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Abstract

The delineation of rodent brain structures is challenging due to low-contrast multiple cortical and 

subcortical organs that are closely interfacing to each other. Atlas-based segmentation has been 

widely employed due to its ability to delineate multiple organs at the same time via image 

registration. The use of multiple atlases and subsequent label fusion techniques has further 

improved the robustness and accuracy of atlas-based segmentation. However, the accuracy of 

atlas-based segmentation is still prone to registration errors; for example, the segmentation of in 
vivo MR images can be less accurate and robust against image artifacts than the segmentation of 

post mortem images. In order to improve the accuracy and robustness of atlas-based segmentation, 

we propose a multi-object, model-based, multi-atlas segmentation method. We first establish 

spatial correspondences across atlases using a set of dense pseudo-landmark particles. We build a 

multi-object point distribution model using those particles in order to capture inter- and intra-

subject variation among brain structures. The segmentation is obtained by fitting the model into a 

subject image, followed by label fusion process. Our result shows that the proposed method 

resulted in greater accuracy than comparable segmentation methods, including a widely used 

ANTs registration tool.

1. INTRODUCTION

Atlas-based segmentation has advantages over model-based segmentation in that a pre-

existing label map can be directly propagated to obtain a new segmentation label via the 

result of image registration. The underlying image registration process computes the voxel-

wise correspondence between the atlas and the target image based on local intensity 

similarities. However, the dependency on the underlying image registration process can limit 

the performance of atlas-based segmentation as well, for example, producing less accurate 

segmentation due to registration errors. The cause of registration errors vary including low-

contrast boundaries, inaccurate initial alignment, and biases introduced by the atlas used. In 

order to improve accuracy and robustness of atlas-based segmentation and avoid such 

concerns, several methods have been proposed including group-wise image registration and 

multi-atlas based segmentation.
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A recently proposed non-rigid group-wise image registration method[7] employed the set of 

freely moving particles as a sense set of landmarks to drive B-spline based transformations. 

Inspired by surface-based correspondence algorithm[4], the method minimized an 

information theoretic objective function[14] in which each particle is forced to move 

towards locally similar area, yet the ensemble entropy of particles is optimized to capture the 

entire regions of interest. Later, the group-wise image registration method was extended to 

multi-label atlas-based segmentation that performed separate registration for each structural 

label presented in the atlas[8]. Because separate registration for each region improves the 

initial alignment per region, their method showed higher volume overlap ratio than the 

group-wise registration based segmentation method. However, the separate registration 

increased computational cost that was repeated per region.

We propose to combine model-based segmentation into the multi-atlas segmentation 

framework based on the group-wise image registration method. The proposed model-based 

multi-atlas segmentation method takes a hybrid approach that combines multi-object model-

based segmentation along with multi-atlas segmentation approach. Based on the particle-

guided group-wise registration, we employ multilevel component analysis (MCA) in order 

to capture the variation of particles among subjects. MCA proposed by [15] is an extension 

of principal component analysis for hierarchical recursive structures and is used in order to 

capture between-group variation and within-group variation separately using principal 

vectors and their weights. In the proposed multi-object model, the displacement and 

orientation of an object are captured by its bounding box using eight points, and its shape is 

described by the particles inside the box.

This paper is organized as follows. First, we review the particle-guided image registration as 

background and its extension to multi-label segmentation. MCA is then introduced followed 

by the description of the model construction for the registration. The final segmentation is 

created by label fusion of multiple intensity patches at corresponding location via each 

particle. The result is evaluated in terms of volume overlap ratio and surface distance 

measures with respect to the group-wise registration parameters such as the number of 

particles and the number of atlases.

2. METHOD

The proposed segmentation method develops a key idea that is based mainly on the particle 

representation utilized in the previously proposed group-wise image registration method[8]. 

A particle-based group-wise correspondence method allows the construction of a statistical 

multi-object model based on the set of discrete particles. The proposed segmentation method 

performs segmentation by fitting the model into a subject image followed by a label fusion 

process.

