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ABSTRACT   

We recently demonstrated the strong potential of using dual-dynamic transformation models when tackling deformable 

image registration problems involving large anatomical differences. Dual-dynamic transformation models employ two 

moving grids instead of the common single moving grid for the target image (and single fixed grid for the source image). 

We previously employed powerful optimization algorithms to make use of the additional flexibility offered by a dual-

dynamic transformation model with good results, directly obtaining insight into the trade-off between important 

registration objectives as a result of taking a multi-objective approach to optimization. However, optimization has so far 

been initialized using two regular grids, which still leaves a great potential of dual-dynamic transformation models 

untapped: a-priori grid alignment with image structures/areas that are expected to deform more. This allows (far) less 

grid points to be used, compared to using a sufficiently refined regular grid, leading to (far) more efficient optimization, 

or, equivalently, more accurate results using the same number of grid points. We study the implications of exploiting this 

potential by experimenting with two new smart grid initialization procedures: one manual expert-based and one 

automated image-feature-based. We consider a CT test case with large differences in bladder volume with and without a 

multi-resolution scheme and find a substantial benefit of using smart grid initialization. 
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1. INTRODUCTION  

Deformable image registration typically becomes hard when large deformations are involved because they often impose 

many local optima for the underlying optimization method. Moreover, transformation models need to be sufficiently 

flexible. Many registration methods use a single fixed grid for the source image and a single moving grid for the target 

image.1 One advantage of using fixed grids is that they enable many interpolation methods to define transformations, 

including, e.g., smooth b-splines. A disadvantage however is that a fine-grained grid may be required, e.g., when small 

areas in the source image need to be (substantially) enlarged. This increases the number of parameters (i.e., coordinates 

of grid points) that must be optimized over, decreasing efficiency. Dual-dynamic transformation models have the 

potential to counter this effect by using two moving grids: one for the source and one for the target image.2 A mapping is 

then established either indirectly (using a virtual regular grid that allows again a variety of smooth transformations) or 

directly. The latter is possible when e.g., a simplex model is used; in 2D this means that the moving grids are 

triangulations and that triangles directly correspond to one another. Through optimization, these grids can be aligned 

more favorably with structures that need to be deformed, eventually potentially requiring less parameters to optimize 

over. Furthermore, both disappearing and appearing structures can be accommodated because two moving grids are used. 

Fine-tuning registration methods to specific clinical applications is of great importance since one unique solution to all 

deformable image registration problems does not exist. One major reason for this is that often single-objective 

optimization is employed by optimizing a linearly weighted combination of all objectives that are of interest. Setting the 

weights anew for each registration task is non-trivial and often not very insightful, especially for complex registration 

tasks. Therefore, often this task is performed by trial and error. 
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Moreover, including another objective, e.g., exploiting additional guidance information such as contours or matching 

point pairs annotated by experts, only further complicates this task. By investigating deformable image registration from 

a multi-objective optimization perspective, the need to set a predetermined singular combination of objectives is 

removed.3-5 In multi-objective optimization, objectives are kept separate and are never combined through a weighting. 

The solution to a multi-objective optimization problem is a collection of registration outcomes (a so-called Pareto front) 

that represents efficient trade-offs between all objectives.6 Efficiency here means that no other registration outcomes 

have been found that are better in all objectives than any of the registration outcomes in the Pareto front. A multi-

objective approach provides the potential to provide insight into the true possible outcomes of registration and what their 

trade-offs are (e.g., the extent of deformation vs. match quality). After studying the possible outcomes on the Pareto 

front, the preferred outcome for the application at hand can be selected in a transparent manner. 

Multi-objective optimization however also requires more computation time. It is therefore even more important in this 

case to ensure that the grid complexity remains as small as possible and is used as efficiently as possible. It may take 

considerable (global) optimization effort to make the best use of the flexibility offered by dual-dynamic transformation 

models. Moreover, the topology of the grid is also a determining factor in the extent to which large deformations can be 

efficiently modeled. Allowing a different topology than a regular grid may result in far more suitable grid alignments for 

specific registration problems using the same, or less, grid points. Changing the topology is possible with a simplex 

transformation model. In this paper, we will therefore study the implications in terms of optimization efficiency of 

initially aligning the grid points and topologies of a simplex transformation model better with the structures that are 

likely to deform rather than using a regular, uniformly-spaced grid as a starting point. 

