour of the segmentation on TI - 891. 

The perceived boundary on the zoomed-in images appears to dramatically shift and a human 

labeler or automated algorithm with no knowledge of the imaging protocol would clearly 

define different gray matter/csf boundaries for each imaging sequence.
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Figure 2. 
Intermediary results from image synthesis. The cited values for T2-relaxation in gray matter, 

white matter are approximately 100 and 80 ms respectively. The cited values for T1-

relaxation in the gray matter and white matter are approximately 1350 and 800 ms 

respectively. These values appear consistent with the intermediary results of image 

synthesis.
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Figure 3. 
Quantitative segmentation results from the multi-sequence acquisition segmentations. 

Segmentation volumes were normalized to the volume of TI – 891 segmented with TI – 891 

to provide a normalized target volume for visualization. Normalizing to TI – 891 as a 

reference volume defines a value of 1 as the “correct” volume for each region of interest. * 

between two boxplots indicates a significant difference (p<0.05 Wilcoxon sign-rank test)
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Figure 4. 
Volumetric segmentation volumes for multi-atlas segmentation with image synthesis. Region 

volumes are normalized to volume of TI – 891’s initial segmentation. We note that this is a 

reference point for comparison and results closer to 1 do not necessarily indicate more 

accurate segmentations. Across the three sets of structures, segmentation volumes differ 

significantly depending on the synthesized sequence parameters of the atlases and in most 

cases using the atlas sequence most closely matching the target produces significant 

improvements over the segmentation results (* between boxplots indicates p<0.05, 

Wilcoxon sign-rank test).
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