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Abstract

Automated and reliable segmentation of subcortical structures from human brain magnetic 

resonance images is of great importance for volumetric and shape analyses in quantitative 

neuroimaging studies. However, poor boundary contrast and variable shape of these structures 

make the automated segmentation a tough task. We propose a 3D graph-based machine learning 

method, called LOGISMOS-RF, to segment the caudate and the putamen from brain MRI scans in 

a robust and accurate way. An atlas-based tissue classification and bias-field correction method is 

applied to the images to generate an initial segmentation for each structure. Then a 3D graph 

framework is utilized to construct a geometric graph for each initial segmentation. A locally 

trained random forest classifier is used to assign a cost to each graph node. The max-flow 

algorithm is applied to solve the segmentation problem. Evaluation was performed on a dataset of 

T1-weighted MRI’s of 62 subjects, with 42 images used for training and 20 images for testing. For 

comparison, FreeSurfer and FSL approaches were also evaluated using the same dataset. Dice 

overlap coefficients and surface-to-surfaces distances between the automated segmentation and 

expert manual segmentations indicate the results of our method are statistically significantly more 

accurate than the other two methods, for both the caudate (Dice: 0.89 ± 0.03) and the putamen 

(0.89 ± 0.03).
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1. INTRODUCTION

Quantifying volumetric and shape changes of basal ganglia are essential to the study of 

many brain diseases. For example, striatal atrophy, assessed by volume measurements of the 

caudate nucleus and the putamen, is one of the primary biomarkers that can be measured 

from images for Huntington’s Disease.1 As such, accurate and robust quantification of these 
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structures is crucial for disease characterization, prediction of clinical onset,2, 3 as well as 

assessing the effectiveness of therapeutical interventions in clinical trials.

However, some of the basal ganglia structures have a poor and variable MRI intensity 

contrast,4 which makes it difficult to automatically segment them accurately and robustly. 

Several methods have been proposed for this task, including probability-atlas approaches,5 

multi-atlas registration segmentation methods6 and artificial neural networks.7 These 

methods can often be sensitive to local optima. We propose a novel method, LOGISMOS-

RF, based on a machine learning algorithm in the LOGISMOS framework8 (layered optimal 

graph image segmentation of multiple objects and surfaces) to segment pairs of the caudate 

and the putamen. LOGISMOS graph segmentation framework provides the globally optimal 

solution and is thus insensitive to image noise and weak boundaries. LOGISMOS has been 

successfully applied to segmentation tasks suffering from weak contrast, such as knee 

cartilage segmentation,8, 9 as well as in various neuroimaging applications for both human 

and rat brains.10–13 However, the large variability in the appearance of subcortical structures 

makes it difficult to segment these structures by relying on the image gradient strength 

alone, and a more sophisticated appearance model is needed. Random forest (RF) 

classifiers14 work robustly by aggregating the output of multiple decision trees based on 

nonlinear relationships and can generate a probability map, which is promising for providing 

suitable costs for LOGISMOS graph nodes.

In contrast with earlier approaches using machine learning in a graph-based segmentation 

context,8, 9 we divided the mesh surface of the initial segmentation into several regions and 

trained a random forest classifier for each region, to reduce the intensity entropy of the 

training data for each random forest classifier. Additionally, while the method proposed by 

Oguz et al.12 also focuses on the graph-based subcortical segmentation, that approach is 

based on multi-atlas label fusion techniques which require substantial computational time.

In brief, LOGISMOS-RF is a novel approach based on the success of LOGISMOS graph 

framework and RF classifiers to accurately and robustly segment the caudate nucleus and 

putamen.

2. METHODS

We propose an automated method, LOGISMOS-RF, to segment left and right caudate 

nucleus and putamen from T1-weighted human brain MRI. LOGISMOS-RF uses a machine 

learning approach in the LOGISMOS graph-based framework. Fig. 1 shows the workflow of 

the segmentation algorithm. The first step is normalization of the intensity range and voxel 

size of the images to reduce variability, both in the training and the testing phases. In the 

training phase, after image normalization, each mesh surface of the manual segmentations is 

parcellated into multiple regions. The designed features are extracted to train a RF classifier 

for each region so that each region has a corresponding RF. From the training set, a mean 

shape model for each structure is also generated. In the testing phase, the initial 

segmentation is obtained from the mean shape model generated from the training set and the 

coarse pixel classification results. The initial segmentation provides a shape prior, based on 

which the graph is constructed. Then the mesh surface of the initial segmentation is 
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parcellated with the same rule in the training phase. The previously trained RFs are used to 

compute the classification probabilities, which determine the graph costs. This segmentation 

problem is solved within a graph framework to obtain the final surfaces.

