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ABSTRACT   
The design and the implementation of a flexible and low-cost embedded system for real-time car’s surrounding vision is 
presented. The target of the proposed multi-camera vision system is to provide the driver a better view of the objects that 
surround the vehicle. Fish-eye lenses are used to achieve a larger Field of View (FOV) but, on the other hand, introduce 
radial distortion of the images projected on the sensors. Using low-cost cameras there could be also some alignment 
issues. Since these complications are noticeable and dangerous, a real-time algorithm for their correction is presented. 
Then another real-time algorithm, used for merging 4 camera video streams together in a single view, is described. Real-
time image processing is achieved through a hardware-software platform   
Keywords: Car surrounding vision, fish-eye camera, ADAS (Advanced Driver Assistance Systems), real-time image 
processing, distortion correction, blind zones, video mosaic, image fusion 
 
 

1. INTRODUCTION  
The use of cameras for automotive applications is growing rapidly, probably because among all the car safety 
technologies that are spreading, those that stimulate the sight are considered the most immediate and reliable from the 
drivers. However, current proposed systems are still too expensive to be equipped on medium- and low-end vehicles. For 
this reason, in academia and industry there is a lot of research to develop advanced but low-cost ADAS solutions, 
offering technologies for the obstacle’s detection, brake assist and some other products to improve vision [1-11]. Among 
all the dangerous situations that can be encountered while driving, the most frequent is the one determined by the blind 
spots [1]: the driver is unable to see the zones around the vehicle. The system presented in this work solve this issue, 
allowing for a real-time vision from the top of the car of the zones near the vehicle on the on-board display (e.g. the LCD 
display already mounted in the dashboard for navigation and infotainment subsystems). This solution has been designed 
to help the driver while parking, but can easily be adopted also for the obstacle detection and brake assist. The purpose of 
the project is to develop a low-cost product, so that it can spread even in the low-end of the automotive market. For this 
reason, four cheap VGA fish-eye cameras are used, which are obviously affected by radial distortion, but they have also 
a misalignment of the center of distortion. Many fish-eye's correction algorithms are available in literature [2-8]. 
However, real-time processing is needed for automotive driver assistance. To address computing-intensive algorithms, 
many hardware architectures for ADAS foresee a programmable core, often a low-power microcontroller as in [12], 
enhanced by dedicated co-processors as in [13-17]. The ADAS solution has to be also a low-power one, because power-
efficiency is becoming a main issue in automotive applications. Furthermore, the platform must be low-cost to obtain 
widest diffusion in the large automotive market. Harsh automotive operating conditions have to be faced [18-20]. A real-
time low-power correction of a fish-eye camera has already been proposed in literature [4, 5]. Unfortunately, many of 
these algorithms after radial correction, crop the scene to remove image’s borders where the results of the correction are 
worst. To merge more videos, they can’t be cropped because they have to overlap between them. Starting from these 
works, reviewed in Sections 2 and 3, a new hardware-software system is presented in Sections from 4 to 7 to solve 
lenses' alignment issues and to obtain wide images. Conclusions are drawn in Section 8.  
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2. STATE OF THE ART OF FISH-EYE EFFECT CORRECTION 
The fish-eye optic is characterized by a field-of-view between 100 ° and 230 °. The distortion introduced by this lens is 
proportional to its field-of-view and is indicated by the two components of the polar reference system: radial and 
tangential. The tangential distortion is due to the poor quality of construction of the lens and, even if present, can be 
ignored because it has a negligible impact on the results. Instead, the radial distortion cannot be ignored, because its 
effect is considerable and represents the bottleneck for the development of video processing applications. There are 
different types of fish-eye lenses, each identified by a mapping function, which is a mathematical relation that associates 
the points of the projected image on the sensor, to the points of the real scene view from the lens. These functions are 
described starting from the model of a pinhole camera, which perfectly describes the relationship for a non-distorting 
lens. It should be noted that for the fish-eye lens, the focal length can be different from the physically measurable one, so 
we will talk about Apparent Focal Length. If θ is the angle between the optical axis and the ray of light emitted from a 
point P of the real scene, f is the focal length and finally rcorr is the distance between the projection of P on the sensor and 
the focal axis, these variables can be related between them by means of the following equation: 

