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ABSTRACT

Taking a multi-objective optimization approach to deformable image registration has recently gained attention, because
such an approach removes the requirement of manually tuning the weights of all the involved objectives. Especially for
problems that require large complex deformations, this is a non-trivial task. From the resulting Pareto set of solutions one
can then much more insightfully select a registration outcome that is most suitable for the problem at hand. To serve as
an internal optimization engine, currently used multi-objective algorithms are competent, but rather inefficient. In this
paper we largely improve upon this by introducing a multi-objective real-valued adaptation of the recently introduced
Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) for discrete optimization. In this work, GOMEA is
tailored specifically to the problem of deformable image registration to obtain substantially improved efficiency. This
improvement is achieved by exploiting a key strength of GOMEA: iteratively improving small parts of solutions,
allowing to faster exploit the impact of such updates on the objectives at hand through partial evaluations. We performed
experiments on three registration problems. In particular, an artificial problem containing a disappearing structure, a pair
of pre- and post-operative breast CT scans, and a pair of breast MRI scans acquired in prone and supine position were
considered. Results show that compared to the previously used evolutionary algorithm, GOMEA obtains a speed-up of
up to a factor of ~1600 on the tested registration problems while achieving registration outcomes of similar quality.

Keywords: Deformable image registration, multi-objective optimization, evolutionary algorithms, partial evaluations,
content mismatch, large anatomical differences

1. INTRODUCTION

Many state-of-the-art algorithms, such as the elastix toolbox', designed for the Deformable Image Registration (DIR)
problem are very efficient and capable of producing good results for certain applications, but only produce a single
registration outcome. The reason for this is that although DIR encompasses multiple objectives, e.g., similarity and
deformation smoothness objectives, these objectives are often condensed into a single optimization function through a
weighted sum of the objectives. Setting these weights appropriately can be very problem specific. Moreover, manually
fine-tuning them is difficult and time-consuming. Using a multi-objective approach removes the requirement of setting
weights manually via trial and error a priori, because such an approach results in a set of non-dominated solutions, i.e., a
set where no single solution is better in every objective than any other solution in this set. Each solution in this so-called
Parcto set represents a different trade-off between the objectives of interest. The solution that is deemed the most
appropriate for the problem at hand can manually be selected from this Pareto set a posteriori. This set of solutions is
highly intuitive to navigate, contrary to tuning weights a priori as is current practice. Previously’, a multi-objective
Evolutionary Algorithm (EA) was used within a recently proposed multi-objective framework for DIR because EAs are
among the state-of-the-art for multi-objective optimization®. Although recent research on DIR has shown that multi-
objective EAs are capable of obtaining excellent results comparable to algorithms that are currently used in practice,
such multi-objective EAs have been used without many problem-specific enhancements, making them very slow,
potentially even prohibiting practical use.
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In the aforementioned recent framework for multi-objective DIR, a dual-dynamic grid transformation model was
proposed in order to deal with large (dis)appearing structures, which is an issue that is addressed by few studies*®. Using
this model does however double the number of variables to optimize. This large number of variables impacts the
efficiency of optimization, especially for the multi-objective EA that has been used in the aforementioned recent multi-
objective framework for DIR: iMAMaLGaM’. The inefficiency is largely caused by the fact that, to ensure the most
robust performance on a large variety of problems without making any assumptions on these problems, dependencies are
assumed to exist between all pairs of variables. It was previously indeed demonstrated that disregarding all dependencies
in DIR leads to inferior results®. However, taking into account a// dependencies is only required for very particular, often
artificial, problems. In DIR, however, grid points are strongly dependent on grid points that are adjacent, because these
points directly influence the mapping of pixels from the source image to the target image, but are only weakly dependent
on grid points that are remote.