2.1 Multi-object Structure in Rodent Brain

Considering that a rodent brain consists of identifiable multiple structures that include, for 

example, the neocortex, the fimbria, the hippocampus, or the thalamus, we expect that those 

structures coincide across images when appropriate correspondence is computed. In terms of 

corresponding particles, if a particle pi of subject i is located within the region of structure A 
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in one image, the corresponding particle pj of subject j should be located within the region of 

A as well. In the original group-wise registration, the initial particles were sampled from the 

entire image without constraints. However, if an atlas contains the information of the 

structures of interest in the form of a label map, we can preassign a membership to structures 

for each particle by sampling initial particles separately for each structure that is found in the 

atlas. The rodent brain actually consists of several smaller sub-structures, each of which may 

have its unique variation as well as variation that are correlated with those of other 

structures. Therefore, we aggregated smaller structures into larger four regions as shown in 

Figure 1.

Introducing the structural membership for each particle, a new constraint is imposed while 

optimizing particles to ensure that particles remain within the expected structural regions. In 

other words, the shape of a region must be maintained in a proper form during the 

optimization. It is very challenging to solely control the boundary via particle interaction 

terms. Thus, in order to solve this problem, we employ the use of a multi-object model that 

is based on multilevel component analysis (MCA), which was proposed by Timmerman[15] 

first. MCA is an extension of principal component analysis for hierarchical recursive 

structures and is used in order to capture between-group variation and within-group variation 

separately using principal vectors and their weights. In this model, the displacement and 

orientation of an object are captured by its bounding box using eight points, and its shape is 

described by the particles inside the box.

2.2 Multilevel Component Analysis

The main idea of MCA is to decompose the data into a within-group and a between-group 

component, which is analogous to the concept of analysis of variance (ANOVA). In one-way 

ANOVA, the fundamental technique is a partitioning of the total sum of squares (SS) into 

components that are related to the effects used in the model [5]. For example, the model for 

simplified ANOVA with one type of treatment at different treatment levels is expressed as 

equation (1):

(1)

Suppose that a data sample, for example a point coordinate component, is represented as 

xijk , where i, j, and k denote the index of an item, a variable, and a group respectively, can 

be decomposed into a within-group and a between-group term, such as

(2)

where  is the grand mean  is a within-group mean 

. In Equation (2),  is the residual of the group k from the grand 

mean, and  is the residual of the item i from the group k.
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Let Xk be a Kk × J data matrix belonging to the group k where Kk is the number of data 

items in the group k. Analogous to PCA, which models a data using the linear combination 

of principal vectors, the multi-level model Xk implies:

(2)

where m is a J × 1 vector that represents the overall mean; 1Kk denotes a Kk × 1 vector with 

each element equal to one; dB,k stands for a RB × 1 vector containing the RB between the 

component scores of group k; ΦB represents J × RB matrix of the between-group principal 

components, DW,k is a Kk × RW matrix of the RW within the component scores of group k, 

ΦW denotes a J × RW matrix of the within principal components for the group k and, finally, 

where Ek is a Kk × J matrix of residuals for the group k.

2.3 MCA Model Construction

MCA allows an object to be represented as

(4)

where Ai is a vector of an object representation, ΦW and ΦB are the principal vectors for 

within-group and between-group variations. Suppose that I number of subjects, each 

contains K number of groups, which will describe an individual substructure (e.g., the 

hippocampus or the neocortex).

This multilevel representation addresses here the affine variation of structures using a 

bounding box representation, which represents the orientation and anisotropic scales of the 

structure with eight-point coordinates. Figure 2 on the next page shows a two-dimensional 

example for the shape model constructed in the proposed method. Thus, in the segmentation 

method proposed here, the within-group variation ΦW captures the variations of the 

bounding box representations of object k, and the variations of the bounding box 

representation of objects, ΦB, contains information about the bounding box variations 

among the mean bounding boxes of the objects.

Suppose that an array A of the size IK × 24 represents all the objects in a training set. The 

principal modes of variation ΦB and ΦW are obtained by performing PCA of particular 

decompositions of A. First, the within-group parameters are computed over all the mean-

centered sub-matrices Ak of size I × J , where Ak is the partition of the matrix A belonging 

to group k. This decomposition is given by: , where mk is a J × 1 vector 

that describes the mean induced by the matrix Xk over the bounding box variables, which is 

24 real numbers here. Let Ac be the matrix that results from the vertical concatenation of 

matrices Ac,k . The principal vectors ΦW is composed of the eigen-vectors of the covariance 

matrix that is related to Ac. The variance of the weights dW,k , which limits the deformation 

of the within-group model is determined by the eigen-values of the covariance matrix that 

are related to Ac.
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The between-group parameters ΦB and dB,k are computed in a similar manner. First, subtract 

the grand mean from X and let  be such a matrix. Denoting , which is the partition of 

the matrix  that belongs to group k, consider the K vectors , each of which represents 

the mean of the associated matrix . These vectors characterize the between-group 

differences. Therefore, the matrix that results from the vertical concatenation of the vectors 

 allows the matrix ΦB of the between-group principal components to be retrieved.

