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ABSTRACT  

Corneal topography is a medical imaging technique to get the 3D shape of the cornea as a set of 3D points of its anterior 

and posterior surfaces. From these data, topographic maps can be derived to assist the ophthalmologist in the diagnosis of 

disorders. In this paper, we compare three different mathematical parametric representations of the corneal surfaces least-

squares fitted to the data provided by corneal topography. The parameters obtained from these models reduce the 

dimensionality of the data from several thousand 3D points to only a few parameters and could eventually be useful for 

diagnosis, biometry, implant design etc. The first representation is based on Zernike polynomials that are commonly used 

in optics. A variant of these polynomials, named Bhatia-Wolf will also be investigated. These two sets of polynomials are 

defined over a circular domain which is convenient to model the elevation (height) of the corneal surface. The third 

representation uses Spherical Harmonics that are particularly well suited for nearly-spherical object modeling, which is 

the case for cornea. We compared the three methods using the following three criteria: the root-mean-square error (RMSE), 

the number of parameters and the visual accuracy of the reconstructed topographic maps. A large dataset of more than 

2000 corneal topographies was used. Our results showed that Spherical Harmonics were superior with a RMSE mean 

lower than 2.5 microns with 36 coefficients (order 5) for normal corneas and lower than 5 microns for two diseases 

affecting the corneal shapes: keratoconus and Fuchs’ dystrophy. 

Keywords: Zernike polynomials, Bhatia-Wolf polynomials, spherical harmonics, 3D shape, parametric model, corneal 

topography 

 

1. INTRODUCTION  

The cornea is the external lens of the eye, and covers roughly one fifth of the eyeball surface, with an average diameter of 

11 mm and an approximately spherical shape (figure 1). Models of the cornea have taken many forms, from conceptual 

models to the schematic eye of Gullstrand to complex computational models that integrate structural, biomechanical and 

optical representations of the corneal response. The usefulness of any model depends upon valid input, and fortunately 

recent progress in anterior segment imaging has improved our ability to accurately measure several corneal features. In 

particular, corneal topography (figures 2 and 3) is a medical imaging technique used to get the precise 3D shape of the 

cornea as a set of 3D points of its anterior and posterior surfaces. From these data, topographic maps (figure 2) can be 

derived to assist the ophthalmologist in the diagnosis of disorders. In this paper, we discuss the choice of an appropriate 

mathematical model to represent the corneal 3D shape. We compare different parametric representations of the corneal 

surfaces with least-squares fitting (LSF) to the data provided by corneal topography. The small number of parameters 

obtained with these models reduces the dimensionality of the data from several thousand 3D points to only a few 

coefficients that could eventually be useful for diagnosis, biometry, implant design etc. Let’s begin with a short review of 

the mathematical model of the cornea in the literature. 
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In 2002, Gatinel et al. [1] have reviewed all studies on corneal shape modeling by conic sections including ellipses, 

hyperbolas and parabolas to model corneal shape. One typical model defines the shape of (a section of) the cornea with 

only two parameters, which are the apical radius R and its asphericity Q. This was based on the study of Kiely et al. (1984) 

[2], which describes variations in corneal curvature along any meridian. For a perfect sphere, Q = 0 while a negative value 

for Q indicates that the corneal surface curvature gradually flattens from center to periphery (prolate shape) and a 

positive value indicates that the corneal curvature gradually steepens from center to periphery (oblate shape). The apical 

radius of curvature (R) characterizes the circle tangent to the apex (point of greatest curvature). The smaller the R value, 

the greater is the curvature, and vice versa. The R and Q values are obtained by least-squares fitting of the following 

equation to 3D data points (e.g. with corneal topography): 

 

                                                                               𝑋2 + 𝑌2 + (1 + 𝑄)𝑍2 − 2𝑅𝑍 = 0                                                     (1) 

Gatinel has shown that anterior surfaces have a great variation among individuals. For instance, for aged people, the shape 

of cornea (anterior surface) becomes more spherical. There is also a little connection between asphericity and ametropia. 

