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Abstract

Early detection of risk is critical in determining the course of treatment in traumatic brain injury 

(TBI). Computed tomography (CT) acquired at admission has shown latent prognostic value in 

prior studies; however, no robust clinical risk predictions have been achieved based on the imaging 

data in large-scale TBI analysis. The major challenge lies in the lack of consistent and complete 

medical records for patients, and an inherent bias associated with the limited number of patients 

samples with high-risk outcomes in available TBI datasets. Herein, we propose a Bayesian 

framework with mutual information-based forward feature selection to handle this type of data. 

Using multi-atlas segmentation, 154 image-based features (capturing intensity, volume and 

texture) were computed over 22 ROIs in 1791 CT scans. These features were combined with 14 

clinical parameters and converted into risk likelihood scores using Bayes modeling. We explore 

the prediction power of the image features versus the clinical measures for various risk outcomes. 

The imaging data alone were more predictive of outcomes than the clinical data (including 

Marshall CT classification) for discharge disposition with an area under the curve of 0.81 vs. 0.67, 

but less predictive than clinical data for discharge Glasgow Coma Scale (GCS) score with an area 

under the curve of 0.65 vs. 0.85. However, in both cases, combining imaging and clinical data 

increased the combined area under the curve with 0.86 for discharge disposition and 0.88 for 

discharge GCS score. In conclusion, CT data have meaningful prognostic value for TBI patients 

beyond what is captured in clinical measures and the Marshall CT classification.
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1. INTRODUCTION

Traumatic brain injuries (TBI) affect 1.7 million Americans each year. These injuries may 

have mild to severe cognitive, physical and psychological impacts. Computed tomography 

(CT) is widely used upon patient presentation to an emergency department (ED) to 

determine bleeding and structural changes and assess the severity of the injury. Although 

modern imaging methods have shown prognostic potential, large-scale statistical and 

machine learning studies have not fully explored the predictive power of image features 

beyond the Marshall classification[1]. Previous studies have also shown that clinical and 

demographic features, along with radiologist-defined injury severity scores can predict long-

term outcomes but largely ignore the latent value of imaging data[2-4].

In this study, we investigate clinical and image information for 1791 subjects to determine 

their prognostic value for short-term outcomes including discharge disposition (Table 1) and 

Glasgow Coma Scale (GCS) score (a functional outcome). We explore the latent value of 

imaging by calculating 154 volume, intensity and texture features from 22 regions of interest 

calculated through multi-atlas labeling [5]. We present a framework for normalization, 

feature selection and prediction techniques that is tolerant towards noisy and skewed 

datasets.

2. METHODS

Imaging and clinical data for 1791 patients who had a head CT for potential TBI were 

retrieved and anonymized under institutional review board (IRB) supervision. Marshall CT 

class was determined using the Abbreviated Injury Scale (AIS) codes [6]. This study 

continues and closely follows[5]. Two models of high-risk outcomes are developed, as 

shown in Table 2. The first model is to predict a high-risk outcome as defined by mortality 

and quality of life of the subject at discharge - high-risk cases in this model include death or 

transfer to a hospice facility. The second model uses a standard clinical measure, discharge 

Glasgow Coma Score (GCS), to describe high-risk outcomes. A GCS score that is less than 

9 indicates severe lapse in visual, verbal and motor skills. For both these models, we follow 

the same procedure to identify the features that most aptly predict the outcomes. First, the 

imaging data is reduced to 154 features by multi-atlas labeling and regional feature 

computation. Then, 168 features (14 clinical + 154 imaging) shown in Table 1 are studied to 

predict the discharge disposition, and discharge GCS score. Briefly, we use the Synthetic 

Minority Over-sampling Technique (SMOTE) [6] to resample the imbalanced dataset. Next, 

we calculate the risk likelihood scores of each feature and select the most consistently 

predictive features with respect to each model. Then, greedy forward selection is used to 

identify the smallest subset of features with the best predictive power and perform logistic 

regression to predict outcome classes in each of the two models.

The analysis is performed on 1791 patients. 180 of these are set aside as a hold-out dataset. 

