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Abstract

Magnetic Resonance Elastography (MRE) is a phase-contrast MRI technique which calculates 

quantitative stiffness images, called elastograms, by imaging the propagation of acoustic waves in 

tissues. It is used clinically to diagnose liver fibrosis. Automated analysis of MRE is difficult as 

the corresponding MRI magnitude images (which contain anatomical information) are affected by 

intensity inhomogeneity, motion artifact, and poor tissue- and edge-contrast. Additionally, areas 

with low wave amplitude must be excluded. An automated algorithm has already been 

successfully developed and validated for clinical 2D MRE. 3D MRE acquires substantially more 

data and, due to accelerated acquisition, has exacerbated image artifacts. Also, the current 3D 

MRE processing does not yield a confidence map to indicate MRE wave quality and guide ROI 

selection, as is the case in 2D. In this study, extension of the 2D automated method, with a simple 

wave-amplitude metric, was developed and validated against an expert reader in a set of 57 patient 

exams with both 2D and 3D MRE. The stiffness discrepancy with the expert for 3D MRE was 

−0.8% ± 9.45% and was better than discrepancy with the same reader for 2D MRE (−3.2% 

± 10.43%), and better than the inter-reader discrepancy observed in previous studies. There were 

no automated processing failures in this dataset. Thus, the automated liver elasticity calculation 

(ALEC) algorithm is able to calculate stiffness from 3D MRE data with minimal bias and good 

precision, while enabling stiffness measurements to be fully reproducible and to be easily 

performed on the large 3D MRE datasets.
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1. INTRODUCTION

Hepatic fibrosis is a significant world health problem causing as many as 44,000 deaths and 

over 100,000 acute hospitalizations annually in the US alone [1]. Magnetic Resonance 

Elastography (MRE) [2] has been shown to have a high sensitivity and specificity for 

diagnosing hepatic fibrosis [3] and is gradually replacing liver biopsy, which is invasive and 

prone to sampling error, as the diagnostic method of choice. During an MRE exam, a steady-

state acoustic wave (typically at 60 Hz) is introduced into the body using a driver (a 

pneumatic speaker strapped to the patient’s chest) and imaged using phase-contrast MRI. 

The acquisition generates axial magnitude images, which contain anatomical information, 

and phase images, which capture displacement information about the through-plane tissue 

motion to visualize shear waves propagating in the imaging plane. An MRE inversion then 

calculates a quantitative elastogram. A typical MRE dataset is shown in Figure 1.
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The inversion can be biased in areas where the magnitude image SNR and/or wave 

amplitude is low, as well as in areas with partial volume or other artifact. Therefore, the liver 

stiffness is calculated from a carefully selected ROI. Commonly, ROIs are drawn by 

experienced readers but the procedure is subjective and results in an inter-reader stiffness 

variability of 10% [4], which is the largest factor in the variability of the MRE exam. In an 

earlier study, we presented and validated an Automated Liver Elasticity Calculation (ALEC) 

algorithm to remove reader variability. It had a higher agreement with an expert than did 

experienced clinical technicians [5], and is presently used for all clinical liver stiffness 

calculation at our institution.

A new MRE acquisition and inversion, 3D MRE, has recently been developed to further 

improve the accuracy and reproducibility of liver MRE. This method acquires higher-

resolution isotropic voxels and encodes wave propagation in all three directions rather than 

just within the imaging slice. This provides more accurate elastograms by removing the 

biased stiffness results from imaging waves propagating obliquely through the imaging 

plane, and also allows more sophisticated processing to be performed. In the liver, the 

primary benefit of 3D MRE is enabling tumors (which can occur as a result of liver disease) 

to be characterized more accurately in the same acquisition that was used to stage liver 

disease. 3D MRE produces substantially more images for analysis, having 32 isotropic slices 

instead of 4 and 3 directions of motion encoding instead of 1. This large multi-directional 

dataset is cumbersome for a human reader to analyze. Thus, extension of the automated 

processing to 3D MRE would be useful to improve the convenience, accuracy, and 

reproducibility of analyzing 3D MRE data.