In progressive myopia, the shape of cornea (anterior surface) becomes more flat or more oblate. For the posterior surface, 

Gatinel have reported that it can be hyperbolic or prolate. However, this model is not fully 3D because it describes 

curvature along one meridian at a time or assumes a surface of revolution. Furthermore, although two parameters might 

be sufficient to describe the global corneal shape, this is somewhat limited to describe the wide variance of corneal shape 

locally. In 2001, Iskander et al. [3] have shown the interest of modeling cornea with radial functions, especially Zernike 

polynomials (ZP). These polynomials have been applied to the description of optical aberrations of the Human cornea in 

1995 by Schwiegerling [4]. Iskander et al. have also tested Bhatia-Wolf polynomials (BW) [5] which satisfy all the 

properties of Zernike polynomials and even more. Iskander proposed this approach for the first time in 2002 [6]. Indeed, 

they found that the BW polynomials performed remarkably well with respect to the Zernike polynomials in terms of the 

mean square error (MSE) fit. This has been demonstrated for simulated data as well as real data (different corneal data). 

In 2007, Iskander et al. [7] have tested many mathematics models: simple conics, generalized conics, cosine hyperbolic 

functions, and a set of fourth, sixth, and eighth radial order polynomials with corneal topography data previously acquired 

from 92 young adults. In their study, the root-mean-square error (RMSE) between extrapolated topography and true 

extended topography for various diameters was compared and have shown that extrapolation from central corneal to 

periphery was best achieved with radial polynomials of the fourth order for normal corneas. In 2009, Iskander proposed 

for the first time to use Spherical Harmonics SH to model the cornea [8]. They demonstrated that the SH decomposition 

clearly adjusts the corneal surfaces better than Zernike polynomials with the same number of coefficients (parameters). 

Zernike polynomials were judged insufficient for the representation of more complex corneal surfaces such as those 

encountered in post-surgical eyes. They [9] have also compared SH with other 3D radial functions such as hemispherical 

harmonics and 3D Zernike (3DZ) polynomials and have shown that SH is the best model for the shape of cornea. Finally, 

in another study, Polette et al. [10] (2014) confirmed the superiority of SH over ZP for a biometrics application. However, 

all these studies were limited to a relatively small number of corneas and should be analyzed with caution. 

  

Other methods exist to model the cornea, for instance in 2005, Crouch et al. [11] have implemented a finite element model 

of the eye to investigate factors influencing corneal shape after surgery. These models are useful to simulate the tissue 

deformation of the eye but are much more complex and not intended for simple parametric modeling of the stationary 

corneal shape as the previous radial functions. The simple Taylor series [4] also allow decomposing the shape of cornea 

into simple polynomials but they don't satisfy the condition of orthogonality contrary to radial orthogonal polynomials. 

 

Because of the successful results obtained with radial functions in these studies, we will compare them in the present study. 

An important contribution of this work is the large database used (section 3.1) to correctly estimate the accuracy of each 

models for both anterior and posterior surfaces. 
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Figure 1. Cross-sectional view of the eyeball [12] 

 

 

Figure 2. Typical display of a corneal topographer showing information about the corneal 3D shape. The anterior and 

posterior elevation with respect to the best fitted sphere (BFS) are shown in the top left and right images while the curvature 

and pachymetry (thickness) are shown in the bottom left and right images. 

