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Abstract

We developed a chemically-induced oral cancer animal model and a computer aided method for 

tongue cancer diagnosis. The animal model allows us to monitor the progress of the lesions over 

time. Tongue tissue dissected from mice was sent for histological processing. Representative areas 

of hematoxylin and eosin (H&E) stained tissue from tongue sections were captured for classifying 

tumor and non-tumor tissue. The image set used in this paper consisted of 214 color images (114 

tumor and 100 normal tissue samples). A total of 738 color, texture, morphometry and topology 

features were extracted from the histological images. The combination of image features from 

epithelium tissue and its constituent nuclei and cytoplasm has been demonstrated to improve the 

classification results. With ten iteration nested cross validation, the method achieved an average 

sensitivity of 96.5% and a specificity of 99% for tongue cancer detection. The next step of this 

research is to apply this approach to human tissue for computer aided diagnosis of tongue cancer.
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1. DESCRIPTION OF PURPOSE

More than half a million patients are diagnosed worldwide with squamous cell carcinoma 

(SCC) of the head and neck each year [1]. Only half of the people diagnosed with oral 

cancer live for 5 years. Current gold standard for cancer diagnosis is made by pathologists 

using visual examination of haematoxylin and eosin (H&E) stained sections under the 
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microscope [2]. The diagnosis and grading of oral epithelial dysplasia is based on a 

combination of architectural and cytological changes. Specifically, the histological features 

for cancer diagnosis mainly include: 1) the proliferation of immature cells characterized by a 

loss of cellular organization or polarity, 2) variations in the size and shape of the nuclei, 3) 

increase in nuclear size relative to the cytoplasm, 4) increase in the nuclear chromatin with 

irregularity of distribution, and 5) increased mitoses, including atypical forms in all 

epithelial layers [3]. The locations of the architectural and cytomorphologic changes within 

the epithelium represent key diagnostic parameters. However, the effectiveness of cancer 

diagnosis is highly dependent on the attention and experience of pathologists. This process 

is time consuming, subjective, and inconsistent due to considerable inter- and intra-observer 

variations [4]. Therefore, a computer-aided image classification system with quantitative 

analysis of these histological features is highly desirable to provide rapid, consistent and 

quantitative cancer diagnosis.

The development of quantitative analysis methods for oral cancer diagnosis purposes is still 

in its early stage. Only a few studies have been conducted to quantify the oral tissue 

architectural and morphological changes. Landini et al. [5] measured statistical properties of 

the graph networks constructed based on the cell centroids for classifying normal, 

premalinant and malignant cells, and reported an accuracy of 67%, 100% and 80% to 

identify normal, premalignant and malignant cells, respectively. Krishnan et al. [6] explored 

the potential of texture features to grade the histopathological tissue sections into normal, 

oral sub-mucous fibrosis (OSF) without dysplasia, and OSF with dysplasia, and reported an 

accuracy of 95.7%, a sensitivity of 94.5%, and a specificity of 98.8%. Recently, Das et al [7] 

proposed an automated segmentation method for the identification of keratinization and 

keratin pearl from oral histological images and achieved a segmentation accuracy of 95.08% 

in comparison with the manual segmentation ground truth.

In this study, we developed a predictive model that combines multiple features, such as 

color, texture, morphormetry, and topology features from epithelium tissue and its 

constituent nuclei and cytoplasm, for the diagnosis of tongue cancer. We evaluated the 

effectiveness of the proposed features with multiple classifiers and performance metrics.

2. MATERIALS AND METHODS

2.1 Tongue Carcinogenesis Animal Model

Six-week-old female CBA/J mice were purchased from the Jackson Laboratory and were 

used for the studies. Animals were housed in the Animal Resource Facility of our institution 

under controlled conditions and fed sterilized special diet (Teklad global 10% protein rodent 

diet, Harlan) and autoclaved water. 4-NQO powder (Sigma Aldrich, St. Louis, USA) was 

diluted in the drinking water for mice. The water was changed once a week. Mice were 

allowed access to the drinking water at all times during the treatment. Mice were randomly 

divided into an experimental group and a control group. In the experimental group, the 

drinking water contained 4-NQO while no 4-NQO was added into the water in the control 

group. Mice in the experimental group were administered 4NQO (Sigma) at 100 μg/ml in 

their drinking water on a continuous basis for 16 weeks to induce epithelial carcinogenesis. 

