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Abstract

Breast cancer risk prediction algorithms are used to identify subpopulations that are at increased 

risk for developing breast cancer. They can be based on many different sources of data such as 

demographics, relatives with cancer, gene expression, and various phenotypic features such as 

breast density. Women who are identified as high risk may undergo a more extensive (and 

expensive) screening process that includes MRI or ultrasound imaging in addition to the standard 

full-field digital mammography (FFDM) exam.

Given that there are many ways that risk prediction may be accomplished, it is of interest to 

evaluate them in terms of expected cost, which includes the costs of diagnostic outcomes. In this 

work we perform an expected-cost analysis of risk prediction algorithms that is based on a 

published model that includes the costs associated with diagnostic outcomes (true-positive, false-

positive, etc.).

We assume the existence of a standard screening method and an enhanced screening method with 

higher scan cost, higher sensitivity, and lower specificity. We then assess expected cost of using a 

risk prediction algorithm to determine who gets the enhanced screening method under the strong 

assumption that risk and diagnostic performance are independent.

We find that if risk prediction leads to a high enough positive predictive value, it will be cost-

effective regardless of the size of the subpopulation. Furthermore, in terms of the hit-rate and 

false-alarm rate of the of the risk-prediction algorithm, iso-cost contours are lines with slope 

determined by properties of the available diagnostic systems for screening.
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1. INTRODUCTION

Risk prediction algorithms for development of breast cancer use patient-specific data – 

including demographic data (e.g. age and ethnicity), genetic data (e.g. relatives with disease 

or BRCA mutations), and increasingly imaging data (e.g. BI-RADS density score) – to 

identify women at increased risk for developing disease. One possible use of risk prediction 

algorithms is to guide the deployment of different imaging approaches for breast-cancer 

screening [1-3]. If such measures are to be adopted in any widespread sense, they must be 

shown to be cost-effective. This work builds on previous investigations into the utility of 

risk-prediction in the context of breast cancer screening [4, 5] using utility approaches 

derived for ROC measures [6-13].

Our purpose is motivated by the following scenario. Suppose we have available two methods 

for breast cancer screening. One method (M1) has a low scan cost and a relatively low false 

positive fraction (FPF), but also a relatively low true-positive fraction (TPF). In breast cancer 

screening terms we may think of this as the standard FFDM exam. The second method (M2) 

has higher scan cost and higher FPR (although this is not necessary for the analysis), but 

higher TPF. This method could be thought of as FFDM with additional DC-MRI. The cost 

of the second method is considered prohibitively high for general screening. However, if a 

relatively small number of high risk patients can be identified, it may be cost-effective to 

scan these women with the second modality to capitalize on its higher sensitivity, and 

reserve the first modality for women not considered high risk. In this work we develop an 

expected cost approach to this problem.

2. METHODS

We consider two screening strategies (SS1 and SS2), and we define variables representing 

the exam-cost to screen (C1 and C2) for each, as well as true-positive fractions (TPF1 and 

TPF2), and a false-positive fractions (FPF1 and FPF2). We will assume a population disease 

prevalence of π for a large population. In addition to the costs of the screening exam, there 

are costs associated with screening outcomes. We assign a single cost to each of the 4 

possible outcomes of a binary screening exam, which are indicated by the variables CTP, 

CTN, CFP, CFN. and These costs may require conversion of QALYs into dollars to match the 

units of the screening costs. We assume this is a known conversion. Then the expected cost 

of screening per member of the population in each screening strategy is given by

(1)

which is equivalent to the expected cost used by Halpern et al. [7]. Equation 1 can be used to 

decide which screening approach is more cost effective, and it is based on modality 

dependent quantities that are directly observable on the ROC domain (TPF and FPF).
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2.1 Prevalence in high and low risk subpopulations

The goal of this derivation is to elaborate Equation 1 in the case of a risk prediction 

algorithm that divides the population into high-risk and low-risk groups. Let FHR denote the 

fraction of the population that is identified as high risk. In the high risk group, the 

prevalence of disease is amplified by a factor q, and so πHR = qπ with 1≤q≤1/π by 

assumption, and q ≤1/FHR by requirement that the expected number of high-risk positive 

cases not exceed the number of positives in the population. Once FHR and q are determined, 

then the prevalence of disease in the low-risk group is given by

(2)

This is required so that FHRπHR+(1−FHR)πLR=π.

