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ABSTRACT 

Taking a multi-objective optimization approach to deformable image registration has recently gained attention, because 
such an approach removes the requirement of manually tuning the weights of all the involved objectives. Especially for 
problems that require large complex deformations, this is a non-trivial task. From the resulting Pareto set of solutions one 
can then much more insightfully select a registration outcome that is most suitable for the problem at hand. To serve as 
an internal optimization engine, currently used multi-objective algorithms are competent, but rather inefficient. In this 
paper we largely improve upon this by introducing a multi-objective real-valued adaptation of the recently introduced 
Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) for discrete optimization. In this work, GOMEA is 
tailored specifically to the problem of deformable image registration to obtain substantially improved efficiency. This 
improvement is achieved by exploiting a key strength of GOMEA: iteratively improving small parts of solutions, 
allowing to faster exploit the impact of such updates on the objectives at hand through partial evaluations. We performed 
experiments on three registration problems. In particular, an artificial problem containing a disappearing structure, a pair 
of pre- and post-operative breast CT scans, and a pair of breast MRI scans acquired in prone and supine position were 
considered. Results show that compared to the previously used evolutionary algorithm, GOMEA obtains a speed-up of 
up to a factor of ~1600 on the tested registration problems while achieving registration outcomes of similar quality. 

Keywords: Deformable image registration, multi-objective optimization, evolutionary algorithms, partial evaluations, 
content mismatch, large anatomical differences 
 

1. INTRODUCTION 
Many state-of-the-art algorithms, such as the elastix toolbox1, designed for the Deformable Image Registration (DIR) 
problem are very efficient and capable of producing good results for certain applications, but only produce a single 
registration outcome. The reason for this is that although DIR encompasses multiple objectives, e.g., similarity and 
deformation smoothness objectives, these objectives are often condensed into a single optimization function through a 
weighted sum of the objectives. Setting these weights appropriately can be very problem specific. Moreover, manually 
fine-tuning them is difficult and time-consuming. Using a multi-objective approach removes the requirement of setting 
weights manually via trial and error a priori, because such an approach results in a set of non-dominated solutions, i.e., a 
set where no single solution is better in every objective than any other solution in this set. Each solution in this so-called 
Pareto set represents a different trade-off between the objectives of interest. The solution that is deemed the most 
appropriate for the problem at hand can manually be selected from this Pareto set a posteriori. This set of solutions is 
highly intuitive to navigate, contrary to tuning weights a priori as is current practice. Previously2, a multi-objective 
Evolutionary Algorithm (EA) was used within a recently proposed multi-objective framework for DIR because EAs are 
among the state-of-the-art for multi-objective optimization3. Although recent research on DIR has shown that multi-
objective EAs are capable of obtaining excellent results comparable to algorithms that are currently used in practice, 
such multi-objective EAs have been used without many problem-specific enhancements, making them very slow, 
potentially even prohibiting practical use. 
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 In the aforementioned recent framework for multi-objective DIR, a dual-dynamic grid transformation model was 
proposed in order to deal with large (dis)appearing structures, which is an issue that is addressed by few studies4-6. Using 
this model does however double the number of variables to optimize. This large number of variables impacts the 
efficiency of optimization, especially for the multi-objective EA that has been used in the aforementioned recent multi-
objective framework for DIR: iMAMaLGaM7. The inefficiency is largely caused by the fact that, to ensure the most 
robust performance on a large variety of problems without making any assumptions on these problems, dependencies are 
assumed to exist between all pairs of variables. It was previously indeed demonstrated that disregarding all dependencies 
in DIR leads to inferior results8. However, taking into account all dependencies is only required for very particular, often 
artificial, problems. In DIR, however, grid points are strongly dependent on grid points that are adjacent, because these 
points directly influence the mapping of pixels from the source image to the target image, but are only weakly dependent 
on grid points that are remote. 
  
 To improve on the results of iMAMaLGaM, we exploit the implicit dependency structure that is present in DIR. To 
do so, we introduce a real-valued adaptation of the recently introduced Gene-pool Optimal Mixing Evolutionary 
Algorithm (GOMEA)9 that uses a prescribed dependency model to incrementally improve parts of solutions. Excellent 
results have recently been obtained with GOMEA on a wide range of discrete optimization problems9. Real-Valued 
GOMEA (RV-GOMEA) adopts mechanisms used in iMAMaLGaM in order to be able to solve optimization problems 
that have real-valued variables, such as DIR. In this paper, we describe how RV-GOMEA was tailored problem-
specifically for DIR. 
 