2.1 Training

The training step has two aims: 1) train RF classifiers used to provide accurate graph costs 

during testing, and 2) generate a mean shape model for each structure, which helps create 

the initial segmentation during testing.

2.1.1 Image Normalization—The goal of the normalization is to reduce the variation of 

image appearance among different subjects. The normalization includes the intensity range 

and voxel size. The intensity extremes are removed by truncating the lower and upper 5% of 

the intensity values, to reduce the effect of extreme intensity values and provide a more 

uniform intensity distribution for each structure. The remaining inner 90% of the intensity 

range is rescaled to 0-4096 linearly. Finally, the images are resampled to 1 × 1 × 1 mm3 

resolution using linear interpolation.

2.1.2 Surface Parcellation—The anatomy surrounding deep brain structures is quite 

heterogeneous; thus, the intensity profiles near the structure surface can be vastly different 

for different regions. Fig. 2 illustrates this in two different surface patches of the caudate, 

one next to the ventricle while the other away from the ventricle. The image intensity 

gradient directions are reversed between the two patches (bright-to-dark for the region next 

to the ventricle, dark-to-bright for the other).

Therefore, instead of learning a single appearance model for the entire structure, we 

parcellate the surface into smaller regions of interest (ROI’s) and learn a location-specific 

appearance model for each ROI. We use a set of heuristics to parcellate the manual 

segmentation surface for the putamen into 12 ROI’s and for the caudate into 12–18 ROI’s.

A surface mesh model of the manual segmentation is obtained by using the marching cubes 

algorithm. Based on this mesh model, we compute the 3D bounding box for each structure. 

Both the caudate and the putamen undergo the same basic parcellation procedure first. The 

caudate parcellation is then further refined.

• The basic parcellation of the mesh surface is achieved in 3 sub-steps. First, we 

divide the surface into 3 regions along the Anterior-Posterior (A-P) axis. Then, 

we divide the surface into 2 regions along the Inferior-Superior (I-S) axis. 

Finally, we divide the surface into two regions along the Right-Left (R-L) axis, 

according to the sign of surface node’s normal direction. This leads to a 

parcellation of the surface into 12 ROI’s (3 × 2 × 2).

• The caudate is located next to the lateral ventricles, which vary substantially in 

shape and size, especially in datasets with a large age range. Since the ventricles 

have a strong and distinct appearance model, identifying the regions of the 

caudate that are neighboring the ventricles is important. Thus, the caudate 

parcellation is refined such that additional ROI’s are defined within the 6 regions 

of the caudate that are on the medial side (facing the ventricle). If a surface node 
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is next to the ventricle, as determined by the manual segmentation, then the node 

is labeled as a different ROI index. Thus, an original ROI on the side near the 

ventricle may be divided into two sub-ROI’s depending on whether there are 

nodes on the surface that are next to the ventricle, which results in up to 18 

ROI’s.

The surface parcellation scheme for the caudate and putamen is illustrated in Fig. 3.

2.1.3 Feature Extraction—For each node on the surface, features are collected in a 5-

node patch along the graph column (Fig. 2(a)). The center node is the node that is assigned 

the extracted features and the remaining 4 nodes are distributed in the two sides along the 

normal. The distance interval between 2 adjacent nodes is half a voxe. In total, there are 18 

features extracted from each patch:

• 5 intensity-based features: the intensity of each node.

• 10 gradient-based features: the signed gradient along the column and the output 

of the Gaussian gradient magnitude filter (σ = 0.5) for each node.

• 3 location-based features: the x-y-z coordinates of the center node of the patch.