2.2 Expected cost for risk-prediction-guided screening

Now we consider the effect of using screening strategy 1 on the low-risk group and 

screening strategy 2 on the high-risk group under the strong assumption that the risk groups 

do not change the TPF and FPF of the screening strategy. In this case, the expected cost for 

screening with the risk-prediction algorithm is given in terms of the expected cost within the 

high risk group (ECHR) and within the low risk group (ECLR) as

(3)

Focusing on the cost within the high risk group, some algebra shows

(4)

Within the low risk group we find

(5)

For simplicity below, we introduce two variables that represent differences between the two 

screening systems,
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Combining Eqn.s 4 and 5 in Equation 3, and rearranging terms, we find

(6)

2.3 Expected cost in the ROC domain

Equation 6 gives the expected cost as a function of prevalence amplification (q) and the 

fraction labeled “High-Risk” (FHR), in addition to the performance values of the two 

screening systems and the associated decision costs. However, it is of interest to evaluate 

cost in terms of different parameters with familiar interpretations. In this section we analyze 

the effect of characterizing the risk-prediction algorithms in terms of the ROC parameters of 

true-positive fraction and false-positive fraction.

We denote these TPFPred and FPFPred to distinguish them from the screening strategy TPF 

and FPF described above. TPFPred is defined as the fraction of the actually positive cases (at 

the time of screening) that are classified as high-risk, and FPFPred is defined as the fraction 

of the actually negative cases (at the time of screening) that are classified as high-risk. This 

is somewhat different than the screening-strategy TPF and FPF, which classify patients as 

having a suspicious abnormality requiring further diagnostic workup and/or biopsy. In terms 

of q and FHR used in Equation 6, we can define the ROC parameters as

(7)

For the purpose of reformulating Equation 6, it is convenient to give q and FHR in terms of 

TPFPred and FPFPred,

(8)

Substituting these into Equation 6 and rearranging terms gives the expected cost in terms of 

the ROC parameters,

(9)

Equation 9 can be used to derive iso-cost contours, which are points (TPFPred, FPFPred) that 

equal expected cost. Iso-cost contours are often used as a graphical way to present the results 

of cost analyses. These contours can be derived from Equation 9 by fixing EC, and isolating 

TPFPred as a function of FPFPred,
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(10)

In this case, iso-cost contours are seen to be lines in with a common slope that is determined 

by properties of the imaging systems (and scan costs) in addition to an offset that is 

dependent on the expected cost. This is similar to the iso-utility lines found in standard ROC 

analysis for imaging modalities, except that the slope and offset terms are different. Note 

that when TPFPred is outside the range of [0,1], then the expected cost for that FPFPred is 

unachievable.

2.4 Expected cost in the Precision-Recall domain

In standard precision-recall (PR) terms, the precision variable, PPred, is equivalent to the 

positive predictive value (PPV) of the risk-prediction algorithm. The recall variable, RPred, is 

equivalent to the TPF of the algorithm. These are given in terms of the q and FHR used in 

Equation 6 as

(11)

which readily yields

(12)

The resulting expected cost in the precision recall domain is given by reformulating 

Equation 6 as

(13)

When Equation 13 is rearranged to define iso-cost contours, we find that

(14)

where precision is inversely related to recall. Note that at the break-even point, when EC = 

EC1, there is no dependence on the recall parameter at all. This shows that if the precision 

variable (i.e. the risk prediction PPV) can be made high enough, there will be benefit for 

risk-prediction guided screening irrespective of the recall parameter. Of course, the amount 

of benefit is dependent on the recall parameter. Note that it is often easier to evaluate PPV 

than sensitivity, since it does not involve determining false-negative rates.
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3. RESULTS AND DISCUSSION

As an example of how the methods here may be used, we have analyzed a hypothetical 

situation in which a high-risk sub-population would get DCE-MRI in addition to a FFDM 

exam, and the low-risk subpopulation would get FFDM without the additional imaging. For 

the equations above, FFDM alone may be considered Screening Strategy 1, and FFDM with 

DCE-MRI may be considered Screening Strategy 2.