To improve on the results of IMAMalLGaM, we exploit the implicit dependency structure that is present in DIR. To
do so, we introduce a real-valued adaptation of the recently introduced Gene-pool Optimal Mixing Evolutionary
Algorithm (GOMEA)’ that uses a prescribed dependency model to incrementally improve parts of solutions. Excellent
results have recently been obtained with GOMEA on a wide range of discrete optimization problems’. Real-Valued
GOMEA (RV-GOMEA) adopts mechanisms used in iMAMalLGaM in order to be able to solve optimization problems
that have real-valued variables, such as DIR. In this paper, we describe how RV-GOMEA was tailored problem-
specifically for DIR.

2. MATERIALS AND METHODS

2.1 Dual-dynamic grid transformation model

In a frequently used transformation model'’, the source and the target image are overlaid with a regular grid with the
same topology. With a regular triangulated grid model, a deformed image is calculated by mapping the contents of each
source triangle to the shape and location of the corresponding target triangle. Deformation can therefore be achieved by
modifying the coordinates of target grid points. Instead of overlaying the source image with a fixed grid and the target
image with a moving grid, the dual-dynamic grid transformation model® overlays both the source and the target image
with a moving triangulated grid of the same topology. Increasing the size of a triangle while decreasing the size of the
corresponding triangle in the opposing grid naturally supports large deformations, including (dis)appearing structures.
The dual-dynamic transformation model does however increase the model complexity, because the number of variables
to optimize, i.e., for both grids: the number of grid points times the spatial dimensionality of the image, is doubled.

2.2 Multi-objective DIR

Using a multi-objective approach for DIR allows the utilization of multiple objectives of interest without setting their
weights a priori. In this approach, one solution is said to dominate a different solution when it is better in at least one
objective of interest, and not worse in any other objective. The final result of a multi-objective optimization approach
consists of a so-called Pareto set, i.¢., a set where no solution dominates any other solution. Such a Pareto set of solutions
defines a so-called Pareto front of optimal trade-offs between the objectives of interest. A multi-objective framework for
DIR using iMAMaLGaM was previously successfully introduced”. iMAMaLGaM is a multi-objective EA that maintains
a population of promising solutions and keeps track of non-dominated solutions in the so-called elitist archive. During
each generation, a selection of the best solutions in the population is performed, based on which a probabilistic model''"'?
is estimated. Specifically, a normal mixture probability distribution is estimated with maximum-likelihood. New
solutions are sampled from this probability distribution, driving the optimization procedure. The final result of
iIMAMaLGaM is a so-called approximation set, which is the combined set of non-dominated solutions in the population
and the elitist archive. This approximation set describes the best possible approximation of the optimal Pareto front based
on the solutions found by the EA.

2.3 RV-GOMEA

A key difference between RV-GOMEA and iMAMaLGaM is that RV-GOMEA has a much higher selection pressure as
a result of incrementally improving parts of existing so-called parent solutions. The parts to improve are explicitly
defined in a so-called dependency, or linkage, model. Instead of estimating one normal mixture probability distribution,
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Figure 1. The selection of triangles and, at the borders, line segments, included in the dependency model, i.e., which are resampled
during each generation of RV-GOMEA, highlighted in red in a triangulated 6x6 grid.

as is done in iMAMaLGaM, RV-GOMEA estimates such a distribution for each subset of variables in the dependency
model separately. Solutions are then improved by sampling new values for these subsets of variables in the linkage
model independently. Only if these newly sampled values lead to an improved solution, the newly sampled values are
accepted, otherwise the parent solution is returned to its previous state. Because solutions are now only partially altered,
it is not required to re-evaluate the entire solution to assess the contribution of a partial alteration. Such partial
evaluations are an important reason for the practical efficiency of RV-GOMEA. Finally, to avoid manual tuning of the
population size parameter, RV-GOMEA uses a population-sizing-free scheme'’, which interleaves generations of
independent instances of the EA with different population sizes, which are initially small and grow over time.