1611 are used for internal 4-fold cross validation for feature selection and prediction.
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2.1 Multi-Atlas Segmentation and Feature Calculation

For each subject, we studied the head CT scan closest to the date of injury. Since MRI 

atlases are more common, we performed multi-atlas segmentation on 20 subjects with paired 

MRI and CT scans using the Brain Color atlas. The labels obtained were then propagated to 

the CT scans after co-registration. These 20 labeled CT scans were then used as atlases to 

segment new scans using locally weighted vote. The original 133 labels were merged to 22 

labels using the hierarchical formulation described by Asman et al [7]. For each of the 22 

regions of interest, we calculated volume, mean intensity and the first five principal 

components of Harlick texture features.

2.2 Synthetic Minority Over-sampling Technique (SMOTE)

In order to balance the high and low risk classes we use SMOTE[6]. In this method, the 

minority high-risk class is over-sampled by generating synthetic data points to match the 

majority low-risk class. If k is the ratio of the majority class to the minority class, then k− 1 
points are generated for each sample in the minority class. This is done by connecting each 

point in the high-risk class to its k− 1 nearest neighbors and interpolating a random point 

along the line. The result of this approach is shown in Figure 1 (b).

2.3 Risk Likelihood Scores

We transform each clinical and imaging feature fi into a risk likelihood score ri. For each 

feature, the re-sampled histogram obtained through SMOTE is fitted as a kernel distribution 

using the Epanechnikov smoothing function. Next, the likelihood of a risk outcome given by 

class yk is calculated for each fi using the Bayes’ theorem,

(1)

The scores ri for i = 1 to 166 are now used for feature selection and outcome prediction for a 

given yk. Figure 1 (c) shows the risk likelihood function for a clinical feature (hematocrit). 

The risk likelihood scores are calculated using the internal 4-fold data set and the risk scores 

of features in the external hold-out set are interpolated from these data.

2.4 Bias Reduction via Mutual Information

The risk likelihood function can potentially introduce bias into the prognostic model by 

over-fitting to the training dataset. In order to minimize bias, we calculate the mutual 

information of the features over 10 cross-validated datasets and select the most consistent 

features. Mutual information MIi is given by,

(2)

The features whose mutual information has less than 0.1 coefficient of variation over 10 

datasets are selected. Figure 2 (a) shows the risk likelihood functions of an imaging feature 

with low coefficient of variation (0.09) over the 10 datasets and Figure 2 (b) shows the risk 

likelihood functions of an imaging feature with a high coefficient of variation (1.17).
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2.5 Greedy Forward Feature Selection

We use greedy forward feature selection by performing a logistic regression with 4-fold 

cross validation to select the least number of features that provide the best prediction among 

the features short-listed in the previous step. At each iteration, the feature that produces the 

largest increase in area under the curve (AUC) is added to the feature set until the change in 

deviance of fit for the model is not significant. The difference in the deviance of fit between 

two consecutive models is given by

(3)

Here, L(p,y) is the maximum value of the likelihood function of the model with estimated 

parameters p. d has a chi-squared distribution with degrees of freedom equal to the increase 

in number of parameters, |p2|-|p1| This determines the statistical significance of the 

contribution of the |p2|-|p1| new features to the prognostic model.

2.6 Logistic regression

Outcome prediction is obtained by aggregating the risk likelihood scores using a logistic 

regression model.

(4)

Here, O = yk is an outcome O with label yk, for outcomes given in Table 1, f1…p are the 

features selected using the mutual information and greedy forward selection methods and 

r1…p are the corresponding risk likelihood scores. The weights w1…p are learnt by iteratively 

re-weighted least squares method. They determine the contribution of each parameter to the 

model, with a greater w meaning higher contribution.

3. RESULTS

Figure 3 shows the result of a preliminary analysis of the data to compare the differences 

between raw data, r-scored data, resampled SMOTE data, and a combination of r-scored and 

resampled SMOTE data. Over internal 4-fold cross-validation, a combination of SMOTE 

and r-scored data produces the best results.

For discharge disposition, 61 of the initial 168 features were selected as the most stable 

features through mutual information selection. 49 of these 61 features are selected as a result 

of greedy forward selection. 7 of these features are clinical measures such as pulse, BP, 

hematocrit, arrival condition, injury severity score, and admission GCS scores and the rest 

are imaging features. We stop selection of features when at least three new features added to 

the model produce no statistically significant improvement. Table 3 and Figure 4 show the 

results of the analysis for the high-risk outcome of discharge disposition. We can see that 

latent image features obtained from the CTs are better predictors of mortality and quality of 

life (external AUC = 0.81) than all the clinical features together (external AUC = 0.67). 