 

2. MATHEMATICAL MODELING OF THE CORNEA 

Through the review of the literature, we have seen that radial functions are the most suitable parametric model for the 

stationary shape of cornea. We therefore focus our investigation on three types of radial basis functions to fit the shape of 

normal or abnormal corneas. The first radial basis functions are Zernike polynomials that are typically used in optics. This 

set of polynomials is defined over a circular domain which is convenient to model the elevation (height) of the corneal 

surface (provided by the topographer) with respect to a plane perpendicular to the visual axis. A variant of these 

polynomials, named Bhatia-Wolf polynomials is also investigated. The third representation uses Spherical Harmonics that 

are particularly well suited for nearly-spherical object modeling, which is the case for cornea. Their formulas are given 

below. 
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2.1 Zernike 

                           Zp(𝑟,θ) = (

√2(𝑛 + 1) 𝑅𝑛
𝑚(r) cos(mθ) , p even, m ≠ 0

√2(𝑛 + 1)𝑅𝑛
𝑚(r) sin(mθ) , p odd, m ≠ 0 

√𝑛 + 1 𝑅𝑛
0 ,                                             m = 0

)                                                                        (2) 

Where n is the radial degree, m is the azimuthal frequency and  

                                                                           𝑅𝑛
𝑚(r) = ∑

(−1)𝑠(𝑛−𝑠)! 

𝑠! (
𝑛+𝑚

2
−𝑠)!(

𝑛−𝑚

2
−𝑠)!

𝑛−𝑚

2
𝑠=0 𝑟𝑛−2𝑠                                                        (3)  

 

2.2 Bathia-Wolf 

      Bp(𝑟,θ) = (

√2(n+ 1) 𝑇𝑛
𝑚(r) cos(mθ) , p even, m ≠ 0

√2(n+ 1) 𝑇𝑛
𝑚(r) sin(mθ) , p odd, m ≠ 0 

  √𝑛 + 1 𝑇𝑛
0,                                      m = 0

)                                                                              (4) 

Where n is the radial degree, m is the azimuthal frequency and 

 

                                                                  𝑇𝑛
𝑚(r) = ∑

(−1)𝑠(2𝑛+1−𝑠)! 

𝑠! (𝑛−𝑚−𝑠)!(𝑛+𝑚+1−𝑠)!

𝑛−𝑚
𝑠=0 𝑟𝑛−𝑠                                                                (5) 

 

 

2.3 Spherical harmonics  

                          𝑌𝑙
𝑚(θ, φ) = (

√2𝑁𝑙
𝑚 𝑃𝑙

𝑚(cos θ) cos(mφ) , m > 0 

√2𝑁𝑙
𝑚 𝑃𝑙

𝑚(cos θ) sin(mφ) , m < 0 

𝑁𝑙
0 𝑃𝑙

0(cos θ),                      m = 0

)                                                                                (6) 

Where 𝑁𝑙
𝑚 is the normalization factor and  𝑃𝑙

𝑚, Legendre polynomial  

                                                                   𝑃𝑙
𝑚(x) =

(−1)𝑚

2𝑙 𝑙!
(1 − 𝑥2)𝑚/2  

𝑑𝑙+𝑚

𝑑𝑥𝑙+𝑚
(𝑥2 − 1)𝑙                                                  (7) 

 

Two other types of mathematical representations centered on the best-fit sphere (BFS) as for SH were not tested here since 

in [13], Iskander have shown that hemispherical harmonics and 3D Zernike polynomials were less accurate than SH. 

 

3. EXPERIMENTAL RESULTS 

3.1 Database 

A large dataset of 2392 corneal topographies (anterior and posterior surfaces) were collected using the Orbscan II (Bausch 

and Lomb, Rochester, NY, USA) topographer (see figure 3). This is a non-invasive device known as corneal topographer 

used for capturing the shape of cornea. The Orbscan II combines both Placido disc (series of illuminated concentric circles) 

and slit-scanning technologies, which are captured by a video camera. The resulting data points acquired from each slit 

are used to reconstruct the true topography of each corneal surface. In less than two seconds, the topographer scans a total 

of approximately 10,000 3D points. Corneal topography is a recognized technology in the evaluation of corneal shape, 

curvature and refraction. The Orbscan software calculates a 3D model of the anterior segment and automatically provides 

many measurements such as elevation (height with respect to a plane perpendicular to the line of sight), pachymetry 

(corneal thickness), and curvature of the anterior and posterior surfaces of the cornea (see figure 2). 