The body weights of the mice were measured once a week to monitor the tumor burden. 
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Mice were euthanized at different time points (weeks 12, 20, 24) to track different 

pathological grades.

2.2 Data Acquisition

Immediately after the euthanasia of the mice, the mouse tongues were dissected and kept in 

10% formalin overnight. Tongue tissue from both 4NQO-treated and control groups were 

embedded in paraffin, and sectioned vertically down the dorsal surface into 5 μm sections. 

Tissue samples were stained with hematoxylin and eosin (H&E). The H&E slides were then 

digitized and reviewed by an experienced pathologist specialized in head and neck cancer, 

who segmented the section into pathological regions of normal, dysplasia, carcinoma in situ, 

and squamous cell carcinoma. The images were captured at 20× magnification using the 

Aperio ImageScope software (Leica Biosystems) producing 1472 × 922-pixel color images. 

Some example images were shown in Figure 1.

2.3 Overview of the Computer Aided Diagnosis Approach

The flowchart of the proposed method is shown in Figure 2. First, the histological RGB 

image was segmented into epithelial layer, connective tissue and background. In clinical 

practices, the diagnosis of precursor lesions is based on the altered epithelium with an 

increased likelihood for progression to squamous cell carcinoma [8]. This step is to pre-

process histological images for diagnosis. Second, the segmented nuclei image was further 

separated into nuclei, cytoplasm and background. Next, multiple features were extracted 

from both the whole epithelial image and its components (nuclei, cytoplasm). Finally, 

feature selection and supervised classification method with nested cross validation is 

conducted to build predictive models for cancer diagnosis.

2.4 Segmentation of Epithelial Layer

The first step in the analysis pipeline was the segmentation of the epithelium tissue from the 

connective tissue, muscle and image background. Figure 3 shows that image of the red 

channel exhibits the best contrast for separating epithelium from connective tissue. Figure 4 

is the smoothed red image with edge-preserving decomposition [9], which generated an 

image with less noise and it is easy to binarize. Next, global thresholding was applied on the 

smoothed red image to obtain the mask of the epithelial layer. Green, blue and grayscale 

images have all been tested for thresholding, but none of them generated better results than 

the red image. The connected component with the largest area was kept on the image. In 

some cases, the epithelial layers may be disconnected after thresholding. So the first few 

connected components with the largest area were retained. On the initial nuclei mask, small 

spurious background regions were cleaned by morphological opening with a disk radius of 

5. The generated mask was used as initialization for the Chan-Vese active contour algorithm, 

which smoothed the segmentation mask.

2.5 Nuclei and Cytoplasm Segmentation

Epithelial cell nucleus absorbs the haematoxylin which is a dark blue or violet stain, while 

eosin is absorbed by the cytoplasm which is a red or pink stain. So the colors consisting 

white, blue and pink in the histological image allows a clear distinguishing between different 
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cellular components within the epithelium. To quantify these visual differences, RGB 

images were converted to the CIELab color space, which consists of a luminosity layer L, 

chromaticity-layer ‘a’ indicating where color falls along the red-green axis, and 

chromaticity-layer ‘b’ indicating where color falls along the blue-yellow axis. Since all of 

the color information is in the a and b layers, K-means clustering was applied on these two 

layers to segment the image into two or three clusters (nuclei, cytoplasm and background) 

using the Euclidean distance.

To better segment the nuclei out, global thresholding was performed on the red channel of 

the segmented nuclei image from clustering. Morphological opening with a disk radius of 1 

was used to remove small spurious objects. Connected components with more than 25 pixels 

were also discarded. At this point, pure nuclei images were produced, but some nucleus 

were overlapping. So we identified the multi-nucleus with solidity lower than 0.85 and 

performed watershed segmentation to separate the touching cells. The single nuclei mask 

and separated multi-nucleus m were combined to form the final mask of the epithelial 

nuclei.