We recently demonstrated the strong potential of the use of a dual-dynamic transformation model within a multi-

objective optimization framework to tackle hard registration problems involving large deformations and (dis)appearing 

structures.2,5,7 Using a state-of-the-art, powerful model-based evolutionary optimization algorithm, excellent registration 

results were obtained using regularly-initialized grids. However, in order to obtain these results, the algorithm must be 

run sufficiently long and with a sufficiently fine-grained regular grid. In this work, we study new, smart grid 

initialization procedures to obtain similar or better results much more efficiently using less grid points. 

2. MATERIALS AND METHODS 

Image registration can be naturally posed as a multi-objective optimization problem, since there are different objectives 

of interest. The advantage of treating image registration as a multi-objective optimization problem is that direct insight 

may be obtained into the nature of the interplay between the objectives of interest. For this reason, we developed a multi-

objective deformable image registration framework.2-5,7 In the following, we provide several details on the current state 

of this framework and the choices made for the work presented in this paper. 

2.1 Objectives 

In this work we considered three objectives: 

 Match quality. We use the well-known cross-correlation similarity metric8 to compute a notion of quality of a 

match between a deformed source image and its target. Since all objectives in our implementation are to be 

minimized, we actually use the negation of this value. Values for this objective lie in the range [-1;1]. 

 Amount of deformation. We employ Hooke’s law9 on the basis of the deformation vector field (dvf) to quantify 

the amount of deformation associated with a transformation. For every pixel, we use the average length of the 

difference vector that is obtained by comparing the deformation of that pixel with each of its neighboring pixels. 

Let the set of considered pixels be denoted by P, the set of neighbors of pixel p be denoted by n(p), and let the 

deformation vector in the dvf associated with pixel p be denoted by dvfp. This objective can then be defined as: 

 

 

 Guidance error. The third objective is related to guidance information. Guidance information is stored in a set 

of tuples. Each tuple consists of two sets, each containing one or more points associated with the source and the 

target image, respectively. The guidance objective captures landmark/contour correspondence in terms of 

distances between pairs of guidance-point sets. For each pair of guidance-point sets, the points defined in the 

source image are transformed to the target image and vice versa. For each point, after transformation, the 
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smallest distance is computed to the points that define the contour in the other image. The distance between two 

guidance-point sets is then computed in a symmetric fashion as the sum of these distances over all points in the 

guidance sets, normalized by dividing by the total number of points. The sum over all pairs of guidance-point 

sets is then to be minimized. In other words, let G be the set of tuples (Gs,Gt) of guidance-point sets, let T be 

the transformation function as defined by the solution and let d denote Euclidean distance. Then, the guidance 

objective can be formulated as follows: 

 

 

 

2.2 Multi-objective optimization algorithm 

To perform multi-objective optimization, we use a model-based evolutionary algorithm (EA) that exploits features of a 

problem’s structure via probabilistic modeling.10-13 The particular EA that we employ is iMAMaLGaM (incremental 

Multi-objective Adapted Maximum Likelihood Gaussian Model mixture) in which the underlying probabilistic model is 

a Gaussian mixture distribution.4 In related work, iMAMaLGaM was shown to have excellent performance, converging 

to high-quality approximations of the optimal Pareto front on well-known benchmark problems.4 

Following results from previous work, we include adaptive steering in the algorithm to zoom in on only a part of the 

Pareto front because transformations with very little deformation are typically not interesting.5 Adaptive steering shrinks 

the space of feasible solutions during optimization adaptively, based on the best values found for individual objectives so 

far. Specifically, all solutions for which one or more objective values fall within a certain range are deemed to be 

infeasible. For the similarity objective we use [sbest;0.99×sbest] and for the guidance objective we use [gbest;1.5×gbest]. The 

amount of deformation objective is not further constrained. These ranges were previously found to give good results.5 To 

help the algorithm find and maintain solutions in the feasible space, during the first half of an optimization run, the 

feasible range is shrunk from a very large range to the aforementioned value. During the second half of an optimization 

run, the ranges as indicated above are used.   