  

The dataset included 1392 right eye (633 women and 700 men) and 1000 left eye (500 women and 500 men). All of them 

without any eye disease, surgery or recent contact lenses. The average age was 40±0.2 years, with a spherical equivalent 

of -3.02±0.03D. Spherical equivalent is negative for myopia and positive for hypermetropia. For abnormal cornea, we 

have tested 10 cornea with keratoconus and 30 corneas with Fuchs’ dystrophy. Keratoconus is a disorder of the eye which 

results in progressive thinning of the cornea affecting the shape of the cornea, whereas Fuchs’ dystrophy is a primary 
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corneal endothelial cell disease that increases corneal thickness. There were three categories of Fuchs according to the 

severity of the disease: mild (central corneal thickness range: 500–710 µm); moderate (710–775 µm) and severe (775-

1100 µm). We compared the 3 different parametric representations of the corneal surfaces with least-squares fitting to the 

elevation data provided by corneal topography. 

 

             

Figure 3. The corneal topographer Orbscan II 

 

The corneal shape was recorded as a uniformly spaced 101  101 grid of anterior (and posterior) surface elevations 

(Z), spaced by 0.1 mm intervals along the X (lateral) and Y (superior-inferior) axes (see figure 4). 

 

 

Figure 4. Illustration of the corneal surface (anterior or posterior) data representation. One elevation measurement (Z) is 

shown with a dashed vertical line in a 101 x 101 grid of lateral (X) and superior-inferior (Y) positions. 

 

3.2 Results and interpretation   

The mean of RMSE are presented in table 1 for the three models and the three groups (normal, keratoconus and Fuchs) 

for an approximation with 36 polynomials (corresponding to order 7 for Zernike and order 5 for Bhatia-Wolf and Spherical 

Harmonics). In this case, the Spherical Harmonics model usually outperformed those of the traditional Zernike and Bhatia-

Wolf approximations. These differences were statistically significant with a Z-Test (p-value < 0.01). The RMS error with 

Spherical Harmonics was near the Orbscan II accuracy reported by the manufacturer (1 micron). One of the claimed 

benefits of Bhatia-Wolf polynomials is that they provide a richer representation for a given polynomial order; this should 

produce a better surface model, which was confirmed by our results in figures 5, 6 and 7. 

However, for a given order, Bhatia-Wolf requires more polynomials (see figure 11), and to be fair, for the same number 

of coefficients (same number of polynomials) there was no real advantage of using BW instead of ZP (see Table 1). 
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Table 1 : The mean RMSE in microns for normal and abnormal cornea 

 Model 

Cornea  

Zernike 

(ZP) 

Bathia-Wolf 

(BW) 

Spherical Harmonics 

(SH) 
Anterior normal 1.533063 1.653559 1.132959 

Posterior normal 2.660893 3.55642 2.289986 

Anterior with keratoconus 3.07184585 5.97790501 3.64616391 

Posterior with keratoconus 7.01075779 7.37634264 4.97279024 

Anterior with mild Fuchs 0.83090856 0.96240747 0.71092733 

Posterior with mild Fuchs 2.77481199 3.66542872 2.44206395 

Anterior with moderate Fuchs 1.91960848 1.92387002 1.49411479 

Posterior with moderate Fuchs 2.44613995 3.52990213 2.62393469 

Anterior with severe Fuchs 1.39355265 1.64482837 1.20011593 

Posterior with severe Fuchs 2.22905363 3.64616391 2.62764932 

 

 

Figure 5. RMS error for the shape of normal anterior (left) and posterior (right) corneal surface 

 

Figure 6. RMS error for the shape of anterior corneal surface with Keratoconus (left) and posterior (right) corneal surface 

 