 

2. MATERIALS AND METHODS 

2.1 Dual-dynamic grid transformation model 
In a frequently used transformation model10, the source and the target image are overlaid with a regular grid with the 
same topology. With a regular triangulated grid model, a deformed image is calculated by mapping the contents of each 
source triangle to the shape and location of the corresponding target triangle. Deformation can therefore be achieved by 
modifying the coordinates of target grid points. Instead of overlaying the source image with a fixed grid and the target 
image with a moving grid, the dual-dynamic grid transformation model2 overlays both the source and the target image 
with a moving triangulated grid of the same topology. Increasing the size of a triangle while decreasing the size of the 
corresponding triangle in the opposing grid naturally supports large deformations, including (dis)appearing structures. 
The dual-dynamic transformation model does however increase the model complexity, because the number of variables 
to optimize, i.e., for both grids: the number of grid points times the spatial dimensionality of the image, is doubled. 
 
2.2 Multi-objective DIR 
Using a multi-objective approach for DIR allows the utilization of multiple objectives of interest without setting their 
weights a priori. In this approach, one solution is said to dominate a different solution when it is better in at least one 
objective of interest, and not worse in any other objective. The final result of a multi-objective optimization approach 
consists of a so-called Pareto set, i.e., a set where no solution dominates any other solution. Such a Pareto set of solutions 
defines a so-called Pareto front of optimal trade-offs between the objectives of interest. A multi-objective framework for 
DIR using iMAMaLGaM was previously successfully introduced2. iMAMaLGaM is a multi-objective EA that maintains 
a population of promising solutions and keeps track of non-dominated solutions in the so-called elitist archive. During 
each generation, a selection of the best solutions in the population is performed, based on which a probabilistic model11-12 
is estimated. Specifically, a normal mixture probability distribution is estimated with maximum-likelihood. New 
solutions are sampled from this probability distribution, driving the optimization procedure. The final result of 
iMAMaLGaM is a so-called approximation set, which is the combined set of non-dominated solutions in the population 
and the elitist archive. This approximation set describes the best possible approximation of the optimal Pareto front based 
on the solutions found by the EA. 
 
2.3 RV-GOMEA 
A key difference between RV-GOMEA and iMAMaLGaM is that RV-GOMEA has a much higher selection pressure as 
a result of incrementally improving parts of existing so-called parent solutions. The parts to improve are explicitly 
defined in a so-called dependency, or linkage, model. Instead of estimating one normal mixture probability distribution, 
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Figure 1. The selection of triangles and, at the borders, line segments, included in the dependency model, i.e., which are resampled 
during each generation of RV-GOMEA, highlighted in red in a triangulated 6×6 grid. 
 
as is done in iMAMaLGaM, RV-GOMEA estimates such a distribution for each subset of variables in the dependency 
model separately. Solutions are then improved by sampling new values for these subsets of variables in the linkage 
model independently. Only if these newly sampled values lead to an improved solution, the newly sampled values are 
accepted, otherwise the parent solution is returned to its previous state. Because solutions are now only partially altered, 
it is not required to re-evaluate the entire solution to assess the contribution of a partial alteration. Such partial 
evaluations are an important reason for the practical efficiency of RV-GOMEA. Finally, to avoid manual tuning of the 
population size parameter, RV-GOMEA uses a population-sizing-free scheme13, which interleaves generations of 
independent instances of the EA with different population sizes, which are initially small and grow over time.  

 
 To apply RV-GOMEA to DIR we have studied the use of various dependency models. A good model should 
represent the minimum number of dependencies required to be able to solve the problem efficiently. We use a 
dependency model in which each element describes all coordinates of a single triangle. This means that solutions are 
incrementally modified by sampling new coordinates for the single triangles (either in the source or the target 
triangulation) that are included in the dependency model. To avoid including certain grid points an excessive number of 
times in the dependency model, we only include a subset of triangles. We have chosen to select the subset of triangles 
according to the highlighted triangles in Figure 1, because this selection has little overlap between triangles and it is 
easily generalizable to higher-dimensional grids. A small number of triangles at the borders of the grid are cropped to 
just line segments, but this does not harm the optimization process. Initial experiments have shown that this model leads 
to good results. Moreover, for DIR, efficient partial evaluations require that objective values can be updated by only re-
evaluating contributions made by individual triangles ሺߜሻ that were modified. For this purpose, each objective is defined 
as a sum over the set of triangles ∆௦ in the source grid and the triangles ∆௧ in the target grid. Whenever any point of any 
triangle is moved, all objectives for this triangle must be re-evaluated. This leads to a large number of triangles having to 
be re-evaluated after the coordinates of a single triangle are resampled, as illustrated in Figure 2. In these illustrations, we 
show an arbitrary triangulated grid and a triangle highlighted in red. If the highlighted triangle were to be resampled, the 
objective functions of all triangles shaded in blue would be affected and would have to be re-evaluated to find the 
objective values of the entire grid. The two illustrations in Figure 2 show that the re-evaluation of adjacent triangles 
produces the most significant effect on small-dimensional grids, because a larger fraction of triangles has to be 
recomputed after the coordinates of one triangle are resampled. RV-GOMEA uses a slightly different dual-dynamic grid 
transformation model than iMAMaLGaM. The triangulation model for the recent most publication of iMAMaLGaM for 
DIR did not have grid points constrained to the borders2. Conversely, for RV-GOMEA the outer points of the grid are 
constrained to be on the borders of the image so as to ensure that the entire image is covered by the transformation grid. 
Covering the entire non-empty area of the image is required for a valid transformation, but maintaining this condition 
would require more problem-specific enhancements and would increase the complexity of each partial evaluation. 