To apply RV-GOMEA to DIR we have studied the use of various dependency models. A good model should
represent the minimum number of dependencies required to be able to solve the problem efficiently. We use a
dependency model in which each element describes all coordinates of a single triangle. This means that solutions are
incrementally modified by sampling new coordinates for the single triangles (either in the source or the target
triangulation) that are included in the dependency model. To avoid including certain grid points an excessive number of
times in the dependency model, we only include a subset of triangles. We have chosen to select the subset of triangles
according to the highlighted triangles in Figure 1, because this selection has little overlap between triangles and it is
easily generalizable to higher-dimensional grids. A small number of triangles at the borders of the grid are cropped to
just line segments, but this does not harm the optimization process. Initial experiments have shown that this model leads
to good results. Moreover, for DIR, efficient partial evaluations require that objective values can be updated by only re-
evaluating contributions made by individual triangles (&) that were modified. For this purpose, each objective is defined
as a sum over the set of triangles Ay in the source grid and the triangles A, in the target grid. Whenever any point of any
triangle is moved, all objectives for this triangle must be re-evaluated. This leads to a large number of triangles having to
be re-evaluated after the coordinates of a single triangle are resampled, as illustrated in Figure 2. In these illustrations, we
show an arbitrary triangulated grid and a triangle highlighted in red. If the highlighted triangle were to be resampled, the
objective functions of all triangles shaded in blue would be affected and would have to be re-evaluated to find the
objective values of the entire grid. The two illustrations in Figure 2 show that the re-evaluation of adjacent triangles
produces the most significant effect on small-dimensional grids, because a larger fraction of triangles has to be
recomputed after the coordinates of one triangle are resampled. RV-GOMEA uses a slightly different dual-dynamic grid
transformation model than iMAMaLGaM. The triangulation model for the recent most publication of iIMAMaLGaM for
DIR did not have grid points constrained to the borders”. Conversely, for RV-GOMEA the outer points of the grid are
constrained to be on the borders of the image so as to ensure that the entire image is covered by the transformation grid.
Covering the entire non-empty area of the image is required for a valid transformation, but maintaining this condition
would require more problem-specific enhancements and would increase the complexity of each partial evaluation.

2.4 Objective functions

Three objective functions, namely the similarity objective, the deformation magnitude objective, and the guidance error
objective, are used for the optimization process. The guidance error objective is optional, and is only used when guidance
information is supplied. All three objectives are now defined as a sum over the set of triangles A; in the source grid and
the triangles A; in the target grid, because this allows the total objective values to be efficiently updated when the
contribution of any single triangle to these objectives is changed.
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Figure 2. Triangulated 6x6 and 21x21 grids, indicating in blue for which triangles the objective values would change if the
coordinates of the triangle highlighted in red would be resampled.

Similarity objective

In this paper, the similarity of the transformed source image and the target image is evaluated by computing the mean
squared difference in pixel intensities, which is to be minimized. We note that, although not considered here, other
notions of (dis)similarity often used in DIR can be evaluated partially also. For a single triangle &, we iterate over the
pixels inside this triangle, denoted px(8§) and compute the squared difference between a pixel's intensity in the one
image and the bilinear-interpolated intensity at this pixel's corresponding position in the other image. The
correspondence of positions in opposing images is straightforwardly governed by the correspondence of triangles in the
triangulations defined over the opposing images. To obtain values that are independent of the image resolution,
normalization is applied by dividing by the total number of pixels. Defining the (bi-linearly interpolated) intensity of a
point p as I(p) and its corresponding position in the opposing grid as p¢, we have:
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Deformation magnitude objective

We employ Hooke's law'* based on the mean squared difference of edge lengths between edges e in the one grid and
their corresponding edges e in the opposing grid. The final objective value of one triangle is then the squared sum of
edge-length differences, normalized by dividing by three times the total number of triangles, i.e.,:
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Guidance error objective

This objective is only used when guidance information is supplied, which is a set of tuples of contours or landmarks
G = {(Gs,Gp)1,---, (G, Gy) i} that predefine corresponding points or lines in the source and target images. The guidance
objective aims to minimize the distance between these pairs of contours/landmarks. For all pixels on a contour within a
certain triangle §, denoted G (&), the minimal distance to a point on the opposing contour is calculated. The objective
value is the total sum of these minimal distances, normalized by the total number of pixels on the contour, again
computed symmetrically, and summed over all pairs of contours, i.e.,:

1 .
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Figure 3. Left: the guidance information used for the pre- and post-operative benchmark problem. Right: the annotated
landmark locations used for (calculation of the registration accuracy for) the prone-supine benchmark problem.
Corresponding locations are annotated using the same color.