 
The algorithms for the correction of radial distortion calculate the appropriate position of each pixel of the distorted 
image, and then they make a copy of these pixels to another empty image, at the position calculated. Distortion is limited 
to the radial axis, so the correct position of the pixels will still be along this axis, but at a different distance from the 
center. In the literature, there are two families of different correction algorithms: polynomial and non-polynomial [2, 5-
8]. A comparison is described in [2]. The first type, determine rcorr using the polynomials, as shown in [5]. The simplest 
models only consider the terms of the polynomial of odd degree, like shown in Eq. 2. Their advantage is that the 
polynomial equations require a moderate computational cost. 

 
The non-polynomial algorithms [6-8] instead, take advantage of the equation of the mapping function associated with the 
lens. Often, the mapping function is characterized by logarithmic or trigonometric functions that are undoubtedly more 
expensive to evaluate than polynomial ones. The fish-eye lenses used in this system are represented by the mapping 
function called “Equisolid Angle”: 

 Both methods can act in two ways: they can calculate the correct destination for each pixel in the distorted image, or they 
can calculate the correct source pixel to be taken from the image distorted for each pixel of the empty image. The first 
procedure is called “Forward Mapping” and may cause an incomplete picture due to missing pixels. The reverse mode is 
called “Backward Mapping” and it does not suffer from missing pixels, but it may have duplicate pixels, resulting in a 
very similar result to what can be achieved with a “Nearest Neighbor” interpolation algorithm. It should be specified that 
the algorithms characterized by polynomial equations are often not easily reversible, therefore it is not always possible to 
apply the backward mapping. The equation (3) could be reversed only if approximated with a finite number of 
monomials. In contrast, the non-polynomial algorithms are analytically invertible, without any approximation. 
In [4] it’s used backward mapping approach for compiling a Lookup Table (LUT). The LUT stores the positions of the 
source pixels calculated initially, and then is used to rearrange the pixels of each video frame. The resulting frames can 
be reassembled in a video stream. The use of the LUT makes superfluous any computational advantage of polynomials 
algorithms. The procedure used in [4] uses (3) to determine the apparent focal length f. Then, substituting λ to θ in (1), it 
obtains the angle of the radial axis associated with the pixel currently being processed: 

 Finally, by substituting the equation (4) in (3), with λ in place of θ it obtains the equation for backward correction: 
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3. STATE OF THE ART OF VIDEO FUSION ALGORITHMS 
The process of merging graphical objects is a recent digital processing area, and it’s still under study. A video stream is 
composed of a sequence of images, so it may think to be inspired by the algorithms for creating panoramic photos, like 
the one described in [9]. In this system, creators first locate the common parts of the images that have to be merged 
together. In a second time, the overlapping areas are compared to identify common elements between them. Those items 
are then used to apply perspective transformation. Finally, bilinear interpolation is applied to homogenize the result. 
What emerges is one picture of fair quality, in which there aren’t any sort of discontinuities on the scene. However, an 
algorithm like the one described in [9] cannot be implemented in real-time, because it would require a very powerful 
computational unit, which is not low-cost. A product closer to the constraints of the system proposed here is described in 
[10], in which the authors use four fish-eye cameras to propose to the driver a top-view of the vehicle, with the 
possibility to vary the viewing angle. For the necessary calculations two processors are used: an ARM926EJ-S 333 MHz 
and a 166 MHz Graphics Display Controller that contains a graphics engine for 2D and 3D geometries. The algorithm 
makes use of OpenGL ES1.1 libraries. The results obtained are good, but far from the ones shown in [9]. In fact, despite 
a form of interpolation is applied, the border areas between the cameras are clearly recognizable. 