3D MRE data poses additional challenges compared to the standard 2D MRE data. An 

accelerated spin-echo echo-planar (EPI) pulse sequence, and a smaller acquisition matrix 

(96x96 vs 256x128), later interpolated to the same image size (256x256), are used to acquire 

3D data in the same time as 2D (roughly 1 minute). As a result, the images have exacerbated 

blurring, intensity inhomogeneity, and low tissue-contrast. Furthermore, the confidence map, 

calculated by the 2D MRE inversion to guide manual ROI selection, is not available in 3D 

due to computational costs. This study tests the applicability of the automated method, with 

the confidence map alternative, to 3D MRE data by comparing the liver stiffnesses that it 

calculates to an expert human reader.

2. METHODS

2.1 MRE Data

An MRE dataset consists of magnitude images, similar to standard anatomical MRI images 

but with lower image quality, and phase images, which contain information about the 

propagation of cyclic mechanical waves introduced into the body. The acquisitions for 2D 

MRE and 3D MRE are described in [4, 6]. The main relevant differences are that the 3D 

images tend to have lower resolution, poorer tissue-contrast and intensity homogeneity, and 

the processing algorithm does not provide a wave-quality metric to help guide ROI 

placement. Several magnitude/phase image pairs (typically 4 in 2D MRE and 3 in 3D MRE) 

are acquired for each imaging slice with different offsets between the start of the motion and 

the start of the motion encoding gradients to capture snapshots of the wave propagation at 
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different points in the cycle. The stiffness inversion processing uses these multiple phase-

offsets to calculate elastograms with quantitative stiffness values for every voxel.

If the wave SNR is low, the elastogram can be biased, either regionally or globally. Low 

SNR can result from low-amplitude motion, caused by an inactive/decoupled acoustic driver 

or highly attenuating liver, or from low magnitude image signal, caused, for example, by 

high iron content in the patient’s liver. A confidence map is calculated by the inversion in 2D 

MRE to indicate and exclude areas of low wave SNR. For a 3D MRE dataset, the confidence 

map is not generated in a typical workflow due to computation costs. As a result, the manual 

ROI selection technique in 3D MRE does not rely on a quantitative data quality metric for 

guidance and is more approximate, favoring regions near the external edge of the liver which 

are close to the acoustic driver and are likely to have higher wave amplitude. The automated 

technique in 2D uses the confidence map, but a new method, described below, needed to be 

developed for 3D data.

2.2 Algorithm

The automated MRE processing, described in detail in [5], consists of the following steps 

performed on the 2D slices of the dataset (Figure 2):

1. Initialization: Voxels with intensities within the lower 5th percentile were pre-

labeled as background and eroded by 7 pixels. Basic segmentation of abdominal 

fat was performed by eroding layers from the outside of the body contour until a 

change in intensity was detected, indicating the transition between the abdominal 

fat and the abdominal organs/cavities. Liver was labeled as voxels internal to the 

abdominal fat segmentation, brighter than background, and on the top-left side of 

the body in the image (anterior-right side of the body). A set of three intensity 

membership functions was then constructed for these three classes by setting 

membership to 1 at the average intensity of the voxels labeled as that class and 

linearly decreasing membership until it reached zero at the mean intensities of 

nearby classes. For background, the membership was kept at one for intensities 

below its mean and for fat the membership was kept at 1 above the mean. 

Distances between the morphologically eroded background and fat masks, and 

fat and liver masks were used to construct spatial membership functions. The 

intensity and distance membership functions were multiplied together and used 

to reclassify all voxels into background, liver, fat, or other tissue. For 3D MRE, 

the only difference was to consider liver brighter than fat due to fat-suppression 

in the acquisition sequence. An example of the initialization membership 

functions are shown in Figure 2.

2. Segmentation: The resulting pre-segmentations were sub-sampled evenly to 

generate seeds for each class. A Random Walker segmentation [7] was then run 

on an intensity inhomogeneity-corrected [8] magnitude image to segment the 

liver (Figure 3).

