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ABSTRACT 

  

Late Gadolinium-Enhanced Cardiac MRI (LGE CMRI) is a non-invasive technique, which has shown promise in 

detecting native and post-ablation atrial scarring. To visualize the scarring, a precise segmentation of the left atrium (LA) 

and pulmonary veins (PVs) anatomy is performed as a first step—usually from an ECG gated CMRI roadmap 

acquisition—and the enhanced scar regions from the LGE CMRI images are superimposed. The anatomy of the LA and 

PVs in particular is highly variable and manual segmentation is labor intensive and highly subjective. In this paper, we 

developed a multi-atlas propagation based whole heart segmentation (WHS) to delineate the LA and PVs from ECG 

gated CMRI roadmap scans. While this captures the anatomy of the atrium well, the PVs anatomy is less easily 

visualized. The process is therefore augmented by semi-automated manual strokes for PVs identification in the registered 

LGE CMRI data. This allows us to extract more accurate anatomy than the fully automated WHS. Both qualitative 

visualization and quantitative assessment with respect to manual segmented ground truth showed that our method is 

efficient and effective with an overall mean Dice score of 0.91. 

Keywords: Atlas Propagation, Multi-Scale Patch, Local Atlas Ranking, Whole Heart Segmentation, Super-Voxel, 

Cardiac MRI, Medical Imaging Analysis, Image Processing 

 
 

1. INTRODUCTION  

Late Gadolinium-Enhanced Cardiac MRI (LGE CMRI) is an emerging non-invasive technique to identify native and 

post-ablation atrial scarring and shows potential to replace the current invasive clinical gold standard of electro-

anatomical mapping (EAM) 
1
. While studies have shown inverse correlation between image intensity in the LGE CMRI 

and left atrium (LA) endocardial voltage obtained from the EAM, there is on-going concerns regarding the 

reproducibility of the LGE CMRI technique 
2
. This can partly be attributed to the fact that atrial scarring identification 

generally relies on manually segmented anatomy of the LA and pulmonary veins (PVs), which is not only time-

consuming but also highly subjective among human operators and different research institutions 
3
. The anatomy may be 



 

 
 

 

segmented from a respiratory and ECG gated CMRI roadmap acquisition or from rapidly acquired breath-hold MR 

angiography (MRA) 
4,5

. While the latter is faster, the lack of ECG gating leads to mis-registration with the respiratory 

and ECG gated LGE CMRI dataset and the former is preferred. The purpose of this work is to design an objective, 

efficient and accurate segmentation method for the delineation of the LA and PVs that can be applied to the LGE CMRI 

images with minimum human intervention. Results on 20 LGE CMRI scans of atrial fibrillation patients show the 

promise of our method for further deployment in clinical environment. 

 

 

2. METHODOLOGY 

The overall framework of our method is summarized as shown in the flowchart in Figure 1. 

 

Figure 1: Flowchart of our approach including both whole heart segmentation (WHS) and super-voxel (SV) based refinements. 

 
 

2.1 Multi-Atlas Propagation Based Fully-Automated Whole Heart Segmentation (WHS) 

    First, a multi-atlas propagation based segmentation (MAS) 
6
 was developed and applied to the steady-state free 

precession (b-SSFP) CMRI whole-heart (a.k.a. CMRI roadmap) acquisition and followed by a multi-scale patch based 

label fusion (MSP-LF) 
7
 (Figure 1). This derived labels of four chambers, major vessels and PVs. We extracted the LA 

and PVs as the initial segmentation. As both roadmap and LGE CMRI sequences are ECG gated and respiratory 

navigated, we can apply the extracted LA and PVs segmentation from the roadmap directly to the LGE CMRI images.  

 

2.2 Semi-Automated Super-Voxel Refinement 

    Second, we look through the initial segmentation overlaid on the 3D LGE CMRI images to see if any PVs have been 

poorly identified or missed. If so, manual strokes are drawn in the LGE CMRI image to identify the missing PVs.  

    Meanwhile, a 3D super-voxel (SV) technique is applied for each LGE CMRI volume 
8
. We applied a SLIC (Simple 

Linear Iterative Clustering) based SV method, which has been proved to be effective and efficient in many medical 

image analysis problems 
9–11

. SV is an unsupervised learning 
12

 based method that over-segments the images into 

meaningful sub-regions. In addition, we applied a SV technique that adaptively chooses the compactness parameter, 

which controls the shape of SVs. This method is particularly designed for medical images, and the only parameter that 

needs to be tuned is the number of the SVs 
13

. 

    Lastly, the SVs overlapped with manual strokes are included in the final segmentation. Because the SVs are calculated 

in 3D space, only a small number of 2D manual strokes are required to capture the missed PVs in 3D. 



 

 
 

 

3. EXPERIMENTS AND RESULTS 

Figure 2 shows a single slice from an example 3D LGE MRI study (a), the initial WHS based segmentation (green 

boundary) with manually drawn strokes (in red) (b), and the 3D SV grid (c). Comparisons of the manually drawn ground 

truth (purple boundary) (d), initial automatic segmentation (green boundary) (e), and final segmentation (cyan boundary) 

(f) are also shown.  