3.1 Example: Screening with MRI for a high-risk sub-population

Table 1 gives some of the critical population parameters needed to evaluate expected cost. 

Disease prevalence is set at 5/1000, which is similar to prevalence rates in reports from the 

BCSC [14, 15], and DMIST [16]. Utilities are specified in quality-adjusted life years 

(QALYs), and we need a monetary value of QALY in order to convert diagnostic utilities 

into costs. We use a value of $100,000/QALY, which is consistent (although at the low end 

of the scale) with published reports [17]. The diagnostic utilities used are those published by 

Wu et al. [4], which assign true-negative outcomes a value of 0 QALYs as a reference. False-

negative outcomes are assigned a value of −2.52 QALYs. True-positive decisions are 

assigned a value of −0.383 QALYs, which is derived from the false-negative outcome 

assuming an 86% treatment effectiveness. False positive outcomes are assigned a value of 

−0.0129 QALYs (−4.7 quality adjusted life days).

Screening performance is characterized in Table 2. For FFDM, we use values which are 

similar to those reported in DMIST study [16]. For screening performance with additional 

DCE-MRI, we use values derived from the ACR BI-RADS Atlas 5 [18]. Scan costs are 

assumed to be $100 for FFDM and $1000 for FFDM with DCE-MRI. The expected costs in 

the table are an evaluation of Equation 1 with the screening parameters of each screening 

strategy and with the utilities and prevalence values given in Table 1. Note that the cost is 

considerably lower for FFDM relative to the addition of MRI, which is consistent with the 

use of FFDM as the standard of care for breast screening exams across the entire population. 

It is also of note that the cost of not screening (TPF = 0%, FPF = 0% and Scan Cost = $0) is 

$1260, which suggests that FFDM is beneficial relative to not screening the population.

3.2 Results of expected cost analysis

Iso-cost contours in the ROC domain were computed using Equation 10 with the population, 

utility, and screening parameters given in Tables 1 and 2. Plots of the iso-cost contours are 

shown in Figure 1. Three iso-cost contours are plotted, the first (and lowest contour shows 

the iso-cost contour when EC = EC1. We can think of this as the “break-even” criterion, in 

which the risk-prediction guided screening program is equivalent to screening with FFDM. 

The other two iso-cost contours represent expected costs that are $50 or $100 less than 

FFDM.

The straight-line iso-cost contours in Figure 1 are reminiscent of iso-cost contours (or 

equivalently, iso-utility contours) in standard ROC analysis, which are used to find an 

optimal operating point on an ROC curve. In standard ROC analysis [6, 8, 19], iso-cost 

contours have a slope of (1−π)CTN−CFP)/π(CTP−CFN), which has a value of 1.18 for the 
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utility values in Table 1. By contrast, the slope of the iso-cost contours in Figure 1 is 3.70. 

The difference in iso-cost slopes arises because the value of risk prediction is dependent on 

the modalities used in the high-risk and low-risk sub-populations.

Figure 2 shows iso-cost contours in the precision-recall domain computed using Equation 14 

and the parameters from Tables 1 and 2. Contours corresponding to the same three expected 

cost values as Figure 1 are plotted. At the break-even cost, EC = EC1, the iso-contour is seen 

to be flat, as expected, showing that risk-prediction algorithms become beneficial relative to 

FFDM when the precision (or PPV) exceeds 1.8%.