Figure 7. RMS error for the shape of anterior corneal surface with Fuchs (left) and posterior (right) corneal surface 
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Figure 8. Topographic map reconstructions for anterior surface with Zernike. From left to right: Original, 2nd, 4th and 7th 

order. From top to bottom: Normal, Keratokonus, mild, moderate and severe Fuchs. 
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Figure 9. Topographic map reconstructions for anterior surface with Bathia-Wolf. From left to right: Original, 2nd, 3rd and 

5th order. From top to bottom: Normal, Keratokonus, mild, moderate and severe Fuchs.  
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Figure 10. Topographic map reconstructions for anterior surface with Spherical Harmonics. From left to right: Original, 2nd, 

3rd and 5th order. From top to bottom: Normal, Keratokonus, mild, moderate and severe Fuchs. 
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Figure 11. Visual pyramid representation of the Zernike (left), Bhatia-Wolf (middle) and Spherical Harmonics (right) basis 

functions up to order 2 (Hot colors represent positive values and cold colors, negative values). 

 

Corneas that were diagnosed as keratoconus were more distorted than normal corneas, so, RMS errors were always more 

elevated for the three models compared with normal ones as expected. However, corneas with Fuchs’ dystrophy generated 

RMS errors similar and sometimes slightly lower compared with normal ones. This might be due to a more flat surface 

with the progression of the illness. But in that case, one must be careful with any interpretation since the number of data 

was limited. Finally, the posterior surface was always more difficult to fit (with higher RMS error) for all models; this 

might be due to less reliable and noisier data for this surface with the Orbscan II because the posterior surface is the result 

of a refractive extrapolation of the slit scanning system through the cornea, whereas the anterior surface is directly 

measured by the slit scanning system combined to a Placido disk analysis [14].  

Another way to assess the accurateness of each model is to visually inspect the reconstructed topographic maps with 

various number of coefficients. Figures 8, 9 and 10 show these topographic map reconstructions of each model for the 

anterior surface of normal, keratokonus and Fuchs’dystrophy. We can appreciate the high quality of the reconstruction 

with SH. 

Simplified performance profile [15] (see figure 12) for normal corneas with the three models were also computed. These 

curves are a straightforward way of comparing methods on sets of problems. Along the x axis, we have the RMSE threshold 

𝛼 in microns while for the y axis we show the percentage of fitted corneas that were under this threshold. In other words, 

the performance profile of a model M is the fraction of the modeled cornea where the performance ratio is at most α. The 

simplified performance profile is defined as follow:  

 

                                                         𝜌𝑀(𝛼) =
1

|𝑐|
 𝑠𝑖𝑧𝑒(𝑐 ∈ 𝐶, 𝑅𝑀𝑆𝐸𝐶,𝑀 ≤ 𝛼)                                                                (8) 

 

Where 𝜌𝑀(𝛼) is the fraction of the set of corneas (C) well fitted by a model (M) for a RMSE threshold 𝛼. 

 

From figure 12, we note that SH performs the best because its corresponding performance curves are always higher and 

to the left of the two others. SH achieved 97% of good fitting with 𝛼 = 2 microns for the anterior surface and 99% with 𝛼 

= 4 microns for the posterior surface. ZP and BW curves had similar behaviors for the anterior surface but ZP was superior 

for the posterior surface. 
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Figure 12. Simplified perfermance profile of anterior normal corneas (left) and posterior (right)  

 

 

To achieve the best performance with SH, we have developped an iterative strategy to fit the model to the cornea. This 

method is known as Simple Iterative Residual Fitting (SIRF) instead of LSF [16]. In SIRF, we iteratively create an SH 

model using coefficients up to degree s. In each iteration, we estimate coefficients for one more degree by fitting relevant 

SHs to the residual. SIRF stops when 𝐿𝑚𝑎𝑥  is reached. Here is the algorithm: 

 

Algorithm: Spherical Harmonics 

Step 1: Calculate the best-fit sphere of the corneal surface (BFS). The BFS corresponds to the first harmonics. 

