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Abstract

Clinically Isolated Syndrome (CIS) is often considered to be the first neurological episode 

associated with Multiple sclerosis (MS). At an early stage the inflammatory demyelination 

occurring in the CNS can manifest as a change in neuronal metabolism, with multiple 

asymptomatic white matter lesions detected in clinical MRI. Such damage may induce topological 

changes of brain networks, which can be captured by advanced functional MRI (fMRI) analysis 

techniques. We test this hypothesis by capturing the effective relationships of 90 brain regions, 

defined in the Automated Anatomic Labeling (AAL) atlas, using a large-scale Granger Causality 

(lsGC) framework. The resulting networks are then characterized using graph-theoretic measures 

that quantify various network topology properties at a global as well as at a local level. We study 

for differences in these properties in network graphs obtained for 18 subjects (10 male and 8 

female, 9 with CIS and 9 healthy controls). Global network properties captured trending 

differences with modularity and clustering coefficient (p<0.1). Additionally, local network 

properties, such as local efficiency and the strength of connections, captured statistically 

significant (p<0.01) differences in some regions of the inferior frontal and parietal lobe. We 

conclude that multivariate analysis of fMRI time-series can reveal interesting information about 

changes occurring in the brain in early stages of MS.

Keywords

resting state fMRI; multiple sclerosis; cognitive impairment; multi-variate analysis; time series 
analysis; Granger causality; network topology; graph measures

* anas.abidin@rochester.edu; University of Rochester, NY. 

This work is not being and has not been submitted for publication or presentation elsewhere.

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 November 20.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2017 March ; 10137: . doi:10.1117/12.2254395.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. INTRODUCTION

Clinically Isolated Syndrome (CIS) is considered as the first clinical episode of Multiple 

Sclerosis (MS) in about 85% of the patients. Although MRI scanning of such subjects often 

shows multiple asymptomatic lesions, quantitative criteria such as those derived from 

diffusion tensor imaging, magnetic transfer ratio and measures of atrophy have been shown 

to be more sensitive for predicting the progression to MS. Cognitive decline is an established 

symptom of MS, however relatively little is known about prevalence of abnormalities at the 

CIS stage of the disease. It has been shown in a recent study that specific deficits 

manifesting during CIS can provide prognostic insights regarding the progression of the 

symptoms to MS. However, further research is needed to develop accurate models for 

predicting long-term effects after an episode of CIS [13].

In recent years various studies [1,2,3] have shown changes occurring in synchronization 

within the brain at different stages of MS using functional MRI (fMRI). These have been 

shown to correlate well with structural changes observed in the brain of subjects suffering 

from MS. Hence fMRI has proven to be a valuable tool for improving our understanding of 

the pathophysiology of this disease. Most current literature analyzing fMRI in subjects with 

MS commonly use correlation-based approaches for quantifying connectivity between 

different regions, which ignores directional and multivariate information prevalent in brain 

networks.

We have previously demonstrated the use of large-scale Granger Causality (lsGC) [4], which 

is a purely data-driven and multivariate approach to investigate causal influence at a voxel 

resolution scale in resting-state fMRI. In this study we illustrate how such information can 

be used to extract clinically relevant information for studying the pathophysiology of 

neurological disorders such as MS. We hypothesize that this approach may be better suited 

to capturing changes in connectivity patterns than conventionally used linear cross-

correlation methods, because it permits multivariate analysis that also avoids a priori 

assumptions on the underlying connection patterns frequently implied by model-based 

approaches, such as Dynamic Causal Modeling (DCM) [5] or Structural Equation Modeling 

(SEM) [6]. Using our approach, we can represent the human brain as a directed network 

graph with brain regions representing nodes and the influence score (lsGC index) being the 

edge weights.

A large body of literature in neuroscience has analyzed brain networks from the perspective 

of graph theory, where network graphs can be quantified with a wide range of simple yet 

‘neuro-biologically’ meaningful measures [7]. These measure are able to provide 

quantifiable insights into the specific properties of brain networks specifically with regards 

to their topological organization. In this study, we have focused on a few metrics 

characterizing global graph properties, as well as measures that can provide local/regional 

information from the graphs. We study these measures with regards to their ability to 

identify differences between the two subject groups, with the aim of better quantifying early 

neurological damage in subjects at the CIS stage of MS. This work is embedded in our 

group’s endeavor to expedite ‘big data’ analysis in biomedical imaging by means of 
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advanced machine learning and pattern recognition methods for computational radiology 

and radiomics, e.g. [14–45].

