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Abstract

This paper presents a theoretical analysis of the effect of spatial resolution on image registration. 

Based on the assumption of additive Gaussian noise on the images, the mean and variance of the 

distribution of the sum of squared differences (SSD) were estimated. Using these estimates, we 

evaluate a distance between the SSD distributions of aligned images and non-aligned images. The 

experimental results show that by matching the resolutions of the moving and fixed images one 

can get a better image registration result. The results agree with our theoretical analysis of SSD, 

but also suggest that it may be valid for mutual information as well.
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1. INTRODUCTION

Image registration is the process of transforming the coordinate system of a given moving 

image to that of a fixed image. It is a key component of medical image analysis with 

applications, including segmentation, multi-modality fusion, longitudinal studies, population 

modeling, and statistical atlases.1–10 Typically, the moving and fixed images have identical 

digital resolution, though it is common for interpolation to be used to upsample the lower 

digital resolution image to the higher resolution one. Interpolation blurs the edge 

information; intuitively, it follows that it is more difficult to align two edges with different 

spatial resolution compared to edges with the same resolution. However, the effect of spatial 

resolution on image registration has not been theoretically discussed before.

There has been a lot of work on using multi-resolution registration schemes going back over 

several years. The advantages of these “pyramid representations” are reducing 

computational cost and establishing links between global information as well as local 

information.11,12 However, the effect of spatial resolution on image registration has not been 

studied.
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2. NEW WORK TO BE PRESENTED

This paper presents a theoretical analysis of the effect of spatial resolution on image 

registration. We develop quantitative guidance to preprocess the images in order to match 

their resolutions, and a measure for anisotropic spatial resolution is additionally discussed 

based on the idea of isotropic spatial resolution.13 We also experimentally explore the effects 

of random noise and spatial resolution on image registration. We assume that the random 

noise is additive Gaussian, and hence the SSD between the two images can be considered to 

be a random variable. The separability of the SSD distributions of perfectly aligned image 

pairs and misaligned (in our case, translated) image pairs determines how well images can 

be registered. Using the assumption that the noise is additive Gaussian, we can estimate the 

mean and variance of the distribution. From there, we evaluate a distance between the SSD 

distributions of aligned images pairs and shifted image pairs. We also present experimental 

results for mutual information (MI).14–16

3. METHOD

3.1 Theoretical prediction of spatial resolutions effect on image registration

Let x be a voxel coordinate, n1(x) and n2(x) be independent additive Gaussian noise with 

distribution . Let z1(x) be the fixed image and z2(x) be the moving image, both 

instances of the same true high resolution (HR) image f(x) with additive noise n1(x) and 

n2(x), respectively; i.e., zi(x) = f(x) + ni(x), i = 1, 2. The low resolution (LR) image derived 

from f is  with corresponding  and . , i = 1, 2. If z2(x − v(x)) is a 

transformed noisy version of f, then registering z1 and z2 aims to recover v(x).

Case 1: Registration of two HR images. We wish to compute the mean and 

variance of SSD (z1(x), z2(x − v(x))). For convenience, we denote SSD by 

 and 

.

Case 2: Registration of two LR images. 

.

Case 3: Registration of one HR and one LR images. 

.

In that 1(x) and n2(x) are independent, . Let N denote the 

number of voxels in the image domain, the mean and variance of  can be calculated, the 

results are listed in Table 1.

For a correct registration result to be obtained we need  to be less than  for any v. How 

well we can distinguish the distributions of  and  determines the quality 

of the registration output. We use the sensitivity index, , defined as
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We evaluate  for the three cases. After some math, we get:

We note that if d′(HR; LR) < 0, then the expectation of  is less than . 

When this happens, any registration algorithm that uses SSD will misregister the images. 

The larger we make d′ the more confidence we can have in a registration result. This gives 

us an optimality criterion for matching the resolution of images during registration. We 

compare d′s to understand the effect of resolution on image registration.

Claim 1—d′ (LR, LR) < d′ (HR, HR)

Proof: Using a Taylor expansion and assuming v(x) is small, |f(x) − f(x − v(x))| is related to 

the gradient of the image, ∇ f(x), while a smoother image has a smaller gradient. Thus

Since a smoother image has a smaller gradient we have

If we also assume the image is wide sense stationary (WSS), and the low resolution image 

, in which h(x) is a low pass filter, then the autocorrelation 

. In other words,  is a low-pass filtered result of Rff(l). 
Thus we have:
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This gives the same result, that 

, as Taylor expansion. ▮

Implication

1. Since d′ (LR, LR) < d′ (HR, HR), one has a better chance to get a correct 

registration result with high resolution images.

Claim 2—d′ (HR, LR) < d′ (HR, HR)

Proof: 

Therefore,

▮

Implication

1. Thus d (HR′, LR) < d (HR′, HR).

Claim 3—d′ (HR, LR) < d′ (LR, LR) unless the resolution of the two images are only 

slightly different.

