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Abstract

Digital histopathology images with more than 1 Gigapixel are drawing more and more attention in 

clinical, biomedical research, and computer vision fields. Among the multiple observable features 

spanning multiple scales in the pathology images, the nuclear morphology is one of the central 

criteria for diagnosis and grading. As a result it is also the mostly studied target in image 

computing. Large amount of research papers have devoted to the problem of extracting nuclei 

from digital pathology images, which is the foundation of any further correlation study. However, 

the validation and evaluation of nucleus extraction have yet been formulated rigorously and 

systematically. Some researches report a human verified segmentation with thousands of nuclei, 

whereas a single whole slide image may contain up to million. The main obstacle lies in the 

difficulty of obtaining such a large number of validated nuclei, which is essentially an impossible 

task for pathologist. We propose a systematic validation and evaluation approach based on large 

scale image synthesis. This could facilitate a more quantitatively validated study for current and 

future histopathology image analysis field.
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1. INTRODUCTION

Digital histopathology image computing is becoming a more and more active field due to its 

superb spatial resolution and the availability of large data sets. At a spatial scale between 

genomics and radiology, histopathology images have shown promising possibility of 

revealing detailed image based features that can be linked with genetics in a straightforward 

manner, as well as the epigenetical and environmental factors, which are not present in the 

DNA sequences.
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Among the vast amount of image features in the digital pathology images, the nuclei lie at a 

central position. Their morphologies are the main criteria for pathologist making diagnostic 

and grading decisions. Image computing often starts with nucleus analysis, the accurate 

extraction of each of every nuclei being the pre-requisite of such analysis.1

There exist large volume of literature discussing nucleus segmentation.2–12 The quantitative 

validation and evaluation of the nucleus segmentation algorithm is one of the most 

challenging issue in all of the publications. Indeed, it is difficult, if not impossible, to ask a 

skilled pathologist to manually contour hundreds and thousands of nuclei to be compared 

with algorithm output. Even so, one whole slide image may contain up to a million nuclei. 

Therefore, instead of relying on human annotation, we need a systematic approach to 

computationally generate large enough data set to test the accuracy and robustness of the 

algorithm, which is the main topic of this paper.

2. METHODS

2.1 Image Synthesis and Quantitative Evaluation Framework

To set the stage up, the algorithm starts with a set of images Ii : Ω ⊂ ℝ2 → C; i = 1, 2, …, 

N, where C denotes the RGB color space. We have expert validated segmentation of the 

nuclei in Ii’s, denoted as label images Ji : Ω → {0} ⋃ ℤ+. In the label images, 0 denotes 

background and different integer values indicate different nuclei. Denote the bounding box 

of the j-th nucleus in Ii as Bi
j: = (xi

j, yi
j, ui

j, vi
j); j = 1, 2, …, Ni, where (x, y)(resp.(u, v)) denotes 

the top-left (resp. bottom-right) coordinates for the bounding box, and Ni is the number of 

nuclei in Ii. With slight abuse of notation, the image domain of the bounding box is also 

denoted as Bi
j. Furthermore, the restriction of the image and the label iamge, i.e., the patch 

around the nucleus, are denoted as Ii
j: = I

i |Bi
j and Ji

j: = J
i |Bi

j, respectively. Finally, the non-

nuclear region in the patch is removed by defining Ii
j: = Ii

j ∗ Ji
j. To simplify the notation, we 

use single index and denote P1 = Ii
1, P2 = Ii

2 and Q1 = Ji
1, Q2 = Ji

2 etc.

2.1.1 Nucleus Synthesis—In this step, we synthesize new nuclei based on those in the 

training images. To proceed, a random nucleus P is picked from all Pi’s. Together with its 

mask Q, they will be used to generate a new nucleus. In order to generate nuclei with 

different orientation and thus evaluate the orientation invatiance of the segmentation 

algorithm, the patch P and Q are rotated with a random degree θ ∈ [0, 2π). The size of 

nucleus is also a key factor being considered in clinical practice. To simulate the size 
variation, the sizes of the training nuclei are computed and the size distribution, pS, is 

estimated through a kernel density estimation process.13 Then, a sample is drawn from pS 

and the new nucleus is scaled to the size.14

After that, a nonlinear deformation is applied to the new nucleus. At the same time, the 

corresponding label map is also deformed. As a result, we still have the exact segmentation 

of the nucleus. To this end, one possible approach is to generate a random deformation field 

and smooth it to certain degree. Such a random deformation may be feasible from a 
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computational point of view. Yet, the random deformation may generate some unrealistic 

shape. Because of this, we propose a relative conservative approach so that the resulting 

deformed nucleus is within the space spanned by the training nuclei. Specifically, for every 

training nuclei, without loss of generality, we assume their sizes (areas) have been 

normalized. Then, a Procrustes alignment is performed so that all major axes are aligned 

north-south. After that, each nucleus is mapped to the unit disk through the optimal mass 

transport (OMT).15,16 Formally, a set of points G := {xi ∈ ℝ2: i = 1, 2, …, m} is sampled 

uniformly from a unit disk, and a same number of points H := {yi ℝ2: i = 1, 2, …, m} are 

sampled from the nucleus to be registered to the disk. Each point is considered to have a 