2. DATA

Functional MRI scans from a cohort of 18 subjects (9 with CIS, 9 healthy controls, 21–53 

yrs, 10 male, 8 female) underwent resting-state fMRI scanning (TR = 3000ms, FA = 90°, 

slice spacing = 1 mm, voxel size = 3.3×3.3×3.3 mm3, 25 slices, 150 acquisitions) were 

obtained using a 1.5T (SignaHDxt scanner, GE Medical Systems) with a 8-channel transmit/

receive head coil. High-resolution anatomical scans were acquired with the following 

parameters: 3D T1-weighted FSPGR (TR = 11.6 ms TE = 5.048 ms TI = 500 ms; FA = 8°, 

voxel size = 1×1×1 mm3). The latter was used for registration of the functional MRI data to 

the standard MNI152 template [10].

3. METHODS

The analysis performed on the dataset is summarized the flow chart (Figure 1).

3.1 Preprocessing and Parcellation

All data was preprocessed using the Configurable Pipeline for the Analysis of Connectomes 

(C-PAC) [8]. Standard preprocessing steps were applied to the data. The first 5 volumes 

were deleted to remove initial saturation effects. The volumes were then motion-corrected 

and the brain was extracted. High-pass filtering (0.01 Hz) was performed to remove the 

effects of signal drifts. Subsequently, the slices were registered to the standard MNI152 

template. Nuisance regression was performed to remove the effects of the global signal, 

ventricular signal averaged from CSF and also the white matter signal. Also, the time series 

were normalized to zero mean and unit standard deviation to focus on signal dynamics rather 

than amplitude [9]. For each dataset, 90 regional time-series were computed based on the 

average time-series of each of these 90 regions, excluding regions located in the cerebellum 

and the brain stem according to the Automated Anatomic Labeling (AAL) template [11].

3.2 Large-Scale Granger Causality Analysis

We use large-scale Granger Causality [4] to obtain a casual influence score between every 

pair of voxel time series in the resting state human brain. Large-scale Granger Causality 

works on the principle of Granger Causality, which obtains the casual influence of time 

series xr on time series xs by quantifying the improvement in prediction of xs in the presence 

of xr. Large-scale Granger Causality obtains an influence score between every pair of voxels 

in a multivariate sense. The limitation with using a multivariate approach to Granger 

Causality, without incorporating dimensionality reduction, on large systems like the brain, is 

that the prediction model cannot estimate model parameters as the system is undetermined. 

We show how using lsGC approach, this problem can be overcome.

Consider the ensemble of time series X ∈ ℝN×T, where N is the number of time series and T 
the number of temporal samples. Let X = (x1, x2, x3, …, xN)T be the whole 

multidimensional system, xn ∈ ℝ1×T a single time series with n ∈ {1,2, …, N}, where xn = 
(xn(1), xn(2), …, xn(T)). lsGC obtains a multivariate GC score by first decomposing X into 
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its first p high-variance principal components Z ∈ ℝp×T using Principal Component 

Analysis (PCA), i.e.,

Following this, we model Z using Vector Auto-Regressive (VAR) modeling of order m and 

compute the estimate  by using the m auto-regression ℝp×p parameter matrices obtained 

from VAR modelling of Z. To obtain the influence of time series xr on all other time series, 

we remove the information of xr from the transformation matrix W, obtain  and model 

 as its VAR estimate. In this manner, lsGC obtains a causality score between every 

pair of time series in a multivariate sense.

The errors of the two estimates are projected into the original high-dimensional space using 

the respective inverse PCA transformation. After the errors are obtained, we quantify the 

prediction quality by comparing the variance of the prediction errors obtained with and 

without consideration of xr. If the variance of the prediction error of a given time series, say 

xs, decreases with using xr, then we say that xr Granger-causes xs [4].

 is the GC index for the influence of xr on xs, which is stored in the affinity matrix A 
at position (A)sr.  is the error in predicting xs, when xr was not considered, and es is 

the error when xr was used. ∈ RN×T

3.3 Graph Theoretic Measures

A directed binary graph a, was obtained from the network matrix A, of each fMRI data set 

by thresholding. The appropriate choice of the threshold for binarization of network graphs 

obtained from fMRI data analysis is subject to ongoing discussions in the pertinent literature 

[7]. Based on earlier studies [12], we chose a threshold value that retained 45% of the 

connections. At such a threshold, the networks are not fragmented, and they still preserve 

their ‘small-world’ topology [10]. Measures [7] to characterize local and global network 

properties (summarized in Table 1) were computed for the thresholded graphs obtained for 

each subject.

All procedures, excluding the preprocessing steps discussed in section 3.1, were 

implemented using MATLAB (MathWorks Inc., Natick, MA, 2013). The network measures 

definitions were taken from [7]. Significance testing was performed using a permutation-

based testing with False Discovery Rate (FDR) correction.