Once the model is constructed, the model can be fitted into the subject image to be 

segmented, followed by label fusion to generate the segmentation result.

2.3.1 The Model Fitting—Assume a set of arrays of particles A = {A1, A2, … , ANs }, 

where Ai is a set of particles {p1, p2, … , pNp} that describes the shape of a rodent brain. 

The statistical shape model of A includes the array of averaged particles Ā and the principal 

modes of variation ΦB and ΦW and allows Ai(∈ A) to be represented as the linear 

combination of ΦB and ΦK such that

(5)

where dB and dW are the coefficients of the principal vectors. The segmentation of a subject 

image I is performed by fitting a model instance A′ into I by optimizing a cost function that 

measures the goodness of fit between A′ and I. The model instance A′ is created initially by 

the duplication of  and then is placed into the region of interest Ω ⊂ I, which is the region 

of the entire object, using the initial alignment process. This initial alignment is important in 

order to avoid a suboptimal local minimum during the optimization.

In order to compute the goodness of fit, the local intensity patch of the image I near particle 

pi is compared to local intensity patches of atlas images I at corresponding positions. The 

patch-based appearance similarity between p ∈ A′ and pj ∈ Aj is computed following as

(6)

Using wj , the cost function with parameters of dB and dW is written as expressed in 

equation (7):

(7)
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The goodness of fit function F can be optimized using a gradient descent optimizer or a non-

differential optimizer such as BOBYQA (Bound Optimization BY Quadratic 

Approximation), which is a numerical optimization algorithm by Powell[11].

The fitting process ensures that the particles in A′ can be located at corresponding positions 

across all training atlases. The final label L of the subject is determined by the non-local 

patch-based segmentation method by Rousseau[12] such that

(8)

where N (x) is the neighborhood of y and xj is a corresponding location at subject j 
estimated using particles pi, which are k closest to xi, and pi’s corresponding particles pj . 

Since this process leads to fuzzy labeling at x, the indicator function for label k at x can be 

used to determine a hard labeling by taking the maximum of each vector L(x) as a threshold 

such that

(9)

3. RESULTS

The performance of the proposed segmentation method was evaluated in comparison to 

manually created brain structure labels (ground truth), the Dice coefficient (DSC) and the 

average surface distance using various experimental settings. For the dataset, the 

Brookhaven atlas database [9] was used in this study. The Brookhaven atlas database is 

publicly available and frequently cited in rodent brain segmentation papers [2, 7, 10]. The 

Brookhaven atlas consists of 10 adult male C57BL/6J mouse brain images derived from 

T2*-weighted 3D MRM images acquired on a 17.6T magnet. With 20 segmented structures, 

the C57BL/6J 3D digital brain atlas database offers individual brain atlases produced by 

single atlas-based segmentation followed by manual corrections.

3.1 Evaluation of Segmentation Accuracy

The proposed registration method was compared with other four non-rigid registration 

methods. First, the stack-entropy based group-wise image registration method reported in [3] 

was used. This method employs a similar entropy-based similarity metric as well as B-spline 

transformation so that the effects of particle-based registration can be directly compared. In 

order to compare the performance with a pair-wise image registration method, the B-spline 

based non-rigid registration method packaged in BRAINSFit [6] and the original free form 

deformation non-rigid registration reported in [13], which are the most popular B-spline 

transformation based image registrations, were used. In addition to these, Advanced 
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Normalization Tools [1], which is practically the most widely used diffeomorphic image 

registration software, was compared to the aforementioned procedures utilized.

Before the registration experiment was performed, each subject was first preprocessed with 

the N3 intensity bias correction tool [16] in order to correct inhomogeneous intensity bias 

across an MR image and followed by the histogram matching and intensity rescaling 

processes across all subjects. The histogram matching normalizes intensity unit and 

therefore allows direct intensity comparison across subject MR images. Following the 

intensity normalization pre-processing, each subject image was then aligned towards a 

chosen template with the second intensity momentum and subsequently by the rigid 

registration process using the squared sum of difference metric. All the aligned subjects 

were manually quality assured to prevent potential initial alignment errors.