 
2.4 Objective functions 
Three objective functions, namely the similarity objective, the deformation magnitude objective, and the guidance error 
objective, are used for the optimization process. The guidance error objective is optional, and is only used when guidance 
information is supplied. All three objectives are now defined as a sum over the set of triangles ∆௦ in the source grid and 
the triangles ∆௧ in the target grid, because this allows the total objective values to be efficiently updated when the 
contribution of any single triangle to these objectives is changed. 
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Figure 2. Triangulated 6×6 and 21×21 grids, indicating in blue for which triangles the objective values would change if the 
coordinates of the triangle highlighted in red would be resampled. 
 

Similarity objective 
In this paper, the similarity of the transformed source image and the target image is evaluated by computing the mean 
squared difference in pixel intensities, which is to be minimized. We note that, although not considered here, other 
notions of (dis)similarity often used in DIR can be evaluated partially also. For a single triangle ߜ, we iterate over the 
pixels inside this triangle, denoted ݔ݌ሺߜሻ and compute the squared difference between a pixel's intensity in the one 
image and the bilinear-interpolated intensity at this pixel's corresponding position in the other image. The 
correspondence of positions in opposing images is straightforwardly governed by the correspondence of triangles in the 
triangulations defined over the opposing images. To obtain values that are independent of the image resolution, 
normalization is applied by dividing by the total number of pixels. Defining the (bi-linearly interpolated) intensity of a 
point ݌ as ܫሺ݌ሻ and its corresponding position in the opposing grid as ݌௖, we have: 
dissimilarityܨ  = 1|∆௦| + |∆௧| ቎ ෍ ቎ ෍ ൫ܫ௦ሺ݌௦ሻ − ௦௖ሻ൯ଶ௣ೞ∈௣௫ሺఋೞሻ݌௧ሺܫ ቏ఋೞ∈∆ೞ + ෍ ቎ ෍ ൫ܫ௧ሺ݌௧ሻ − ௧௖ሻ൯ଶ௣೟∈௣௫ሺఋ೟ሻ݌௦ሺܫ ቏ఋ೟∈∆೟ ቏ 
 
 
Deformation magnitude objective 
We employ Hooke's law14 based on the mean squared difference of edge lengths between edges e in the one grid and 
their corresponding edges ݁௖ in the opposing grid. The final objective value of one triangle is then the squared sum of 
edge-length differences, normalized by dividing by three times the total number of triangles, i.e.,: 
deformationܨ  = 13ሺ|∆௦| + |∆௧|ሻ ቎ ෍ ቎ ෍ ሺ‖݁௦‖ − ‖݁௦௖‖ሻଶ௘ೞ∈edgesሺఋೞሻ ቏ఋೞ∈∆ೞ + ෍ ቎ ෍ ሺ‖݁௧‖ − ‖݁௧௖‖ሻଶ௘೟∈edgesሺఋ೟ሻ ቏ఋ೟∈∆೟ ቏ 
 