3. Confidence metric: In 2D MRE, the standard confidence map calculated by the 

inversion and thresholded at 0.95 was used by the automated algorithm and also 

by the human reader during the ROI drawing. In 3D MRE, the expert did not use 

Dzyubak et al. Page 3

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a confidence metric. For the algorithm, the wave Amplitude-to-Noise (ANR) 

map was calculated as shown in the workflow of Figure 4:

The Fourier Transform of the evenly-spaced unwrapped phase-offset images 

across time was taken, and the second term was selected to choose motion at the 

applied principal frequency. This approach serves as a filter which removes bulk 

motion and some of the noise. The absolute value of this term is the vibrational 

amplitude. The amplitude image was smoothed using an 11x11 kernel to match 

the size of the 2D inversion processing kernel and the spatial extent of potential 

artifacts in the elastogram. Magnitude image SNR was then calculated by 

dividing a neighborhood average by the neighborhood standard deviation, both 

calculated using 11x11 kernels. The amplitude and the magnitude SNR were 

multiplied together to calculate the ANR map (Figure 5). The ANR map 

threshold below which voxels should be excluded from the final ROI was 

optimized by calculating the maps for all 2D MRE data sets and maximizing the 

Dice overlap coefficient of the thresholded ANR maps with the confidence maps 

thresholded at the standard value of 0.95. The average of optimal thresholds 

across all 2D MRE exams was calculated and used for thresholding the ANR in 

3D data.

4. Final ROI: The liver segmentation and the thresholded confidence map (2D 

MRE), or ANR map (3D MRE), were used to calculate the final ROI within the 

liver as described in the original ALEC paper [5]. Briefly, the liver segmentation 

was eroded from edges and blood vessels, the confidence/ANR map was used for 

the masking of noisy or low-amplitude areas of the liver, and any regions with 

sharp changes in elasticity were removed, as the inversion assumes local 

homogeneity and is not expected to produce localized hard/soft regions in liver 

tissue except when there are poorly-visible tumors/vessels or severe wave 

interference.

2.3 Validation against the expert

A set of 57 patient exams which had both 2D MRE and 3D MRE images as well as ROIs 

manually calculated by an expert MRE reader with 5 years of experience were retrieved. The 

retrieved manual data contained ROIs for all 4 slices of 2D data and slices 7–26 (of the 

acquired 32 slices) of the 3D data, with the top and bottom slices excluded due to partial 

volume in the elastograms caused by the large inversion kernel. Average liver stiffnesses 

were calculated from these ROIs and used as reference for evaluating stiffnesses calculated 

using the automated method. For 3D data, automated processing was done only on slices 10, 

14, 18, and 22 for faster computation.

Stiffness correlations and percent differences with the expert reader were calculated for 2D 

MRE (already validated) and 3D MRE (new). Failure rate, defined as the inability to obtain 

at least a 2000-voxel ROI across the 4 slices, when the expert reader has done so, or having a 

stiffness difference of >50% from the expert reader, was also recorded.
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3. RESULTS

Of the 57 cases analyzed, ALEC did not fail in any 2D or 3D exam. The processing took, on 

average, 5 minutes for every 4-slice dataset. An example of the manual and the automated 

mask for a 3D MRE case is shown in Figure 6. The percent difference in stiffness from the 

expert reader for 3D MRE was −0.8% ± 9.45% (μ±σ) which was slightly better than the 

difference in stiffness in 2D with the same reader (−3.2% ± 10.43%). The intraclass 

correlation coefficient for automated vs manual stiffnesses was 0.983 for 3D MRE (Figure 

7) and 0.972 for 2D MRE. The ANR took under a second to compute for a 4-slice exam, 

using phase images for the axial direction of wave-encoding. No substantial difference was 

observed between phase images of only one and of all three directions. The ANR map 

optimal threshold was 7, for phase data scaled −2*π to +2*π, and yielded a Dice coefficient 

of 0.75 with thresholded standard confidence maps across the 2D dataset.

4. DISCUSSION AND CONCLUSIONS

The algorithm-to-expert agreement was very comparable between the 2D MRE and 3D 

MRE cases. Furthermore, it was slightly better than the agreement of clinical technicians 

with expert readers that was found in the original ALEC validation study [4]. Considering 

the high agreement and the fact that the automated processing did not fail in any cases we 

believe this approach to automated 3D MRE analysis to be successful.