Table 1 on the next page shows the raw values for all the methods’ results in terms of each 

measurement and each region of interest. Figure 3 on page 8 shows bar graphs that compare 

the DSC ratio and the average surface distance with respect to the regions of interests. In (a), 

the proposed method exhibits taller peaks than most of the other methods as well as in most 

of the regions of interest. The ANTs tool exhibits the second tallest peaks, except for 

Anterior Commissure. Although the non-local patch-based method does not involve any 

non-rigid transformation, the method performs better than the pair-wise B-spline registration 

method, which can make non-local patch-based segmentation methods promising for 

computational efficiency.

3.2 Evaluation of the Statistical Shape Model

Analysis of the variability decomposition is important, because it is a measure to assess if 

the statistical model is relevant and fits the data. In contrast to conventional PCA, the 

variance is determined using two terms: SSDtot, the sum of the squared differences between 

the structures and the overall mean. Similar to ANOVA, SSDtot is written as

(10)

which is equivalent to SSDtot = SSDbetween +SSDwithin. Using the equation Equation (10), it 

is now possible to determine the partition of the total variability according to a within-group 

term and a between-group term. This evaluation is performed on the bounding box 

parameters. Globally, the results indicate that the magnitudes of the within-group (27.23%) 

and the between-group variability (72.77%) are sufficiently large to satisfy this multi-level 

component model as compared to a standard PCA model.

Computing the proportion of explained variance according to the number of principal 

components provides information about ways to select the MCA components. Usually, the 

number of principal components is chosen with respect to a given percentage of the total 

variance explained by the components. Hence, the within-group and the between-group sub-

models have to be distinguished. The results for this specific modeling reveal that for a given 

percentage of total variance, the within-group sub-model requires more principal 

Lee et al. Page 7

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



components than the between-group sub-model, despite the fact that 72.27% of the model is 

between-group information. For example, let us assume that our multilevel model should 

capture 95% of the total variance. In this case, the within-group sub-model requires eight 

principal components whereas the between-group sub-model is characterized by only four 

principal components.

4. CONCLUSION

In this study, we have proposed a novel model- and patch-based segmentation method that 

utilizes the multiobject shape model as well as label fusion. In order to represent multiple 

objects, the particles were grouped according to multiple regions of interest. This particle 

representation specifically allowed the parameter-free multi-object shape model. Using this 

shape model built on multiple atlases, the proposed segmentation method was able to 

incorporate the shape variation of the training set for the purpose of segmentation. The 

actual segmentation of a novel subject image was performed by fitting the model onto the 

subject image, followed by searching the most similar patches and fusing them into a single 

label.

The proposed segmentation method can be adapted for further applications. Cortical 

thickness analysis is definitely a good choice for the proposed segmentation method. Rodent 

brain MR skull stripping is another possible application, which remains a challenging 

mandatory preprocessing step that always requires manual quality control.
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Figure 1. 
The multi-level structure of the statistical shape and appearance model. (a) An image is 

interpreted as the aggregation of multiple objects, and each object may have multiple sub-

structures. Based on multilevel component analysis, the idea is to decompose the data into a 

within-individual and a between-individual component. (b) The rodent brain consists of four 

large structures. Since these structures are anatomically loosely connected as separate 

structures, their variation may be better captured when they are described as separate 

between-individual geometric objects.
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Figure 2. 
The proposed multi-object shape model using bounding boxes. Subject samples are 

illustrated using two-dimensional bounding boxes as examples. A rodent brain is 

decomposed into four objects: the olfactory bulb, the cortex and subcortical structures, the 

cerebellum, and the brain stem. The within-group variation explains the deformation of the 

olfactory bulb shown in the bottom row. The right column shows the between-group 

variation that captures the relationship between subcomponents with respect to the first 

principal mode. The shape of a valid object is modeled using the linear combination of two-

level principal modes of variation.
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Figure 3. 
Comparison of the DSC ratio and the average surface distance. In (a), the ANTs tool is 

shown to be superior to the other methods with respect to the DSC ratio in the segmentation 

of Anterior Commissure (AC). Interestingly, however, the proposed method shows the lower 

average surface distance in (b), which implies the ANTs tool possibly produced over-

segmentation of the long, thin shaped AC. Excluding the AC, the proposed method shows 

better or at least comparable performance compared to the ANTs tool and outperformed the 

other two methods. In contrast, the non-local patch-based method performed worse in terms 

of the segmentation of the AC but better in almost every other region than the pair-wise B-

spline method.
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Table 1

The average distance, the maximum distance, and the DSC were computed for each region with respect to the 

three compared methods: pair-wise B-spline registration-based segmentation with majority voting, ANTS tool 

registration with majority voting, and non-local patch-based segmentation method.