Step 2: Calculate the residual r between the BFS and the corneal surface 

Step 3: For each level l of the SH pyramid: 

Solve 𝐴𝑙 . 𝑏𝑙 = 𝑟 

Update the residual r=r- 𝐴𝑙 . 𝑏𝑙  
Step 4: m= (𝑟𝑏𝑓𝑠 ∗ 2√𝜋,  𝑏1

𝑇 , 𝑏2
𝑇 , 𝑏3

𝑇… , 𝑏𝐿𝑚𝑎𝑥
𝑇 ) 

 

Where 𝐴𝑙 , 𝑏𝑙  and 𝐿𝑚𝑎𝑥  are respectively: 

 

Where 𝐴𝑙 =

(

 
 
 
 

𝑌𝑙
−𝑙(𝜃1, 𝜑1) 𝑌𝑙

−𝑙(𝜃1, 𝜑1)…𝑌𝑙
−𝑙(𝜃1, 𝜑1) 

𝑌𝑙
−𝑙(𝜃2, 𝜑2) 𝑌𝑙

−𝑙(𝜃2, 𝜑2)…𝑌𝑙
−𝑙(𝜃2, 𝜑2)

.

.

.
𝑌𝑙
−𝑙(𝜃𝑛, 𝜑𝑛) 𝑌𝑙

−𝑙+1(𝜃𝑛, 𝜑𝑛) …𝑌𝑙
𝑙(𝜃𝑛, 𝜑𝑛))

 
 
 
 

  

 

𝑏𝑙 = (𝑎−𝑙
𝑙 , 𝑎−𝑙

𝑙+1, . . , 𝑎−𝑙
𝑙 ) in which (𝑎𝑙

𝑚) −𝑙≤𝑚≤𝑙 are the coefficients given by LSF. 𝐿𝑚𝑎𝑥  is the maximum level to be reached 

(in our case 𝐿𝑚𝑎𝑥  = 5). 

 

With this method of resolution we constrain the model to have the maximum of shape information in lower levels of the 

SH pyramid. So, we guarantee that the first coefficient be proportionnel to the BFS radius (commonly used in 

ophtalmology) and that other (smaller) coefficients represent low frequency deviations from the BFS. Fitting the residual 

iteratively one level at a time aims to improve the modeling accuracy and creates a better SH model for the corneal surface. 

To sum up, the key ideas of simple iterative residual fitting (SIRF) includes: (1) instead of solving a large linear system, 

SIRF solves a series of smaller linear systems iteratively, and the size of the smaller system is controlled by the number 

of harmonics in each level of the pyramid; (2) SIRF uses multiple passes of LSF to fit the residual, and the number of 

passes correspond to the the number of levels 𝐿𝑚𝑎𝑥  specified by a user. This approach is very easy to implement and does 

not require additional machine resources. 
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4. CONCLUSIONS AND FUTURE WORK 

To the best of our knowledge this study is the first to use a very large dataset to compare the three most powerful parametric 

models to fit corneal topographic data. Our results showed that Spherical Harmonics is the method of choice for accurate 

fitting of normal (or abnormal) corneas with the smallest number of parameters (coefficients of the basis functions). This 

is also in agreement with the few studies reported in the literature on this topic [3-5]. We have also reconstructed clinical 

topographic maps for all methods, including Spherical Harmonics for visual inspection and analysis. Our results showed 

that Spherical Harmonics were superior to Zernike or Bhatia-Wolf parametric models with a mean RMS error lower than 

2.5 microns with 36 coefficients (order 5) for normal corneas and lower than 5 microns for keratoconus and Fuchs’ 

dystrophy (two corneal disorders). Accurate reconstructions of clinical topographic maps are therefore possible with a 

limited set of 36 parameters with Spherical Harmonics. In the future, we will investigate the use of Zernike polynomial-

based rational functions that were shown to outperform traditional Zernike polynomial with the same number of 

coefficients [9]. We also plan to increase the size of our database of diseases affecting the corneal shape. 
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