Proof: 
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Whether,

is valid depending on the relationship between  and f(x). ▮

Implications

1. If there is enough difference between  and f(x), which indicates a 

large enough , then d′ (HR, LR) < d′ (LR, LR) < d′ 
(HR, HR).

2. If , d′ (HR, LR) ≈ d′ (HR, HR) > d′ (LR, LR). However, 

this is not a situation that concerns us as it indicates that there is only a 

slight difference between the resolutions.

3. If there is a large difference between  and f(x), which makes 

, d′ (HR, LR) < 0 < 

d′ (LR, LR) < d′ (HR, HR),which indicates that misregistration is more 

likely to occur between HR and LR images.

Conclusions—We claim that d′ (LR, LR) < d′ (HR, HR), which shows that the higher 

the resolution of the images, the more confidence we can have about the registration results. 

We also claim that d′ (HR, LR) < d′ (HR, HR), and that if the resolution difference 

between f and  is large enough, then d′ (HR, LR) < d′ (LR, LR). This last result may be 

counterintuitive. It appears that the HR image carries more information; thus, two LR 

images should produce a worse registration result. However, our analysis reveals the 

opposite. Images with similar resolutions are more likely to produce a better registration 

result compared to images with different resolutions unless the resolution difference is very 

small.
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3.2 Measure of anisotropic resolution

In order to better appreciate the potential for good or bad registration results due to 

resolution differences, we need to understand their underlying physical resolutions (not just 

the digital resolutions). Therefore, here we develop a measure of anisotropic spatial 

resolution from the edge-based sharpness metric.17–25 Then we can do experiments to see 

whether matching the resolution of two images (perhaps by even lowering the resolution of 

the high resolution image) increases our confidence of acquiring a more accurate registration 

result.

We consider the edges and the gradient profiles of the two images with different resolutions, 

(see Fig. 1 in J. Sun et al.13). The gradient curve of the LR edge is more spread out; 

therefore, we can use the full width at half maximum (FWHM) of the gradient curve as a 

measure of the resolution. Our algorithm to identify gradient curves and their FWHMs is:

1. Use Canny edge detector to identify edge voxels.

2. Find the gradient direction at each edge voxel. Then collect the edge 

voxels that have similar gradient directions with the target direction.

3. Apply blob matching to the gradient profile in order to find the center and 

range of each edge, and calculate the FWHM.

4. EXPERIMENTS

In our experiments, we want to verify our claims in Sec. 3.1. Specifically, we aim to verify, 

(a) d′ (HR, HR) > d′ (LR, LR), (b) d′ (HR, HR) > d′ (LR, HR), and (c) d′ (LR, LR) > d′ 
(LR, HR). To verify these claims, we performed multiple simulations with input images 

containing random noise. We have used a skull-stripped two-dimensional (2D) slice of a T1-

weighted images of one subject from the Multi-modal Reproducibility Resource dataset.26

Using this image as the true HR image f, we simulated a noisy HR image, z1 (see Fig. 1). 

The second noisy HR image, z2 is a shifted version of f with different random noise. We 

considered four different shifts (v) which are translations in the y-plane by 0, 1, 2, and 3 

voxels. For each of these shifts, we calculated the SSD between z1 and z2. We did this for 

500 simulations of z1 and z2 and built a distribution of SSD values for each of the four 

shifts. We calculated the sensitivity index d′ (HR, HR), between the SSD distributions for 

the different shifts, for HR images. These values are recorded in the first row of the SSD 

portion of Table 2. Similarly, we simulated LR images by blurring f (see Fig 1) and adding 

noise to calculate d′ (LR, LR), which we show in the second row of the SSD portion of 

Table 2. For all the shifts, it is apparent that d′ (HR, HR) > d′ (LR, LR), thus verifying our 

first claim. Next, we chose z1 as a noisy HR image and z2 as a noisy LR image, carried out 

the simulations. We then calculated d′ (HR, LR), which is shown in the last row of the SSD 

portion of Table 2. Comparing this row to the first and second rows, it is clear that for all 

shifts, d′ (HR, HR) > d′ (LR, HR), d′ (LR, LR) > d′ (LR, HR), thus verifying our second 

and third claims.

If instead of SSD, we calculate mutual information (MI) in our simulations, we observe that 

our claims are still true, as is demonstrated in the MI part of Table 2. This is an empirical 
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result which points to some very interesting connections between SSD and MI as similarity 

measures, but we do not have a theoretical proof for the relationships between d′ (HR, HR), 

d′ (LR, LR), and d′ (HR, LR) on the MI distributions as of yet.

Figure 1(b) shows our fits for the SSD (first row) and MI (second row) distributions for four 

different shifts (0, 1, 2, 3). Each column represents the cases HR-HR, LR-LR, and HR-LR 

pair of images. Visually, we can appreciate the fact that the SSD distribution for v = 0 is far 

apart from the SSD distribution for v = 1 for HR-HR and LR-LR. However, for the HR-LR 

case, the SSD distributions for v = 0 and v = 1 overlap with each other, indicating that a 

registration algorithm can result in a lower SSD for a shift of 1 voxel, which is clearly not 

the correct result and is undesirable behavior.