2.1.4 Training of Multiple RFs—We train an RF classifier for each region with extracted 

local features for each ROI. In this way, the RFs are location-specific. To train the RFs, both 

the positive and negative samples are needed from the training set. For each region, the 

nodes on the surface are treated as the positive samples while the nodes inside or outside the 

surface are treated as the negative samples. The negative samples are sampled 1 voxel 

distance far from the surface. For each RF, the number of trees is 100 and the number of 

randomly selected features for each node of the trees is 3.

2.1.5 Mean Shape Model Generation—The mean shape model is used to generate the 

initial segmentations. To generate this mean shape model, the T1w images in the training set 

are registered rigidly with an atlas, and the manual segmentations are averaged to create a 

probabilistic segmentation in the template space. A threshold of 50% is applied to get a 

binary segmentation. The marching cubes algorithm is used to generate the surface meshes.

2.2 Testing

2.2.1 Image Normalization—The image normalization is exactly the same here as in the 

training phase.

2.2.2 Initial Segmentation—To generate initial segmentations for each subject, an atlas-

based tissue classification and bias-field correction is first applied to all brain MRI scans 

using the method in Kim et al15 and Koen et al.16 Voxels that are classified as caudate and 

putamen are extracted separately to get a coarse segmentation. The initial segmentations for 

caudate and putamen are created by affinely fitting the mean shape models into these coarse 

segmentations using the iterative closest points algorithm. The initial segmentations are used 

as shape priors during the graph construction.
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2.2.3 Graph Construction—We construct a geometric node-weighted graph in a 

LOGISMOS framework.8 For each vertex on the surface of the initial segmentation, a 

column, i.e. a stack of graph nodes, is created. We utilize the electric lines of force (ELF), 

which mimics the Coulomb’s law of electrically charged particles, to avoid intersectiions 

among different columns8 which may lead to topological defects in the final surface. Each 

node on the column represents a search location in the image. To cover the potential area 

that belongs to the desired structure, 50 evenly distributed nodes are chosen along each 

column with a 0.5 voxel spacing in this study. Two kinds of arcs, intra-column arcs and 

inter-column arcs are used. The intra-column arcs connect the neighboring nodes of one 

column and convert the image segmentation task to a max-flow problem on the graph. The 

inter-column arcs connect neighboring nodes of different columns and encode a smoothness 

constraint.

The graph structure is illustrated in Fig. 4(a). The smoothness constraint is set as 1 (Δ = 1) 

between neighboring columns. Fig. 4(b) shows an initial segmentation for the caudate and 

Fig. 4(c) shows the corresponding graph columns. The costs assigned to each node is 

determined later in the processing (sec.2.2.6).

2.2.4 Surface Parcellation—The surface parcellation scheme in the testing phase is 

similar to that in the training phase. However, instead of using the manual segmentation, the 

initial segmentations are used here. The remaining procedure is the same except the 

refinement of the parcellation for the caudate. For deciding the caudate regions that are next 

to the ventricles, we use the cerebrospinal fluid (CSF) segmentation obtained from the tissue 

classification result in 2.2.2, rather than manual segmentations of the lateral ventricles. If a 

graph column enters CSF, the corresponding node is labeled as a ventricle-neighboring ROI. 

Thus, an original ROI may be divided into two sub-ROI’s depending on whether there are 

nodes on the surface with columns entering CSF. This results in up to 18 ROI’s for the 

caudate.

2.2.5 Feature Extraction—The feature design is the same as that in the training. Features 

are extracted from a sliding window of a 5-node patch along the graph columns.

2.2.6 Probability Map—For the testing, the probability p of each graph node belonging to 

the final segmentation surface is estimated using the trained location-specific RF classifiers, 

each node has a probability value. Thus, a probability map is generated. Based on this 

probability map, the cost of each graph node is determined as (1 − p).

2.2.7 Segmentation—Finally, we solve the segmentation problem by standard min-cut/

max-flow optimization algorithm,17 which provides the globally optimal solution of the 

objective function under the defined constraints, in low-order polynomial time.

3. EXPERIMENTAL RESULTS

A dataset of T1-weighted MRI scans for 62 subjects (aged 5–96) is used to evaluate the 

proposed method, LOGISMOS-RF. 49 of these images have a resolution of 1 × 1 × 1 mm3, 

and 13 images have a resolution of 0.9375 × 0.9375 × 1.5 mm3. 42 images are chosen for 
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training purpose while the remaining 20 images are for testing. We calculated Dice 

coefficient (Dice Coef) and averaged unsigned automated segmentation surface to manual 

segmentation surface distance (Avg Surf Dist).