2.6 Feature Extraction

Multiple features were extracted from the epithelium, nuclei, and cytoplasm image. It has 

been shown in previous study that removing white pixels could improve the classification 

performance [10]. This is obtained by first transforming the image from the RGB color 

space into the YCbCr space and then applying the threshold to the luminance (Y) 

component. A threshold value 180 was used in this stage.

A key morphological change in dysplasia is the loss of stratification, due to a lack of normal 

maturation from the cells in basement membrane to the surface keratin. Cells located in the 

surface layer of the epithelium have the same immature appearance as those in the deep 

basal layers [11]. To reflect these abnormal changes, we extracted 64 color and 293 texture 

features from each epithelium image and each cytoplasm image respectively. Color features 

include 16-bin transformed RGB histogram and red-blue histogram difference. The RGB 

histogram itself is sensitive to photometric variations. However, the transformed RGB 

histogram has scale-invariance and shift-invariance with respect to light intensity [12]. 

Texture features include the Haralick feature [13], local binary pattern [14] and fractal 

textures [15].

The variations in the size and shape of the cells and of the nuclei are characteristics of oral 

dysplastic changes. Cancer nuclei have an increased nuclear to cytoplasmic ratio compared 

to normal nuclei. To quantify these changes, we extracted 24 color, morphometric and 

topological features from each nuclei image. Color features include the mean, standard 

deviation, minimum, and maximum of the red, green, and blue channel. Morphometric 

features include the area, ratio of the major to minor axis, shape (solidity, eccentricity, and 

compactness), neighborhood radius, and the nucleus to cytoplasm ratio. Topology feature 

was extracted based on the centroids of connected components segmented in the nuclei 

image [16]. The number of nodes, number of edges, number of triangles, edge length, and 

cyclomatic number [17] of the Delaunay triangulation were selected as the topology features 
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to characterize the distribution of individual nucleus. In summary, a total of 738 features 

were extracted from each epithelium image and its constituent nuclei and cytoplasm images.

2.7 Feature Selection

The goal of feature selection is to find a feature set S with n feature {λi}, that “optimally” 

characterize the difference between cancerous and normal tissue. To achieve the “optimal” 

condition, we used the maximal relevance and minimal redundancy (mRMR) [18] 

framework to maximize the dependency of each feature on the target class labels (tumor or 

normal), and minimize the redundancy among individual features simultaneously. Relevance 

is characterized by mutual information I(x; y), which measures the level of similarity 

between two random variables x and y:

(1)

where p(x, y) is the joint probability distribution function of x and y, and p(x) and p(y) are 

the marginal probability distribution functions of x and y respectively.

We represent the feature of each pixel with a vector λ = [λ1, λ2, ... , λi], i = 738, and the 

class label (tumor or normal) with c. Then the maximal relevance condition is:

(2)

The features selected by maximal relevance is likely to have redundancy, so the minimal 

redundancy condition is used to select mutually exclusive features:

(3)

So the simple combination (equation (5) and (6)) of these two conditions forms the criterion 

“minimal-redundancy-maximal-relevance” (mRMR).

(4)

i.e.

(5)
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2.8 Model Development

The image set used for tumor/non-tumor classification consisted of a total of 214 images 

(114 tumor and 100 normal images). 738 features described in Section 2.6 were extracted 

from each image. To avoid the curse of dimensionality in supervised classification, we 

performed feature selection and built predictive models through nested cross validation (CV) 

consisting of 10 iterations of five-fold outer CV and 10 iterations of four-fold inner CV. The 

outer CV loop was used to estimate the classification performance; and the inner CV loop 

was used to tune the optimal parameters for the model development. For the stratified five-

fold outer CV, the whole dataset was randomly split into five sets of roughly equal sizes. 