Dirac metric. Then, an optimal matching between the two sets of points is constructed. To 

that end, we denote the correspondence between X and Y by a matrix A ∈ {0, 1}m × n, where 

Ai,j = 1(0) indicates xi is corresponding (not corresponding, resp.) with yj. Denoting the pair-

wise distance matrix C ∈ ℝm×m as Ci, j = xi − y j 2, where ·

2

 is the L2 norm, we find the 

correspondence between the two sets of points by solving such an assignment problem:

A = min
A
∼ ∈ ℝm × m

C ∘ A
∼

F

s . t . ∑
j

A
∼

i, j = 1 ∀i ∈ {1, …, m}

∑
j

A
∼

i, j = 1 ∀i ∈ {1, …, m}

A
∼

i, j ≥ 0 ∀i, j ∈ {1, …, m}

(1)

where is the Hadamard product of the two matrices and ·

F

 is the matrix Frobenius norm. 

Moreover, it is noted that the optimization variable Ã is not restricted to be a binary matrix. 

Otherwise the optimization becomes an NP-hard combinatorial problem. On the other hand, 

due to the fact that the constraint matrix of (1) is totally unimodular, the resulting optimal A 

is a binary matrix.17 This optimization problem can be shown to be convex, and it can be 

effectively solved by using, for example, interior point method.18 The resulting matrix A 
will give a one-to-one correspondence between G and H. The deformation field Di is 

therefore constructed as the displacement vector field among the corresponding points.

In a high dimensional deformation space, the Di’s most likely reside on a manifold rather 

than in a linear space.19,20 In order to generate arbitrarily deformation with similar fashion 

to that has been observed in the training data, one can interpolate the deformation fields on 

the manifold. However, due to the high dimensional nature of the manifold, characterizing 

Zhou et al. Page 3

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



its topology for interpolation is difficult. To overcome this problem, we apply a local linear 

embedding method to map the high dimensional manifold to a lower dimensional space, and 

perform the interpolation therein.21

Mapping the manifold to a locally linear lower dimensional space enables us to locally 

approximate the topology of the manifold with the Delaunay triangulation.22 The local 

structure of the manifold by interpolating it on the d-simplex and then map it back to the 

high dimensional space: First, a d-simplex, along with its associated deformation field, is 

randomly selected from the manifold, and a d-dimensional random vector r ∈ ℝd is 

generated such that each of r’s components are uniformly distributed on [0,1]. r is then 

normalized so that r 1 = 1. After that, a new deformation field can then be generated as 

D∗ = ∑i = 1
d riDi. Similar to the k parameter above, larger d results in more deformation 

fields contributing in the generation of the new one, which usually cause the new 

deformation to be smoother. The above process can be repeated infinitely, and allows us to 

create arbitrarily deformation fields.

It is noted that learning the object manifold and generating new objects are topics having 

been studied by many researchers19,20,23,24 and we are not claiming the proposed algorithm 

being superior to any of the existing ones. In fact, our key objective is to simulate a known 

deformation so that we can always keep track of the exact boundary of the nucleus, for the 

ultimate purpose of evaluating nuclear segmentation algorithms.

The final nucleus is determined as D* ○ P. Moreover, the segmentation of the nucleus in it 

is also known, which is characterized by D*○ Q. This is the key that enables us in using 

such synthesized images for evaluating nucleus segmentation.

2.1.2 Cytoplasm and Stroma—Once we have generated the nuclear regions, we can “fill 

in” the cytoplasmic and the inter-celluar regions. While the segmentation of the cytoplasm is 

not available in our training data and in many times an ambiguous problem even for human 

eyes, it fortunately does not affect the present work significantly because we are mainly 

interested in the nuclei. In this work, we model the image content in the non-nuclear regions 

as a Markov Random Field (MRF).25,26

More explicitly, we start with any pixel location x in the newly synthesized image U that is 

not in, but bordering, the nucleus. The choice of such a location is because with some 

nucleus structures around, it is easier to infer the image intensity at this location. Then, a 

neighborhood ωx is extracted centering at x. According to the assumption, some pixels in ωx 

have already been known. Then, we find the most similar patch α in non-nuclear region of 

the training images. In the computation of similarity, the mean-square-difference (MSD) is 

computed over color image values of the already filled pixels. In addition, denote the similar 

patches as the set Γ:

Γ: = β: MSD(β, U(ωx)) ≤ 1.3MSD(α, U(ωx)) (2)
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Based on the MRF assumption, the distribution of the center pixels of all the patches in is 

the same as that of the U(x), weighted (inversely) by MSD (β,U (ωx)). A random sample is 

therefore drawn from this distribution and assigned to U(x).