4. RESULTS

The results obtained using global graph measures are represented in Figure 2. Certain 

differences are seen in the properties between the subject groups. A trending increase in 
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modularity and clustering co-efficient is observed in the CIS subjects. No changes were 

observed in the remainder of the global properties studied.

To investigate further, we studied the possibility of changes occurring within the brain 

network at a more regional level. Graph theory allows for characterization of properties of 

individual nodes also (as noted in Table 1). Multiple properties of the frontal superior region 

(portions of the precentral gyrus) are significantly (p<0.01) perturbed in the CIS subjects. 

Other affected regions, based on the analysis, involved parts of the frontal gyrus and also the 

parietal lobe. These regions are highlighted in Figure 3.

5. DISCUSSION

MS is a complex disease with a diverse presentation that can eventually lead to disability 

along associated with considerable socio-economic impacts. The exact mechanism of 

progression from CIS to MS is not very well understood. Imaging techniques, specifically 

MRI has served as essential supplementary tools for assessment of MS. Due to high 

variability in outcomes associated with progression from CIS, methods that can accurately 

predict the long-term disability are needed to appropriately implement treatment paradigms 

better patient management. Newer methods will also aid in developing a better 

understanding of the pathophysiology of MS.

We present a clinical application of our large-scale Granger Causality (lsGC) framework for 

multivariate analysis of resting-state fMRI data. Based on the evaluation of causality 

between regional time-series, we construct connectivity profiles from a parcellated human 

brain. Subsequently, we carry out quantitative analysis of the resulting profiles using graph-

theoretic approaches to identify specific differences in connectivity patterns between the 

network profiles of healthy and subjects with a CIS episode.

We have detected some differences in these profiles at a global as well as a regional level. 

The increase of clustering and modularity at a global level could indicate the increased 

synchronization within specific networks as a compensatory response of the brain to initial 

damage occurring in early stages of MS [1]. Although significant differences are not seen, 

our findings may suggest a subtle reorganization occurring within the brain in an early stage 

MS, which is in line with other studies [2].

When specific regions are analyzed, we detect changes in properties specifically in the 

precentral as well as frontal gyrus and some portion of the parietal lobe. Similar regions 

have been found to be associated with disease progression in other studies using graph-

theoretic properties at a regional level [1]. Although the results in this study are consistent 

with other literature on MS [2,3], some differences can be seen, which may be attributed to 

the fact that we have applied a multivariate approach to constructing the network graphs. 

Additionally, for this study we have restricted the analysis to subjects with CIS i.e. subjects 

that may be suffering with a mild and initial form of MS.

This approach, we conclude, can capture additional information when compared to 

conventionally used correlation-based analyses. We aim to explore this aspect further in 
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future studies, as we pursue to utilize our approach to potentially develop image-derived 

biomarkers for MS and other neurological diseases.

6. CONCLUSION

In conclusion, the results presented in this work indicate that the multivariate large-scale 

Granger Causality (lsGC) approach, in combination with graph-theoretic network 

characterization, can be applied to detect changes in brain network connectivity patterns 

observed in patients with CIS. While avoiding certain inherent limitations of traditional 

approaches, the lsGC technique can hence serve as an alternate method for fMRI-based 

connectivity analysis in the human brain. The preliminary results here suggest that such an 

analysis protocol can be used to study neuro-degeneration in early stage MS, however 

further in depth analyses are needed.
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Figure 1. 
Flow chart for sample fMRI time series data for computing graph measures. A brain 

registered to the standard MNI Atlas is segmented based on AAL template into 90 regions. 

Time series from each of these regions are analyzed using large-scale Granger Causality 

(lsGC). The matrix obtained is converted to an undirected graph using thresholding and a 

directed graph using sparsing and graph measure described in Aim 2 are computed
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Figure 2. 
A simplified view of the brain representing the regions highlighting differences (seen in red) 

in local graph properties. Some of the affected regions have been shown in other pertinent 

literature [1,3]. The regions shown here represent the differences using all the features and 

are mapped over the standard atlas. Regions are specifically detailed in the text.
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Figure 3. 
The distribution of global graph measures for the two subject groups (Red: Diseased, Green: 

Healthy). Error bars represent the standard error of mean. Trending differences are seen for 

Modularity and Clustering Coefficient (p<0.1).
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Table 1

List of the graph-theoretic measures used in this study. For a detailed description, please refer to [7].

Global Measures Variance of degree distribution (incoming and outgoing), Efficiency, Clustering Coefficient, Assortativity, Modularity

Local Measures Causal Strength, Degree, Local Efficiency, Nodal Clustering Coefficient
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