4. HARDWARE-SOFTWARE ARCHITECTURE 
The proposed Car’s surrounding vision platform involves 4 cameras made by Rico. S.r.l. and equipped with Aptina 
MT9V128 sensors, capable of producing video streams at 30 fps with PAL resolution, and 4 fish-eye lenses with 173° 
FOV. The four video streams are combined into a single video stream, always with PAL resolution, using a development 
board Texas Instruments TVP5154 EVM equipped with a 4-channel multiplexer. The resulting video stream is divided 
into four quadrants, each of which is coupled to a camera. The quad video stream is then processed through a further 
development board, Texas Instruments DM642 EVM, equipped with a DM642 DSP at 720 MHz. This DSP, although 
obsolete because new families have been released, is designed for low-power automotive applications. An architectural 
representation can be seen in Fig.1. As regards the software programming, the multiplexer is configured by means of the 
proprietary software WinVCC, while the algorithms described below were realized in C, using the IDE Code Composer 
Studio.  

 
 
 
 
 
 
 
 
 
 
 
 

5. ISSUES OF FISH-EYE CAMERAS 
As mentioned previously, the used cameras are affected by some manufacturing imperfections, which required 
parameterizing the algorithms and making them flexible. The worst of all defects, is that there is the misalignment 
between the focal axis of the lens and the center of the sensor, and it is due to the imprecise construction of the plastic 
support that connects the sensor to the lens. The point of the sensor that intersects the focal axis is called “Center of 
Distortion” (COD), as described in [2]. This issue requires to not apply the radial correction algorithm from the radial 
center of the sensor, but rather by the COD. Obviously, the corrected image need to be re-centered on this point. 
Therefore, it will be as asymmetric as is the deviation of the COD from the center of the sensor, both vertically and 
horizontally. In the proposed system, each low-cost camera may be affected by a different misalignment, as shown in 

Figure 1. Interconnections between the 4 cameras and the other components. The dashed lines show the capture areas of each camera. 
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Fig. 2. Another problem not easily solvable by means of software, is that the thread pitch of these lenses is not perfectly 
compatible with the one of the mechanical support. Being a bit smaller, does not generate the necessary grip to lock the 
lens to the support. This causes a form of instability of the parallelism between the focal axis of the lens and the sensor, 
during the movement. This phenomenon is referred to as slack, and it is shown in Fig. 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. FLEXIBLE FISH-EYE CORRECTION ALGORITHM AND VIDEO FUSION 
The fish-eye correction algorithm implemented is a hybrid version, in the sense that it is based on the principle of 
operation of non-polynomial algorithms, but refines the results using a polynomial approach. This choice was made 
analyzing the behavior of a non-polynomial algorithm through a calibration grid: what emerges is that the peripheral 
areas and the central one of the captured image does not represent the objects in the same way. In fact, an object framed 
centrally will have a reasonable size, but if you move the camera to reposition the same object at the edge of the image, it 
will be larger. This is due to the calculation of the apparent focal length, which is derived from Eq. (3). This mapping 
function does not care of the variation of FOV of the lens used. To solve this problem, the apparent focal length is still 
calculated using Eq. (3), but with a different multiplicative coefficient between the two coordinates. A separate 
elaboration is done on both sizes, one used for the vertical coordinates and another for the horizontal ones. Furthermore, 
this multiplication coefficient is dynamically adapted: it changes as they are processed more distant pixels. Here it comes 
the theory behind the polynomial algorithms: to obtain the solution, a polynomial is added or subtracted from the initial 
factor. These polynomials have as a variable one of the two coordinates. In addition, the proposed algorithm allows to 
specify two offsets, one vertical and the other horizontal, to indicate the misalignment of the center of distortion. Finally, 
additional parameters were included to scale the size of the corrected image, to maximize the overlapping areas of the 
cameras. Since each camera is affected by different imperfections, calculations for each radial corrections are made only 
for the first frame and stored in four different “Fish-Eye Correction Lookup Tables” (FCLUT). 