 
Guidance error objective 
This objective is only used when guidance information is supplied, which is a set of tuples of contours or landmarks ܩ = ሼሺܩ௦, ,௧ሻଵܩ . . . , ሺܩ௦,  ௧ሻ௞ሽ that predefine corresponding points or lines in the source and target images. The guidanceܩ
objective aims to minimize the distance between these pairs of contours/landmarks. For all pixels on a contour within a 
certain triangle ߜ, denoted ܩሺߜሻ, the minimal distance to a point on the opposing contour is calculated. The objective 
value is the total sum of these minimal distances, normalized by the total number of pixels on the contour, again 
computed symmetrically, and summed over all pairs of contours, i.e.,: 
guidanceܨ  = ෍ ቎ ෍ |௦ܩ|1 + |௧ܩ| ෍ ݉݅݊௣೟∈ீ೟ሼ݀ሺ݌௦௖, ீ∋௧ሻሽ௣ೞ∈ீೞሺఋೞሻሺீೞ,ீ೟ሻ݌ ቏	ఋೞ∈∆ೞ + ෍ ቎ ෍ |௦ܩ|1 + |௧ܩ| ෍ ݉݅݊௣ೞ∈ீೞሼ݀ሺ݌௧௖, ீ∋௦ሻሽ௣೟∈ீ೟ሺఋ೟ሻሺீೞ,ீ೟ሻ݌ ቏ఋ೟∈∆೟  
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3. RESULTS AND DISCUSSION 
For the first experiment, the hypervolumes interpolated over 4 runs are displayed in Figure 4 where the shaded areas 
demark the range between the best and worst run. The median run is displayed as the plotted line. Speed-up is then 
calculated by comparing the time required to reach the minimum hypervolume obtained by either iMAMaLGaM or RV-
GOMEA upon termination. For the artificial problem, speed-up factors of 114, 102, and 1641 are obtained on  
resolutions of 6×6, 11×11, and 21×21, respectively. For the pre- and post-operative problem, speed-up factors of 0.25, 
31, and 940 are obtained on the respective resolutions. The apparent inferior performance of RV-GOMEA for the 6×6 
grid resolution on the pre- and post-operative problem is caused by the fact that in RV-GOMEA we use a slightly 
different transformation model where the outer points of the grid (i.e., 20 out of 36 points for a 6×6 regular grid 
resolution) are constrained to be on the borders of the image. For higher grid resolutions, the impact of this difference is 
negligible. Also note that iMAMaLGaM achieves a higher hypervolume in its first generation, which is caused by the 
relatively small initial population size of RV-GOMEA due to its population-sizing-free scheme.  
 
 Results for the second experiment are shown in Figure 5. This figure shows the Pareto fronts after each stage of the 
multi-resolution scheme for RV-GOMEA. Each solution is color-coded with regard to its mean TRE and the solution 
with the minimal mean TRE is encircled. After running the 6×6 grid resolution for only 144 seconds, a solution was 
already found with a mean TRE of 2.0 mm. For higher resolutions the mean TRE does not get much better, but the 
deformation does become smoother. The position of the encircled solution makes it clear that minimizing dissimilarity 
does not always lead to higher-quality solutions. Instead, highly deformed, over-fitted solutions with unnatural 
deformations are obtained. Moreover, because the mean TRE is very irregular along the Pareto front, searching by trial 
and error for a linear combination of weights to use in a single-objective approach that linearly weights the objectives is 
very likely to get stuck in a local optimum of weights with a high risk of obtaining an unsatisfactory registration 
outcome. This highlights the strength of a multi-objective approach. 
 
 Our results could be improved even further by enabling a previously introduced adaptive steering approach2. During 
optimization, this technique purges certain solutions from the Pareto set in order to direct the algorithm towards the most 
interesting part of the Pareto front, i.e., the part where each objective value of a solution is close to the best known values 
of this objective function. RV-GOMEA could further be combined with the recently introduced smart grid-initialization17 
technique that was observed to obtain an additional speed-up of a factor between 10 and 100. 

4. CONCLUSIONS 
The advantage of a multi-objective approach is that it results in a set of solutions representing different trade-offs 
between the objectives of interest, from which a desirable registration outcome can be selected much more insightfully 
compared to manually tuning weights of a traditional, weighted-objectives, single-objective approach. 
 
 Multi-objective DIR with a dual-dynamic transformation model to account for large anatomical differences has high 
potential, but using off-the-shelf state-of-the-art multi-objective EAs it is prohibitively slow for real-world practice. In 
this paper, we introduced a new multi-objective EA for DIR. We showed that by using a problem-specific tailored multi-
objective implementation of the recently introduced EA known as RV-GOMEA, a large speed-up can be obtained. We 
observed a speed-up of up to a factor of ~1600 compared to the previously used algorithm, scaling to even higher factors 
as the dimensionality of the transformation grid increases. 
 
 Because of its substantially improved scalability, RV-GOMEA opens the door to applying multi-objective EAs to 
accurately solve DIR problems in 3D with dual-dynamic transformation grids to support large anatomical variations and 
content mismatches. 
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