3.3 Assumptions and limitations

Before concluding, it is worth calling attention to some critical assumptions that have been 

used to derive our expected cost results. One strong assumption of the approach is that there 

is no dependence of imaging performance parameters (TPF and FPF) on the risk group. This 

is not necessarily the case in practice. For example, it is well known that women with 

mammographically dense breasts are at elevated risk for developing breast cancer, and that 

FFDM has lower TPF and higher FPF for these women. Conversely, older women (>60) are 

at slightly elevated risk for developing breast cancer, even though mammography typically 

has higher accuracy for older women. Furthermore, it may be reasonable to assume that 

radiologists might be less likely to recommend diagnostic work-up in the low-risk 

population and more likely to recommend work-up in the high-risk population. This issue 

can be resolved if the TPF and FPF of the screening strategy can be measured for its 

appropriate risk group (and used as TPF1, FPF1, TPF2, and FPF2 in Section 2).

We have also neglected any cost associated with risk prediction itself and the associated 

logistics of applying different screening modalities to the different sub-populations. This 

may be appropriate for relatively simple prediction algorithms based on demographic data, 

like the Gail model [20]. However, more elaborate prediction algorithms that involve genetic 

testing or other independent assessments may have nontrivial costs associated with them. If 

these costs are fixed across patients, then it may be possible to absorb them into the scan 

costs.

4. SUMMARY AND CONCLUSIONS

When a risk-prediction algorithm is used to guide the choice of imaging modalities for 

breast-cancer screening, the utility of the risk prediction algorithm can be determined from 

its impact on the utility of screening. The purpose of this paper has been to analyze utility in 

this situation. To our knowledge, this is the first derivation of expected cost we know of 

specifically for risk prediction algorithms. We have generalized the standard utility approach 

of ROC analysis to accommodate two imaging modalities with different screening 

performance parameters that are selected for use on the basis of a risk prediction algorithm 

that sorts the population into low-risk and high-risk sub-populations. We have derived the 

expected cost of the risk-prediction-guided screening procedure, and shown how it is related 

to the expected cost of the individual screening modalities as well as their diagnostic 

performance. This derivation required some limiting assumptions, in particular the 
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assumption that the risk group has no effect on screening performance, which should be 

explored in future investigations.

We have also shown how this cost equation can be used to derive iso-cost contours in either 

the ROC domain or the precision-recall domain. In the ROC domain, iso-cost contours are 

lines with a fixed slope, but that slope is different than the iso-cost slopes used for an 

individual screening strategy to choose the optimal operating point. The “break-even” 

criterion for improving screening costs requires a risk-prediction algorithm with 

performance above the iso-cost contour that passes through the origin. In the precision-recall 

domain, iso-cost contours are generally inversely proportional to the recall parameter. 

However in this case the break-even criterion is a threshold in precision.

The example that was presented to illustrate the methods considers a situation in which 

standard FFDM mammography would be enhanced with MRI imaging for a high-risk 

population, with costs and performance properties of the modalities derived from the 

literature. The results suggest that improving the expected costs of screening (including the 

patient costs resulting from diagnostic outcomes) will require a relatively high-performing 

risk-prediction algorithm.
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Figure 1. Risk-Prediction Iso-Cost Contours in the ROC Domain
When the performance of the risk-prediction algorithm is specified in terms of True-Positive 

and False-Positive fractions, iso-cost contours from Equation 10 are seen to be lines with 

positive slope, in which cost affects the y-intercept. The lowest iso-cost line represents the 

break-even point where the risk-prediction guided approach is equivalent to screening with 

Screening Strategy 1.
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Figure 2. Risk-Prediction Iso-Cost Contours in the Precision-Recall Domain
When the performance of the risk-prediction algorithm is specified in terms of precision 

(PPV) and Recall (Sensitivity) parameters, iso-cost contours from Equation 14 are seen to be 

hyperbolic curves above the break-even threshold at a PPV of 1.8%.
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Table 1
Prevalence and utility values used for example

Pop. Prevalence $/1000

S/QALY $100,000

TN Utilty (QALY) 0

TP Utility (QALY) −0.3528

FP Utility (QALY) −0.0128767

FN Utility (QALY) −2.52
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Table 2
Screening strategy parameters used for example

TPF FPF Scan Cost Expected Cost

FFDM 70% 8% $100 $704

MRI 85% 15% $1,000 $1,531
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