It remains to be investigated whether the use of only a few slices affects the ability to 

calculate stiffness reproducibly. However, physiologically stiffness varies slowly, 

elastograms have low resolution due to the size of the processing kernel, and both automated 

and manual methods exclude areas with sharp changes in stiffness. Thus, although 3D MRE 

is useful for accurately performing the elasticity inversion without suffering from bias when 

waves propagate obliquely across slices, it may not be necessary to use all slices for the 

calculation of average liver stiffness. The calculation of stiffness from the full 20 central 

slices could be done within the clinical workflow, however, as a 30 minute delay in reporting 

stiffness after an acquisition is typically considered acceptable. Full 3D automated 

processing, as opposed to the slice-by-slice analysis performed currently, has the potential to 

increase the accuracy of the segmentation and artifact removal. However, the iterative 

inhomogeneity-correction and the Random Walker steps take a substantial amount of time 

for 3D volumes, so the benefit may not be worth the increased processing time. On the other 

hand, the initialization and the final ROI artifact exclusion can benefit from cross-slice 

awareness without adding substantially to the total processing time.

The ANR metric is relatively simple. It has the benefit of being very fast to calculate and 

thus it can easily incorporate the full information from multi-slice imaging and multiple 

directions of wave propagation. It also considers both of the main causes of potentially 

biased data - wave amplitude and noise level. Due to having a local standard deviation term 

in the denominator, the ANR will have low values near edges, making these areas more 

likely to be excluded. This property is useful and works independently and in parallel with 

the erosion of the segmented liver mask to exclude areas with partial volume-effects in the 

elastogram. More sophisticated metrics of wave quality can be derived, such as the 
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octahedral shear strain SNR [9]. The goal of this study was to evaluate the feasibility of a 

fully automated processing method on 3D MRE data, which was considered to be a success. 

The investigation of different wave-quality metrics and thresholds which will better allow 

biased values in the elastograms to be excluded sensitively and specifically is a topic of 

future work. The quality metric may also be useful as a standalone tool for guiding manual 

ROI drawing for cases when full automated processing is unavailable or unsuitable, for 

example, for calculating stiffness of tumors.

Earlier work aimed at automatically processing 3D MRE data has investigated various 

approaches such as registration-based segmentation [5]. However, ultimately the same 

methods used in the original ALEC algorithm were found to be effective and were used for 

3D MRE processing to maintain consistency. The use of simple membership functions, 

instead of fit-based methods with many assumptions, allows ALEC to deal with intensity 

inhomogeneity, low inter-tissue contrast, blurring, and motion artifacts. A perfect liver 

segmentation is not attained in every case but this is not required – only a representative 

artifact-free ROI is needed for diagnosis. The intermediate liver segmentation step was not 

evaluated directly as the manual analysis directly produces the final ROI. Also, two 

experienced MRE readers can produce completely non-overlapping ROIs while obtaining 

the correct and diagnostically valuable liver stiffness. So, the comparison with the expert 

was done in terms of final liver stiffness values rather than ROI masks.

In summary, the algorithm described in this work was found to be a reliable and accurate 

method of calculating stiffness from 3D MRE images, having high expert-agreement and 

high success rate despite the very challenging image quality. The automated stiffness 

calculation removes the inter- and intra-reader discrepancy of manual interpretation and 

allows large 3D MRE datasets to be analyzed. Further improvements to the wave quality 

metric for 3D MRE are a subject of future work.
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Figure 1. 
Example of MRE data. A) Magnitude image showing anatomical information of the liver. B) 

Phase image showing wave propagation information. C) Calculated elasticity image with 

quantitative stiffness estimates for each voxel.
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Figure 2. 
Illustration of the initialization procedure. A) Intensity membership functions, B) distance 

membership functions, C) combined membership functions, and D) seeds subsampled from 

the refined initialization masks. The seeds are used as inputs for the Random Walker 

Segmentation.
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Figure 3. 
Examples of 3D MRE magnitude images with moderate-low tissue contrast and intensity 

inhomogeneity (A and B) and the corresponding liver segmentations (C and D).
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Figure 4. 
Procedure for calculating the new ANR metric.
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Figure 5. 
Illustration of the new ANR metric with respect to the conventional confidence map. A) 

phase image with wave amplitude decreasing towards the medial edge of the liver, B) 

confidence map, C) ANR map, D) ANR mask in green corresponds well to the confidence 

mask in blue.
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Figure 6. 
An example of a manual and automated ROI for a 3D MRE exam. The magnitude (A) and 

elasticity (B) images are shown. The final ROIs for the reader (white) and the algorithm 

(green) contain only valid areas and yield stiffnesses within 2% of each other.
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Figure 7. 
Correlation of stiffnesses calculated by the expert and the automated algorithm in 57 3D 

MRE exams.
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