Individual predictive performances of the Marshall CT class and the GCS scores at 
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admission are shown. These scores have a very high false negative rate, which means that 

using these scores alone at admission misses a large percentage of high-risk cases. A 

prognostic model that combines the imaging features with the clinical features has the best 

predictive value of the discharge disposition, producing an external AUC of 0.86.

For the discharge GCS model, 22 of the initial 168 features were selected after elimination 

through mutual selection and greedy forward selection. 8 of these 22 features are clinical 

measures such as pulse, BP, respiration rate, arrival condition, injury severity score, and 

admission GCS scores. This model selects only 14 imaging features. Table 4 and Figure 5 

show the results of the analysis for the high-risk outcome of discharge GCS scores. In this 

case, the clinical features are better predictors of functional outcomes than imaging features 

with an AUC of 0.85. However, addition of imaging features still improves the overall 

predictive power, by improving the AUC from 0.85 to 0.88 in the external hold out set. 

Moreover, we observe that the patterns of prediction in both internal cross validation is 

similar to prediction in external hold-out sets which provides assurance that the models are 

developed without over-fitting of the training data.

Figure 6 shows the regions of the brain from which the most features have been selected as 

predictive in the Discharge disposition model. Bright green indicates regions with the 

highest number of significant features selected in the greedy forward selection step. Black 

indicates zero features selected from the region.

4. DISCUSSION

Analysis of clinical and imaging data for outcome prediction in TBI is challenging because 

of data variability, lack of reliability, over-fitting, and unequal representation of multiple 

outcomes. The methods that we present in this paper overcome these problems. We used 

multi-atlas segmentation to calculate latent image features. The 4-fold feature selection and 

logistic regression approach shows strong evidence that adding imaging information to 

standard clinical scores improves the prognostic model. We observe that traditional 

diagnostic scores used in the ED, such as the Marshall CT classification and the GCS score, 

have a high false negative rate when used alone, and need to be examined in the context of 

other clinical and imaging features. Even though one would expect a correlation between 

functional outcomes based on GCS score and discharge disposition, we observe that they 

have very different manifestations. Clinical features are more important predictors of the 

discharge GCS whereas image features are important for the later.

In fact, discharge GCS model, which is an assessment based on mostly clinical measures 

misses some of the cases, which resulted in death or transfer to hospice. In 15 of the 40 

cases labeled as “high-risk” in the discharge disposition hold-out dataset, the subject had a 

very high last recorded GCS (>13) but died in the hospital (4) or was admitted to a hospice/

extended care facility (11). Our discharge disposition model, which selected strong imaging 

features, successfully identified 10 of these 15 cases, including 3 of 4 deaths, even though 

the clinical markers for these patients indicated good health. This further validates our 

assertion that the addition of imaging features greatly improves prognostic value by adding 

latent information in images to the predictive models.

Chaganti et al. Page 5

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2016 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements

This project was supported in part by the Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation. This work was 
conducted in part using the resources of the Advanced Computing Center for Research and Education at Vanderbilt 
University, Nashville, TN. The project described was supported by the National Center for Research Resources, 
Grant UL1 RR024975-01, and is now at the National Center for Advancing Translational Sciences, Grant 2 UL1 
TR000445-06. The content is solely the responsibility of the authors and does not necessarily represent the official 
views of the NIH.

References

[1]. Marshall LF, Marshall SB, Klauber MR, et al. A new classification of head injury based on 
computerized tomography. Special Supplements. 1991; 75(1S):S14–S20.

[2]. Ratanalert S, Chompikul J, Hirunpat S, et al. Prognosis of severe head injury: an experience in 
Thailand. Br J Neurosurg. 2002; 16(5):487–93. [PubMed: 12498494] 

[3]. Walker WC, Ketchum JM, Marwitz JH, et al. A multicentre study on the clinical utility of post-
traumatic amnesia duration in predicting global outcome after moderate-severe traumatic brain 
injury. J Neurol Neurosurg Psychiatry. 2010; 81(1):87–9. [PubMed: 20019222] 

[4]. Cremer OL, Moons KG, van Dijk GW, et al. Prognosis following severe head injury: Development 
and validation of a model for prediction of death, disability, and functional recovery. Journal of 
Trauma and Acute Care Surgery. 2006; 61(6):1484–1491.