Splitting was performed such that the proportion of images per class was roughly equal 

across the subsets. Each run of the outer five-fold CV algorithm consisted of training models 

on four image subsets and testing on the remaining subset. A stratified four-fold inner CV 

was conducted to select the optimal feature numbers from three subsets of the training data 

and to validate the model using the remaining subset. Six different classifiers, including 

support vector machine (SVM) [19], random forest (RF) [20], Naive Bayes, linear 

discriminate analysis (LDA) [21], k-nearest neighbors (KNN) [22], and decision trees (DT) 

[23], were compared for classification.

2.9 Performance Evaluation

Following imaging experiments, tissue specimens were fixed in 10% formalin and then 

paraffin embedded. Each tongue specimen was sectioned into a series of 5 μm tissue sections 

with 100 μm intervals between sections. Each tissue section represented one longitudinal 

line parallel to the midline on the dorsal surface of the tongue. The H&E slide from each 

section was reviewed by an experienced head and neck pathologist, who segmented the 

section into regions of normal, dysplasia, carcinoma in situ and carcinoma as our gold 

standard. Receiver operating characteristic (ROC) curves, the area under the ROC curve 

(AUC), accuracy, sensitivity, specificity, positive predictive value (PPV) and negative 

predictive value (NPV) were used as metrics to assess the performance of supervised 

classification [24] [25] [26].

3. RESULTS AND DISCUSSIONS

Figure 5 shows an example of the segmentation results. From visual assessment, the 

segmentation results of the epithelium, nuclei and cytoplasm were satisfactory.

To compare image-level features with object-level features, we first performed a stratified 

five-fold cross validation on all the dataset with different feature types. Table 1 shows the 

classification results of six classifiers for cancer diagnosis with features extracted from the 

epithelium image alone. Table 2 shows the classification with features extracted from 

individual objects (nuclei and cytoplasm). Table 3 shows the classification with features 

extracted from both the whole image and individual objects (nuclei and cytoplasm). From 

these tables, we found that the combination of image-level and object-level features 

outperformed image-level features alone and object-level features alone. This indicated that 

image-level and object-level features contained complementary information for cancer 
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diagnosis. SVM was the best performing classifier, with an average sensitivity of 96.5% and 

specificity of 99.0%.

Figure 6 demonstrated the model performance (AUC, sensitivity, specificity) in both internal 

and external validation. X axis denotes the average cross validation model performance from 

four-fold inner cross validations, and Y axis denotes the corresponding outer fold model 

performance on testing dataset. It can be seen that the training models works well not only 

on training dataset but also in testing dataset, which indicated that the predictive models 

were robust and did not over-fit inner cross validation dataset.

Table 4 shows the most frequently selected features in the top 10 ranks in the cross 

validation. These top features included features from epithelium, cytoplasm as well as 

nuclei, which indicated the complementary value of image and object level features for 

cancer diagnosis and was consistent with the observations in Table 1-3. Local binary pattern 

capturing the texture of epithelium and cytoplasm may be related to the abnormal changes in 

epithelial layer as normal tissue progresses into tumor. Red and blue channel histogram 

differences of cytoplasm and epithelium are likely associated with the increased nuclei to 

cytoplasm ratio in tumor tissue. Enlarged nuclei sizes in tumors are also highly 

discriminating.

To the best of our knowledge, this is the first time that multi-level (image and object) 

features, which include color, texture, morphometry and topology features, were extracted 

and combined for the improved classification of pathological images of tongue cancer. The 

animal experiment was specially designed to acquire images with progressing pathological 

grades. The proposed method was effective for the distinction of tumor and normal tissue.