Feasibility constraints

If any two edges within a triangulation intersect, certain pixels are located within the perimeter of more than one triangle,
meaning that the triangulation is infeasible. A technique known as constraint domination'’, by which feasible solutions
are always preferred over infeasible solutions, is used to deal with infeasible solutions. For this technique a constraint-
violation value is computed that describes the degree of infeasibility of a solution, where a constraint-violation value of 0
defines a feasible solution. To ensure efficiency by exploiting partial evaluations in RV-GOMEA, constraint-violation
values also must be computable per triangle. Therefore, we check whether a grid point p is inside the polygon bounded
by the edges between the neighbors of p. If p lies outside this polygon, the triangulated grid has intersecting edges and is
therefore infeasible. The total constraint-violation value is the number of grid points that violate this constraint. After
generating a subset of new points, each of the newly generated points and each of their neighbors have to be re-checked
to update the constraint-violation value. Note that this is a linear-time calculation as opposed to the quadratic-time
method previously used in iIMAMaLGaM to check all pairs of edges for intersections.

2.5 Experiments

In the first experiment, we run RV-GOMEA and iMAMaLGaM on two problems with a content mismatch. In particular,
we consider an artificial benchmark problem and a pair of 2D slices taken from pre- and post-operatively acquired breast
CT scans from a breast cancer patient. The selection of the pair of slices from the breast CT scans was done after rigid
registration on the bony anatomy. For both problems, the guidance error objective was used. Guidance information for
the real-life problem was annotated by a clinical expert, and is shown in Figure 3. Previous work demonstrated that both
problems can be adequately solved by iMAMaLGaM in a multi-resolution scheme?, but for the sake of comparison, in
this experiment we considered the use of RV-GOMEA and iMAMal.GaM using only single grid-resolution schemes
with dimensions 6x6, 11x11, and 21x21. Each run was terminated after £-10* evaluations where ¢ is the number of
variables, respectively being 144, 484, and 1764. For this purpose, each of RV-GOMEA's partial evaluations was
counted as a single evaluation in iIMAMaLGaM.

In a second experiment, we used a multi-resolution scheme” in RV-GOMEA with resolutions 6x6, 11x11, and
21%21 on two 2D slices of a breast MRI scan acquired from a healthy volunteer in prone and supine position, not
including guidance information. The selection of this pair of slices was done after rigid registration on the bony anatomy.
A time limit equal to the number of variables in seconds is used for each resolution, totaling close to 40 minutes.

We compare the speed and quality of results of RV-GOMEA with that of iMAMaLGaM®. For a notion of Pareto
front quality, we use the well-known hypervolume metric'® that calculates the total volume of the objective space that is
dominated by a Pareto front. In our experiments, we compare the hypervolumes of the approximation sets of the two
algorithms. Because the volume calculated by the hypervolume metric would otherwise be infinitely large, the space that
is considered by the hypervolume metric is bounded by the so-called Nadir point, for which we use 1.1 times the worst
encountered value in each objective. Due to this, hypervolumes of different benchmark problems or different grid
resolutions cannot directly be compared. By considering the time it takes two algorithms to reach a certain hypervolume,
we can define a notion of speed-up. We evaluate the quality of registration results on the pair of prone-supine MRI scans
with a set of five landmarks annotated by a clinical expert, shown in Figure 3, allowing us to compute the target
registration error (TRE), which is the mean distance between the deformed landmark locations and the predefined target
landmark locations. The purpose of this metric is similar to that of the guidance objective, but it is not used as an
objective during optimization.