[5]. Plassard AJ, Kelly PD, Asman AJ, et al. Revealing Latent Value of Clinically Acquired CTs of 
Traumatic Brain Injury Through Multi-Atlas Segmentation in a Retrospective Study of 1,003 
with External Cross-Validation. Proc SPIE Int Soc Opt Eng. 2015:9413.

[6]. Chawla NV, Bowyer KW, Hall LO, et al. SMOTE: synthetic minority over-sampling technique. 
Journal of artificial intelligence research. 2002:321–357.

[7]. Asman AJ, Landman BA. Hierarchical performance estimation in the statistical label fusion 
framework. Medical image analysis. 2014; 18(7):1070–1081. [PubMed: 25033470] 

Chaganti et al. Page 6

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2016 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
SMOTE resamples low likelihood events to regularize the histograms and create robust risk 

functions. (a) shows the original histogram of a clinical measure (hematocrit). (b) shows the 

effect of this technique and (c) presents the extracted risk function.
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Figure 2. 
Risk likelihood functions over 10 datasets for two image features, one with low variation (a) 

and one with high variation (b).
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Figure 3. 
Comparison of prognostic models with raw data, r-scored data and SMOTE
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Figure 4. 
Results for prediction of high-risk discharge disposition cases. (a) Average ROC curves 

internal cross-validated sets (b) Average effect of each new feature that is added via the 

greedy feature selection method (c) ROC curve for the holdout dataset (d) Effect of each 

new feature that is added via the greedy feature selection method in the holdout dataset.
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Figure 5. 
Results for prediction of high-risk discharge GCS cases (a) Average ROC curves internal 

cross-validated sets (b) Average effect of each new feature that is added via the greedy 

feature selection method (c) ROC curve for the holdout dataset (d) Effect of each new 

feature that is added via the greedy feature selection method in the holdout dataset.
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Figure 6. 
Axial sections of regions that have the highest number of predictive volume, intensity, and 

texture features.
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Table 1

Summary of 164 features used in the prognostic models

Clinical Features Imaging Features

Age

Top five principal components of the
Harlick texture features computed for
each of 22 brain regions.

Sex

Pulse at admission

Respiration Rate at admission

Blood Pressure at admission

GCS Eye at admission

GCS Verbal at admission

Volume for each of 22 brain regions

GCS Motor at admission

GCS score at admission

Arrived from
(Home/Prison/Hospital/Scene)

Arrival Condition (Alert/Responds to
stimuli/Unresponsive)

Average Intensity (Hounsfield scale)
value for each of 22 brain regions

Hematocrit

Injury Severity Score

Marshall score at admission

Total
14 Clinical Measures

Total
154 Imaging Features
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Table 2

Outcome classes for near-term prognosis and functional status

Outcome Class Label Values

Discharge Disposition “High Risk” Death; Transfer to extended care facility, or hospice;
needs maximal assistance

“Low Risk” Healthy at discharge; and/or requires rehabilitation;
needs minimal assistance

Glasgow Coma Scale “High Risk” GCS ≤ 8; minimal motor, visual and verbal function

“Low Risk” GCS ≥ 9; average to good motor, visual and verbal
function
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Table 3

Discharge disposition results

Features

Average of 10-fold internal cross-validation External holdout set

Overall
accuracy

Sensitivity Specificity AUC Overall
accuracy

Sensitivity Specificity AUC

Imaging + Clinical 86.2% 87.3% 85% 0.93 79.1% 80% 78% 0.86

Imaging only 81.9% 81.8% 82% 0.89 75.46% 75% 76% 0.81

Clinical only 72.95% 73.7% 72% 0.79 61.81% 62.5% 61% 0.67

Marshall 62.99% 86.1% 37% 0.65 62.94% 80% 43% 0.71

GCS 63.16% 77% 47% 0.54 63.9% 75% 51% 0.61
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Table 4

Discharge GCS results

Features

Average of 10-fold internal cross-validation External holdout set

Overall
accuracy

Sensitivity Specificity AUC Overall
accuracy

Sensitivity Specificity AUC

Imaging + Clinical 82.45% 82.9% 82% 0.91 82% 89% 73% 0.88

Imaging only 72.57% 72.2% 73% 0.81 60.82% 68.5% 51% 0.65

Clinical only 78.2% 77.5% 79% 0.84 81.1% 82% 73.6% 0.85

Marshall 65.8% 93.7% 31% 0.79 71.9% 100% 36% 0.85

GCS 68.0% 89.16% 41% 0.56 74.6% 94.7% 50% 0.70
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