Figure 2. Different misalignment for each camera. The red point is the sensor center, yellow one is COD.  

Figure 3. Slack effect on a calibration grid. Lens can move anyway. Here are shown two different images overlapped. 
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The video fusion algorithm initially fills a primary Lookup Table (LUT), which contains the positions of the pixels of the 
source quad image. Later, this LUT is used cyclically to reorder the source pixels and compose new frames, offered in 
ordered sequence to the driver. This work focuses on the calculation step of the primary LUT. Because this algorithm 
must also be flexible and adaptable to different types of vehicles, it accepts as parameters the positions and tilt angles of 
the four cameras. Moreover, also the “Point of View” (POV) from the top of the car must be changeable. Therefore, 
other parameters identify its position in three-dimensional space. The first phase of this algorithm allows to derive the 
three-dimensional coordinates of the real environment that correspond to a given pixel to be displayed on the car’s 
display to the coordinates (i, j). For this calculation it is assumed that the floor is perfectly flat and that the car’s display 
is virtually positioned at the focal distance LCDFOCAL from POV, which will stay at a height POVHEIGHT, disposed 
parallel to the road surface as to form a pinhole camera in the virtual coordinates of the point of view. The expressions 
for the two coordinates are obtained by simple proportions, derivable from Fig. 4a. The following proportion describes 
the procedure for calculating the x coordinate: 

 
The second step finds from which of the four cameras is more appropriate to take the flooring area associated with the 
pixel being processed. The calculations are very similar to those of the third phase, in which it get the line and column 
numbers of the pixel that takes up the affected area on the pavement identified in the first phase, relative to the camera 
video stream selected in the second stage. Following the geometrical construction shown in Fig. 4b-c, and bearing in 
mind that the QUADHEIGHT and QUADWIDTH identify respectively the height and width (in pixel) of the quad of 
one of the four video streams, it is possible to derive the desired dimensions: 

 

 
The fourth phase, uses FCLUT associated with the current camera to convert the line and column of the selected pixels, 
so that they can be corrected by the radial distortion. A static image of a car is overlapped for marketing issues. 
 
 
 
 
 
 
 
 
 
 
 

7. EXPERIMENTAL RESULTS 
The experimental results obtained are shown in Fig. 5. The two sequences of images show a parking simulation, done 
with a mobile support. The support is designed to keep constant the distance between the cameras, and has the typical 
dimensions of a small car. In the center of the video an image of a hypothetical car was also placed. The two sequences 
were shot by varying the height of the point of view. Regarding memory requirements, a FCLUT is small and needs 
400KB, the primary LUT instead, it takes about 1700 KB. If we consider that the FCLUT are no longer needed once 
drawn the primary LUT, 2 MB of total memory are enough to run the code. 
 

Figure 4. Geometric models involved in the video fusion algorithm. 
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8. CONCLUSION AND FUTURE WORK 
The proposed real-time embedded system could have a higher resolution, opting for a multiplexer that does not reduce it 
so drastically, as one of those for high-definition applications. The discontinuities between the different cameras are 
perceivable, also because of the difference in brightness and color between the zones. This defect can be eliminated by 
performing more accurate calibration of the fish-eye correction algorithm, and applying some kind of interpolation. 
However, if you consider that the system requires about 2 MB of memory to be run, and that the DSP DM642 at 720 
MHz is used for about 40% of its total power, the results are satisfactory. Further work is on-going for visual quality 
improvement or further reduction of the cost, scaling on lower-frequency processors like the Texas Instruments DM368, 
which is an ARM926 processor at 400 MHz. 

Figure 5. Two different parking simulations at different POV. 
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