For comparison, FreeSurfer5 (version 5.1) and FSL4 (version 6.0) were also evaluated using 

the same dataset. FreeSurfer uses an atlas-based probabilistic approach via Markov Random 

Fields. FSL implements an Active Appearance Model in a Bayesian framework.

Quantitative results are shown in Table 1. LOGISMOS-RF was significantly more accurate 

than the two compared methods for both the caudate and the putamen (p ≪ 0.001), except 

for the Dice coefficient comparison with FSL which did not reach statistical significance. 

Note that FSL crashed for 6 subjects in the testing set, only the remaining 14 subjects were 

used for t-test assessment between FSL and LOGISMOS-RF.

Qualitative results from all three methods are illustrated in Fig. 5, with ground truth and 

intersection of segmentation overlaid on the same slice.

4. DISCUSSION

The method we proposed in this paper, LOGISMOS-RF, offers statistically significant 

improvement in segmentation accuracy over the two compared methods, for both caudate 

and putamen. FreeSurfer gave the worst results among all three methods. We observed that 

FreeSurfer often suffered from a leaking problem in weak boundaries. FSL offered relatively 

accurate results, but it crashed for 6 out of 20 subjects in the testing set. Note that the FSL 

and FreeSurfer are designed to work on T1-weighted images.

LOGISMOS-RF improved the results both quantitatively and qualitatively, based on the 

observations that it segmented well the thin tail of the caudate which is typically a 

challenging region, had no obvious leaking problem for weak boundaries and it never 

crashed. The improved performance is likely based on several factors. First, the LOGISMOS 

graph framework in this study leverages the mean shape model as a shape prior and ensures 

a global optimal solution with respect to the defined cost function and smoothness 

constraints, which makes it very robust to weak boundaries and image noise. Second, after 

surface parcellation, the training set for each RF classifier is relatively homogeneous and is 

more specific than a classifier that considers the whole surface, which leads to a suitable cost 

function for the graph-based segmentation. This location-specific training and robust graph-

based optimization approach are likely to contribute most to the improvement. The 

parcellation of the surface into ROI’s is based on a set of heuristics in the present work; 

exploring a data-based parcellation scheme (e.g., clustering feature patches), which might 

further improve performance, remains as future work.

Validation on pathological datasets also remains as future work. The proposed approach is 

expected to sustain high segmentation accuracy in such datasets, provided the availability of 

suitable training sets that reflect the underlying distribution.
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Figure 1. 
The work flow of the proposed method. The section numbers for steps are shown in 

parenthesis.
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Figure 2. 
Different appearance models are needed for different regions of the surfaces. (a) An MRI 

slice zoomed in on the left caudate, overlaid with the manual segmentation surface. Region 

A (blue) is facing the ventricle. Region B (red) is facing the white matter. The white and 

black arrows indicate the direction of graph columns. (b) The average intensity across the 

training set for nodes in ROI’s A vs. B. A has a gradient from bright (caudate) to dark 

(CSF), while B has a gradient from dark (caudate) to bright (WM).
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Figure 3. 
An example of parcellation result for pairs of caudate and putamen in three viewpoints. (a) 

View from Anterior. (b) View from Left. (c) View from Superior. Different color represents 

different ROI after parcellation.
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Figure 4. 
The graph framework construction. (a) Simplified graph structure. The green circles 

represent nodes on the columns. Each vertical array of nodes represent a column. The red 

arrows denote the smoothness constraint, the cyan ones represent the base graph to 

determine the support domain for graph search, and the black arrows represent intra-column 

arcs. (b) An initial segmentation for the caudate. (c) The graph columns based on (b). Each 

column has 50 nodes (numbered 0–49) and the color shows the number.
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Figure 5. 
Qualitative segmentation results. Green regions show the ground truth, whereas the outlines 

are the automated segmentation results. A: original slice. B: FSL. C: FreeSurfer. D: 

LOGISMOS-RF.
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