4. CONCLUSIONS

In this paper, we developed a chemically-induced oral cancer animal model and designed a 

computer aided diagnosis method for the detection of the tongue cancer. We evaluated 

various image features from histological images for quantitative cancer evaluation. We found 

that the diagnostic performances of image-level features combined with object-level features 

outperformed image features or object features alone, which indicated their complementary 

effects. Texture feature describing epithelium structures was the most discriminating feature 

for cancer detection. The computer aided diagnosis models could provide objective and 

reproducible diagnosis for tongue cancer. The image features and quantitative analysis 

method can also be applied to human images for computer-aided diagnosis of human tongue 

cancer.
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Figure 1. 
Example images of H&E stained pathological samples. (a) Healthy tissue. (b) Dysplastic 

tissue. (c) Carcinoma in situ.
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Figure 2. 
Flowchart of the proposed computer aided diagnosis method.
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Figure 3. 
Comparison of difference grayscale images for epithelial layer segmentation. (a)-(d) are the 

luminescence image from HSV color space, red channel, green channel and blue channel of 

RGB color space, respectively. (e)-(h) are the corresponding image to (a)-(d) after edge-

preserving smoothing and global thresholding.
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Figure 4. 
Segmented epithelial layer. (a) Separated epithelium after the morphological processing of 

the mask in Figure 3 (f). (b) The boundary of the epithelium smoothed by active contour 

shown in green.
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Figure 5. 
Example segmentation results from a dysplasia image. (a) Input H&E pathological image. 

(b) Segmented epithelial layer. (c) Segmented nuclei image. (d) Segmented cytoplasm 

image.
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Figure 6. 
Model performances in internal and external validations. Red points represent AUC values, 

green points represent sensitivity values, and blue points represent specificity values.
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Table 1

Comparison of different classifiers for cancer diagnosis using image-level features alone

Classifier AUC Accuracy Sensitivity Specificity PPV NPV

SVM 0.955 86.9% 89.5% 89.0% 85.1% 89.0%

Random Forest 0.924 85.1% 84.3% 91.0% 79.9% 91.0%

Naive Bayes 0.852 72.8% 81.5% 81.0% 62.6% 84.0%

KNN 0.818 81.8% 81.7% 82.0% 81.7% 82.0%

Decision Tree 0.808 58.5% 82.5% 80.0% 31.1% 90.0%

LDA 0.786 78.5% 78.2% 79.0% 78.2% 79.0%
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Table 2

Comparison of different classifiers for cancer diagnosis using object-level features alone

Classifier AUC Accuracy Sensitivity Specificity PPV NPV

SVM 0.985 93.0% 93.0% 98.0% 88.6% 98.0%

Random Forest 0.966 89.7% 91.2% 93.0% 86.8% 93.0%

KNN 0.889 88.8% 87.7% 90.0% 87.7% 90.0%

LDA 0.857 85.5% 83.3% 88.0% 83.3% 88.0%

Decision Tree 0.850 69.2% 85.1% 86.0% 49.4% 92.0%

Naive Bayes 0.835 79.4% 88.6% 74.0% 84.2% 74.0%
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Table 3

Comparison of different classifiers for cancer diagnosis using both image and object features

Classifier AUC Accuracy Sensitivity Specificity PPV NPV

SVM 0.993 95.3% 96.5% 99.0% 92.1% 99.0%

Random Forest 0.970 89.7% 89.4% 95.0% 85.1% 95.0%

KNN 0.923 92.1% 88.6% 96.0% 88.6% 96.0%

LDA 0.912 91.1% 90.4% 92.0% 90.4% 92.0%

Naive Bayes 0.869 74.8% 88.7% 82.0% 66.0% 85.0%

Decision Tree 0.834 73.9% 82.5% 82.0% 61.7% 88.0%
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Table 4

Most frequently selected top 10 ranking features

Ranking Feature name Feature type Location Frequency

1 Local binary pattern Texture Epithelium 38%

2 Red-blue difference Color Cytoplasm 34%

3 Red-blue difference Color Epithelium 54%

4 Mean nuclei size Morphology Nuclei 28%

5 Local binary pattern Texture Cytoplasm 28%

6 Fractal Dimension Texture Epithelium 16%

7 Local binary pattern Texture Cytoplasm 14%

8 Transformed RGB Histogram Color Epithelium 16%

9 Mean nuclei solidity Morphology Nuclei 12%

10 Mean nuclei solidity Morphology Nuclei 10%
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