To further verify Claim 3, we used the measure in Sec. 3.2 to get the local sharpness of the 

edges in the 3D Brain Web images, and a blurred LR version. Then we estimate the 

resolutions along x, y, and z. Finally, we will see if matching resolution can improve 

registration accuracy. We chose the HR image as a 3D Brain Web image without noise or 

intensity non-uniformity, while the LR image is obtained by filtering the HR image using 

Gaussian kernel with a standard deviation of 1 in the x direction, 0.5 in the y direction and 0 

in the z direction. All the image intensities are normalized between [0, 255]. The additive 

Gaussian noise has a standard deviation σ = 1.0, which makes the SNR ≊ 38. Then do the 

experiment above with a translation distance of 1 voxel in all three directions. The result was 

displayed in Figure 2 and Table 3. The histograms of local sharpness in x, y, and z direction 

are shown in Figure 3.

There are two or more peaks in the histograms. Ideally, the edge comes from a blurred unit 

step edge.17 However, if the edge is naturally gentle, then the local sharpness should not be 

used to measure the resolution. We chose the center of the left peak in the histograms to be 

the measure of resolution. In most histograms of Figure 3, the left peak is easy to recognize 

except for Figure 3(d), which is for the LR image. The most left peak (centered at about 1.9) 

shrinks considerably in comparison to Figure 3(a), in that blurring can merge edges. The 

results are displayed in the first two rows of Table 4, rHR and rLR.

We then applied a lowpass filter on the HR image using a Gaussian blur kernel with a 

standard deviation of  (listed in the third row of Table 4). The d′ of SSD for 

blurred HR image and LR image (d′ (blurred HR, LR)) is listed in the fourth row of Table 3. 

It can been that d′ (blurred HR, LR) > d′ (HR, LR). Therefore, matching the resolution of 

two subject images can give a better image registration result.

5. CONCLUSION

In this work, we analyzed the effect of resolution on image registration. Our theoretical 

analysis and experiments show that 1) images with the same resolution can be registered 

accurately with more confidence and 2) matching the resolution of two subject images can 

give a better image registration result.
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Future work will include a theoretical analysis of other cost functions, and a more deep 

analysis of the edge-based resolution metric.
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Figure 1. Spatial Resolution
(a) The HR image is a 256 × 256 2D MR brain image, while the LR image is obtained by 

filtering the HR image using a Gaussian kernel with a standard deviation of 1.5. All the 

image intensities are normalized between [0, 255]. The additive Gaussian noise has a 

standard deviation of 10. (b) The distributions of  (upper row) and MI(z1, z2) 

(lower row). The left column represents the results of the experiment implemented on a pair 

HR images. While the middle column displays the results of a pair of LR images, and the 

right are the results of a HR image and a LR image. In the right column, the distribution of 

sum squared difference (SSD) and MI with v = 0 (blue curve) and v = 1 (orange curve) are 

too close to distinguish, which indicates that we are more likely to get misregistration when 

v = 1.
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Figure 2. Distributions of SSD
(a) The HR image is the 3D BrainWeb image without noise or intensity non-uniformity, 

while the LR image is obtained by filtering the HR image using Gaussian kernel. The left 

column represents the results of the experiment implemented on a pair HR images. (b) The 

middle figure displays the results of a pair of LR images. (c) The right is the results of a HR 

image and a LR image. In the right column, the distribution of SSD with v = 0 (blue curve) 

and v = 1 (other curves) are closer compared to (a) and (b)
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Figure 3. histogram of local sharpness
(a) After collecting all the edges in X direction of HR Brain image, the local sharpness are 

calculated. There are two peaks in the histogram. (b) histogram in Y direction of HR Brain 

image. (c) histogram in Z direction of HR Brain image. (d) histogram in X direction of LR 

Brain image. (e) histogram in Y direction of LR Brain image. (f) histogram in Z direction of 

LR Brain image.
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Table 1

Mean and Variance of SSD

Mean Variance

Case 1: 

Case 2: 

Case 3: 
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Table 3

Spatial Resolution: d′ for SSD of image pairs shifted by v = 1 voxels in x, y, and z direction.

v = 1 X Y Z

d′ (HR, HR) 42.1 36.7 33.9

d′ (LR, LR) 38.1 29.7 30.2

d′ (HR, LR) 29.6 22.6 22.6

d′ (blurred HR, LR) 36.7 28.8 29.3
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Table 4

Spatial Resolution: results of resolution measure for HR Brain Web image and LR Brain Web image.

resolution[mm] X Y Z

HR Brain rHR 1.1 1.0 1.2

LR Brain rLR 1.9 1.1 1.2

1.55 0.45 0
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