Pair-wise B-spline with Majority Voting ANTS with Majority Voting

Avg. Dist. Max Dist. DSC Avg. Dist. Max Dist. DSC

Hippocampus 0.055 0.507 82.307 0.033 0.447 88.680

External1Capsule(Right1EC) 0.053 2.093 54.440 0.036 1.237 66.370

Caudate,1Putamen,1Globus1Pallidus 0.057 0.346 81.438 0.038 0.245 87.060

Anterior1Commissure 0.103 1.159 36.449 0.080 1.416 57.308

Substantia1Nigra 0.052 0.289 70.413 0.027 0.173 82.900

Internal1Capsule 0.047 0.315 59.986 0.027 0.566 74.370

Thalamus 0.045 0.234 89.556 0.027 0.200 93.310

Cerebellum 0.091 0.805 82.944 0.085 0.583 84.076

Superior1Colliculus 0.055 0.363 81.926 0.037 0.316 87.290

Third1Ventricle 0.069 0.959 51.771 0.072 1.616 60.440

Hypothalamus 0.050 0.297 84.638 0.033 0.223 89.430

Inferior1Colliculus 0.070 0.353 70.409 0.050 0.300 77.790

Central1Gray 0.046 0.228 81.153 0.030 0.141 87.130

Neocortex 0.074 0.662 81.199 0.052 0.424 86.460

Amygdala 0.083 0.490 71.058 0.073 1.063 73.888

Olfactory1Bulb 0.115 8.928 77.410 0.099 8.930 79.060

Brainstem 0.140 1.482 81.441 0.164 2.385 81.320

Rest1of1Midbrain 0.061 0.680 74.637 0.051 0.616 78.940

Rest1of1Forebrain 0.053 0.370 78.776 0.039 0.245 84.160

Fimbria 0.040 0.293 64.622 0.021 0.583 79.620

(a) registration-based segmentation

Proposed Method NonBlocal PatchBbased Segmentation

Avg. Dist. Max Dist. DSC Avg. Dist. Max Dist. DSC
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Pair-wise B-spline with Majority Voting ANTS with Majority Voting

Avg. Dist. Max Dist. DSC Avg. Dist. Max Dist. DSC

Hippocampus 0.033 0.447 88.790 0.044 0.574 87.780

External1Capsule(Right1EC) 0.028 0.849 69.760 0.039 2.706 63.439

Caudate,1Putamen,1Globus1Pallidus 0.036 0.245 88.000 0.046 0.300 83.043

Anterior1Commissure 0.065 1.086 47.810 0.105 1.757 34.210

Substantia1Nigra 0.028 0.141 82.570 0.036 0.198 75.275

Internal1Capsule 0.024 0.224 76.750 0.031 0.350 65.921

Thalamus 0.025 0.200 93.810 0.040 0.208 90.435

Cerebellum 0.060 0.436 88.030 0.086 0.900 82.025

Superior1Colliculus 0.038 0.322 86.910 0.064 0.398 82.510

Third1Ventricle 0.027 0.735 70.680 0.044 0.898 62.102

Hypothalamus 0.034 0.224 89.250 0.049 0.249 83.219

Inferior1Colliculus 0.053 0.283 76.860 0.065 0.321 73.897

Central1Gray 0.033 0.173 85.900 0.041 0.213 81.191

Neocortex 0.054 0.412 86.100 0.069 0.809 84.912

Amygdala 0.059 0.374 78.400 0.084 0.444 72.439

Olfactory1Bulb 0.091 8.940 82.330 0.103 8.902 81.561

Brainstem 0.070 0.762 88.010 0.149 2.446 78.449

Rest1of1Midbrain 0.050 0.656 79.170 0.055 0.801 76.701

Rest1of1Forebrain 0.033 0.310 86.280 0.056 0.356 83.767

Fimbria 0.020 0.211 79.760 0.030 0.249 70.645

(b) patch-based segmentation

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2016 April 08.