All breast CT and MRI scans are provided through the courtesy of The Netherlands Cancer Institute — Antoni van
Leeuwenhoek Hospital.
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Figure 4. Hypervolumes of single-resolution runs with 6x6, 11x11, and 21x21 grids, on an artificial problem instance with a
disappearing structure (top row) and a set of pre- and post-operative breast CT scans (bottom row).
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Figure 5. Results on the prone-supine breast MRI test case. The Pareto fronts are displayed for the single, double, and triple
resolution runs where every run started from the 6x6 grid resolution. In each Pareto front, the solution with the minimal
mean TRE is encircled and displayed on the right along with its deformation applied to a uniform grid, its mean TRE, and
the run-time. Note: the actual dual-dynamic triangular grids that define the deformation field are not shown.
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3. RESULTS AND DISCUSSION

For the first experiment, the hypervolumes interpolated over 4 runs are displayed in Figure 4 where the shaded areas
demark the range between the best and worst run. The median run is displayed as the plotted line. Speed-up is then
calculated by comparing the time required to reach the minimum hypervolume obtained by either iIMAMaLGaM or RV-
GOMEA upon termination. For the artificial problem, speed-up factors of 114, 102, and 1641 are obtained on
resolutions of 6x6, 11x11, and 21x21, respectively. For the pre- and post-operative problem, speed-up factors of 0.25,
31, and 940 are obtained on the respective resolutions. The apparent inferior performance of RV-GOMEA for the 6x6
grid resolution on the pre- and post-operative problem is caused by the fact that in RV-GOMEA we use a slightly
different transformation model where the outer points of the grid (i.e., 20 out of 36 points for a 6x6 regular grid
resolution) are constrained to be on the borders of the image. For higher grid resolutions, the impact of this difference is
negligible. Also note that iIMAMaLGaM achieves a higher hypervolume in its first generation, which is caused by the
relatively small initial population size of RV-GOMEA due to its population-sizing-free scheme.

Results for the second experiment are shown in Figure 5. This figure shows the Pareto fronts after each stage of the
multi-resolution scheme for RV-GOMEA. Each solution is color-coded with regard to its mean TRE and the solution
with the minimal mean TRE is encircled. After running the 6x6 grid resolution for only 144 seconds, a solution was
already found with a mean TRE of 2.0 mm. For higher resolutions the mean TRE does not get much better, but the
deformation does become smoother. The position of the encircled solution makes it clear that minimizing dissimilarity
does not always lead to higher-quality solutions. Instead, highly deformed, over-fitted solutions with unnatural
deformations are obtained. Moreover, because the mean TRE is very irregular along the Pareto front, searching by trial
and error for a linear combination of weights to use in a single-objective approach that linearly weights the objectives is
very likely to get stuck in a local optimum of weights with a high risk of obtaining an unsatisfactory registration
outcome. This highlights the strength of a multi-objective approach.

Our results could be improved even further by enabling a previously introduced adaptive steering approach”. During
optimization, this technique purges certain solutions from the Pareto set in order to direct the algorithm towards the most
interesting part of the Pareto front, i.e., the part where each objective value of a solution is close to the best known values
of this objective function. RV-GOMEA could further be combined with the recently introduced smart grid-initialization'’
technique that was observed to obtain an additional speed-up of a factor between 10 and 100.

4. CONCLUSIONS

The advantage of a multi-objective approach is that it results in a set of solutions representing different trade-offs
between the objectives of interest, from which a desirable registration outcome can be selected much more insightfully
compared to manually tuning weights of a traditional, weighted-objectives, single-objective approach.

Multi-objective DIR with a dual-dynamic transformation model to account for large anatomical differences has high
potential, but using off-the-shelf state-of-the-art multi-objective EAs it is prohibitively slow for real-world practice. In
this paper, we introduced a new multi-objective EA for DIR. We showed that by using a problem-specific tailored multi-
objective implementation of the recently introduced EA known as RV-GOMEA, a large speed-up can be obtained. We
observed a speed-up of up to a factor of ~1600 compared to the previously used algorithm, scaling to even higher factors
as the dimensionality of the transformation grid increases.

Because of its substantially improved scalability, RV-GOMEA opens the door to applying multi-objective EAs to
accurately solve DIR problems in 3D with dual-dynamic transformation grids to support large anatomical variations and
content mismatches.
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