2.3 Dual-dynamic transformation model  

We compute deformations by considering corresponding pairs of triangles (i.e., in the source and target grids) and by 

employing linear simplex interpolation. A transformation is defined by associating coordinates with each point in two 

grids. Therefore, the number of real-valued parameters to be optimized equals two times the number of grid points times 

the spatial dimensionality of the image (e.g., 2D or 3D). Unlike when using the traditional b-spline based transformation 

model, the use of such grids allows us to investigate the benefit of different initialization procedures because an irregular 

set of points can be used. We study and compare the following three different grid initialization procedures. 
 

 Regular grid initialization. This case considers a regular grid of n×n points in which diagonal edges are also 

included in order to ensure that the grid is a triangulation. 
 

 Manual smart grid initialization. A triangulation can be built from any set of points by iteratively adding edges 

that do not intersect previously added edges. We consider all possible edges between all pairs of points in order 

of ascending edge-length. Points can be used to delineate structures that are expected to play a crucial role in 

deformation. For the purpose of this work, an expert manually annotated grid points in the source image. 
 

 Automatic smart grid initialization. Although accurate and likely useful, manually annotating grid points can be 

tedious and laborious. We therefore further investigated an automatic approach to smart grid initialization. To 

this end, we first apply edge detection (Sobel filter14) to the source image after which we use a greedy subset 

selection approach to select grid points that are as well-spread as possible in the image space, but are only 

located on the detected edges.   

2.4 Experiments 

We use two CT scans acquired from the same patient with an empty and a full bladder. A pair of 2D slices is selected 

after rigid registration on the bony anatomy. Guidance information was annotated by a clinical expert. To solve this 

registration problem, large deformations are required (see Fig.2). There are furthermore small structures that need to be 

enlarged (e.g., between the bone and the bladder). 
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To study the impact of smart initialization, we consider two different experiment configurations: 

1. In this configuration, grid resolutions of 25 and 81 points, resulting in 100 and 324 parameters to be optimized 

respectively, are used to initialize the grids either regularly (i.e., 5×5 and 9×9 grids), or using smart 

initialization. For smart initialization, 4 points are automatically used to ensure that the entire image content is 

covered. We let the EA run for a longer period of time and for a shorter period of time. The length of the long 

run is based on the time that is expected to be required to obtain high-quality results. Specifically, the length of 

the long run is based on a previously published scalability analysis15 and allows 20×93.6×1.81 evaluations 

where  is the number of parameters to optimize (7,803,795 evaluations for 25 grid points; 65,522,780 

evaluations for 81 grid points). The short run is allowed only 1% of these evaluation budgets, implying a 100-

fold speedup. These runs are done for a single grid scale to study the impact of smart initialization at individual 

grid scales. To still provide the benefit of a multi-scale scheme16,17 on the image-resolution side, during the first 

half of the run, when adaptive steering is used, the images are iteratively refined, starting from 3×3 pixels. 

During the second half of the run, the image is used at full resolution. 

2. This configuration is targeted more at final practical use. The best final registration outcomes were previously 

obtained with a multi-scale approach where results from the 5×5 grid level (and a lower image resolution) are 

used to initialize a run at the 9×9 grid level.7 We ran the EA using that scheme for the purpose of studying final 

outcomes, using the previously reported number of evaluations: 10,000× (1,000,000 evaluations for 25 grid 

points; 3,240,000 evaluations for 81 grid points). To further study the impact of smart initialization also in this 

configuration, we also ran the multi-scale approach with a budget of only 10% of the evaluations in the last 

stage. Since most of the runtime is used up in the 9×9 stage, this still implies a speedup factor of about 10. 

3. RESULTS 

Results of experiments ran according to configuration 1 are shown in Figure 1. What can clearly be observed is that 

inherently different results between regular and smart grid initialization are obtained in the case of grids with 25 points. 

With regular grid initialization, the matches were not nearly as good as with smart grid initialization. Grids with 81 

points however allow far more detailed transformations, even if the grid is regular. This causes almost no difference to 

be observable between the results for the long run and grids with 81 points. It should be noted that this is furthermore 

indicative of the optimization capabilities of the EA, since a regularly initialized grid is initially not very well aligned 

with the parts of the image that need to be deformed, regardless of the grid resolution. This misalignment can also be 

seen from the short run in Figure 1: results obtained with the regularly initialized grid are nowhere near as good as 

results obtained with smart initialized grids. The EA needs much longer to obtain good results because the grid points 

need to be moved much more than when the grid points would have been (smartly) initialized to already (roughly) 

outline structures that need to be deformed. The EA does however ultimately achieve roughly the same type of 

deformations with a regular grid as with a smartly initialized grid. This can also be seen from the final registration 

results, shown in Figure 2, that were obtained with the multi-scale approach (i.e., experiment configuration 2). From the 