Table 1 tabulates the Dice score (0.91±0.08) and the Jaccard index (0.84±0.10) 
14

 of the final segmentation calculated 

with respect to the ground truth. Figure 3 (a) shows that our final segmentation has significant improvements compared 

to the initial segmentation based on the WHS alone. In order to determine the optimal number of SVs, we considered 

both the consistency of the SV derived boundary with the manually drawn ground truth, and the running time of the 3D 

SV calculation. The former was computed as a training procedure before the input of manual strokes on one randomly 

selected patient data. Figure 3 (b) shows the analysis with different numbers of SVs. Finally, we used        SVs per 

3D LGE volume (running time      seconds per volume). Figure 4 shows the segmentation results (3D rendering) of 

three example cases. 

 
Figure 2: (a) A single slice of a 3D LGE CMRI image where scarred tissue is seen as high signal intensity; (b) Green boundary: initial 

segmentation of the LA and PVs using WHS showing missed (right superior) and truncated (left inferior) PVs; Red strokes: manually 

drawn searching directions of the missed or underestimated PVs; (c) SV based over-segmentation (grid in red) overlaid on the LGE 

CMRI slice; (d) Purple boundary: manual drawn ground truth of the LA and PVs; (e) Green boundary: initial segmentation of the LA 

and PVs using WHS; (f) Cyan boundary: final LA and PVs segmentation. 



 

 
 

 

4. DISUSSION AND CONCLUSION 

    In this study, we proposed a semi-automated segmentation method for accurate delineation of LA and PVs, which is 

based on multi-atlas propagation and SV refinement. The SV refinement provides us an opportunity to modify and 

improve the segmentation results obtained from the fully-automated WHS method. This is particularly useful when we 

have variable anatomical structures, for example, LA and PVs. Although the SV refinement involves further manual 

intervention, the method has been proved to be efficient. In summary, both qualitative visual appearances and 

quantitative results have demonstrated that our method can achieve promising segmentation results with minimum 

human intervention. 

 

Table 1: Quantitative evaluation of the final LA and PVs segmentation after semi-automated SV refinement.   

Evaluation Methods 
Patient Number (Number of Slices Covering the LA) 

1 (33) 2 (35) 3 (41) 4 (35) 5 (37) 6 (36) 7 (34) 8 (36) 

Dice Score 0.919±0.063 0.921±0.062 0.924±0.065 0.896±0.066 0.887±0.064 0.907±0.055 0.913±0.065 0.919±0.052 

Jaccard Index 0.856±0.099 0.859±0.096 0.865±0.098 0.818±0.102 0.803±0.088 0.835±0.089 0.846±0.101 0.854±0.086 

         
Evaluation Methods 

Patient Number (Number of Slices Covering the LA) 

9 (37) 10 (35) 11 (32) 12 (35) 13 (35) 14 (26) 15 (32) 16 (35) 

Dice Score 0.919±0.032 0.876±0.109 0.897±0.050 0.906±0.038 0.919±0.047 0.903±0.098 0.881±0.091 0.917±0.062 

Jaccard Index 0.852±0.053 0.794±0.153 0.817±0.077 0.831±0.062 0.854±0.077 0.835±0.141 0.798±0.125 0.852±0.098 

         
Evaluation Methods 

Patient Number (Number of Slices Covering the LA) 

17 (47) 18 (36) 19 (38) 20 (36) Overall (-) 

Dice Score 0.900±0.055 0.910±0.157 0.907±0.057 0.919±0.066 0.907±0.075 

Jaccard Index 0.823±0.085 0.856±0.161 0.834±0.088 0.856±0.093 0.837±0.104 

 

 
Figure 3: (a) Boxplot of comparing the initial and final LA and PVs segmentation using evaluation metrics, i.e., Dice score (DS), 

Jaccard index (JI) and the normalized Hausdorff distance (HD); Statistical significances (indicated by ‘***’) were given by two-

sample Wilcoxon rank-sum test between the initial and final segmentation results with significance level of p<0.05 (DS: p = 1.14e-05, 

JI: p = 1.55e-04 and HD: p = 6.53e-10); (b) Dice scores and running times with respect to different number of SVs. 

 



 

 
 

 

 
Figure 4: Segmentation results (3D rendering) of three example cases are illustrated in three columns. (a)-(c) Manual delineated 

ground truth; (d)-(f) Initial LA and PVs segmentation based on fully-automated WHS; (g-i) Final LA and PVs segmentation after 

semi-automated SV refinement; (j-l) Hausdorff distance (in mm) between the ground truth and initial LA and PVs segmentation based 

on WHS; (m-o) Hausdorff distance (in mm) between the ground truth and final LA and PVs segmentation after semi-automated SV 

refinement. 
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