After this, we move onto the next un-filled pixel and repeat the same procedure above, until 

all the pixels in the image have been filled.

2.2 Evaluation of Segmentation Algorithm

The proposed algorithm is able to synthesize arbitrarily large image with known 

segmentation of nuclei in it. With that, we can evaluate the nucleus extraction algorithm at 

large scale.

He we provide a brief description of our segmentation algorithm to be evaluated. Given a 

new H&E stained digital pathology image I: r ∈ ℝ2 → C, we want to extract the nuclei from 

it. To that end, we first normalize the color distribution in the CIE lab color space to correct 

for possible staining, imaging, and illumination artifacts. Then, the RGB image is separated 

into hematoxylin and eosin channels.27

Then, in the hematoxylin channel, the Otsu threshold is computed to give the initial 

extraction of the nuclei. This is followed by the fine tuning of the local statistics driven level 

set evolution.28 The resulting segmentation may consist regions where several nuclei are 

clumped together. In order to de-clump the region and obtain the definition of each 

individual nuclei, the mean shift algorithm is used,29,30 which gives the final segmentation 

of individual nuclei.

The algorithm is implemented using the Insight Toolkit31 and the OpenSlide library,32 which 

is able to run on large tiff-like images output from the microscopy scanner.

3. RESULTS

3.1 Image Synthesis Results

Figure 1 demonstrates the synthesized brain pathology image results. It can be observed that 

in addition to being visually realistic, the most desired feature is that the manual 

segmentation results have been fully transferred to the newly generated images, including 

the “touching” nuclei are also labeled correctly. Separating those nuclei are in particular 

important and challenging for the nucleus segmentation algorithm.

3.2 Quantitative Evaluation Results

Performing nucleus segmentation in the above images gives the segmentation results as 

shown in Figure 2. It can be observed that in the left-most image, the two touching nuclei are 

correctly separated. While in the next image, the touching nuclei in the top-right corner are 

not separated correctly, forming a Mickey-mouse head shape. The two nuclei below Mickey-

mouse are not detected as two nuclei at all. Such difficulty is expected when we generate the 

images.
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More importantly, the purpose of the proposed synthesis framework is to enable large scale 
evaluation. To that end, 1000 images containing a total of half-million ground truth nuclei 

are synthesized. The segmentation algorithm is tested on those images and an average Dice 

coefficient of 0.71 is achieved with standard deviation of 0.04.

4. CONCLUSIONS AND DISCUSSION

In this work, we proposed a method to synthesize arbitrarily large histopathology images 

from a small set of training images in which the nuclei have already been segmented. By the 

new and breakthrough work, we can systematically generate large validated data set to 

evaluate the automatic nucleus extraction algorithms.

There are several limitations that are being researched on. First, in the training image we do 

not have cytoplasm information marked out. Therefore, in the synthesized images, while we 

do observe the texture information in the non-nuclear region, we do not have clear definition 

for cytoplasm and cell boundary. This is acceptable for the current nucleus segmentation 

evaluation purpose. But will be extended for future more comprehensive study.

Second, the global/topological information is not well presented. We present in the result 

section the images generated from brain slides. However, for tissues from other organs, 

meso-scale features such as crypts and glands are also prominent features. Since our 

synthesis algorithm works at the fine resolution only, the current framework does not 

generate such meso-scale structure. To perform multi-scale tissue synthesis is our on-going 

research.
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Figure 1. 
Synthesized images with the ground truth segmentation. Note the “touching” nuclei: the 

proposed synthesis algorithm naturally handles the labeling of the touching nuclei. This 

enables the evaluation of the segmentation algorithms ability in separating them, which is 

often one of the most challenging step in the nucleus segmentation. However, the heavy 

occlusion between two pairs of nuclei in, e.g. the top-right corner of the second (from left) 

figure, should be very difficult, if possible at all, for the algorithm to separate.
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Figure 2. 
The segmentation algorithm run on the above synthesized images. In the second (from left) 

figure, the touching nuclei in the top-right corner are not separated correctly, forming a 

Mickey-mouse head shape. The two nuclei below Mickey-mouse are not detected as two 

nuclei at all.
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