Pareto front of registration outcomes that resulted, a single solution was picked. Contrary to the meticulous parameter 

tuning that is required in common single-objective approaches to deformable image registration, picking the final 

registration outcome that makes the most sense to the user is fairly straightforward.2 It is also an insightful process 

because all registration outcomes can be readily compared by traversing the Pareto front. By doing so, a transition of 

outcomes can be observed, going from outcomes that represent too little deformation to outcomes that represent too 

much deformation, making it immediately clear where the preferred registration outcome lies on the Pareto front. After 

1,000,000 evaluations with a 5×5 regularly initialized grid, followed by 3,240,000 evaluations with a refined 9×9 grid, 

the EA has relocated the grid points so that the desired transformation can be achieved. The final results are even similar 

to when smart initialization is used, with virtually similar results in Figure 2 and differences in negative correlation 

coefficient that are only minor, similar to the long-run results in Figure 1, with smart initialization being slightly better.  

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Results obtained using experiment configuration 1. Top to bottom: 25 to 81 grid points. Left to right: cross 

correlation (CC) and guidance error (GE, in mm) for the short and the long runs, respectively. Horizontal axes: percentage 

of run time. Shown are ranges of objective values along the so-far obtained Pareto front during the run for the three different 

grid initialization strategies. 

 

The advantages of smart grid initialization become truly clear when considering the outcomes obtained for the short 

runs: much better results could be obtained with smart grid initialization than with regular grid initialization, both for the 

case of 25 and 81 grid points. Moreover, with smart grid initialization good registration outcomes were already observed 

using only 25 grid points, which was impossible for regular grid initialization. Finally, especially in the case of short 

runs, expert smart initialization gave the best results. However, results obtained with automatic smart initialization were 

not far behind, indicating that most of the benefit of smart grid initialization may well be obtainable automatically. 

These results indicate that using smart grid initialization can be greatly beneficial for studying deformable image 

registration from a multi-objective optimization perspective using transformation models that do not require a regular 

basis, such as simplex-based models. Such models are typically used in physical modeling (e.g., finite element 

modeling), making them good candidates for considering more detailed models within registration, e.g., by incorporating 

different tissue characteristics, so as to ensure physically accurate results. Moreover, combined with our EA, large 

deformations can be found directly, using a single registration method, which is promising for future extensions to 3D 

image registration. The need for an efficient use of grid points is then even greater, as moving from 5×5×5 grids to 

9×9×9 grids then means going from 375 parameters to 2187 parameters to optimize over. Although our near-future 

planned work targets specific efficiency enhancements targeted specifically at improving the required computation time, 

covering a Pareto front of high-quality solutions in multi-objective optimization remains a computationally demanding 

task for which keeping the number of parameters to optimize over low is important, making the results in this paper even 

more relevant. 
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Figure 2. Results obtained using experiment configuration 2. Top: full and empty bladder CT images overlaid with 

triangulations using the three grid initialization strategies for 25 grid points. Middle and bottom: results after running a 

multi-scale approach short and long, respectively. Guidance information is illustrated in turquoise and blue. A single 

registration result, chosen from the final Pareto front obtained by the EA, is presented. 

 

4. CONCLUSIONS 

We studied, within a multi-objective framework that eliminates the need to a-priori define and tune weighting factors, 

the impact of using smartly initialized simplex grids (using either expert knowledge or image-processing techniques), 

rather than common regularly initialized grids, on optimization efficiency. This is a novel contribution since this has not 

been studied before, especially in combination with a dual-dynamic transformation model and our multi-objective 

optimization approach. 

Results illustrate that similar or better results can be obtained much more efficiently with smartly initialized grids than 

with regularly initialized grids, within as little as 1%-10% of the total runtime. Moreover, inherently better results can be 

obtained with smart initialization using less grid points, making the road to studying registration with physically-

enhanced 3D transformation models from a multi-objective perspective a much more computationally friendly one. 

         Regular initialization            Smart initialization (expert)                              Smart initialization (automatic) 
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