
Deep Learning based Classification for Head and Neck Cancer 
Detection with Hyperspectral Imaging in an Animal Model

Ling Maa,b, Guolan Luc, Dongsheng Wangd, Xu Wangd, Zhuo Georgia Chend, Susan 
Mullere, Amy Chene, and Baowei Feia,c,f,g,*

aDepartment of Radiology and Imaging Sciences, Emory University, Atlanta, GA

bSchool of Computer Science, Beijing Institute of Technology, Beijing

cThe Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology 
and Emory University, Atlanta, GA

dDepartment of Hematology and Medical Oncology, Emory University, Atlanta, GA

eDepartment of Otolaryngology, Emory University School of Medicine, Atlanta, GA

fDepartment of Mathematics & Computer Science, Emory University, Atlanta, GA

gWinship Cancer Institute of Emory University, Atlanta, GA

Abstract

Hyperspectral imaging (HSI) is an emerging imaging modality that can provide a noninvasive tool 

for cancer detection and image-guided surgery. HSI acquires high-resolution images at hundreds 

of spectral bands, providing big data to differentiating different types of tissue. We proposed a 

deep learning based method for the detection of head and neck cancer with hyperspectral images. 

Since the deep learning algorithm can learn the feature hierarchically, the learned features are 

more discriminative and concise than the handcrafted features. In this study, we adopt 

convolutional neural networks (CNN) to learn the deep feature of pixels for classifying each pixel 

into tumor or normal tissue. We evaluated our proposed classification method on the dataset 

containing hyperspectral images from 12 tumor-bearing mice. Experimental results show that our 

method achieved an average accuracy of 91.36%. The preliminary study demonstrated that our 

deep learning method can be applied to hyperspectral images for detecting head and neck tumors 

in animal models.
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1. INTRODUCTION

Although the overall incidence of cancer has declined in the United States within the past 20 

years, there has been a marked increase in the incidence of oropharyngeal cancer (base of 

tongue and, to a lesser extent, tonsilar) over the same period in both America and Europe 

[1]. More than a million patients are diagnosed each year with squamous cell carcinoma of 

the head and neck (HNSCC) worldwide [2]. Hence, early detection and treatment of head 

and neck cancer are crucially important to improve survival and quality of life for the 

patients.

Hyperspectral imaging (HSI) is a relatively new technology for obtaining both spatial and 

spectral information from an object. It has exhibited potential in the diagnosis of head and 

neck cancer [3–8]. Computer assisted detection and quantitative analysis methods were 

proposed to detect cancer. Liu et al [3] used the sparse representation for the tongue tumor 

detection. Lu et al [6, 7] validated a spectral-spatial classification framework based on tensor 

modeling for head and neck cancer detection with HSI. This method characterized both 

spatial and spectral properties of the hypercube and effectively performed dimensionality 

reduction. Chung et al [8] proposed a method based on superpixels, principal component 

analysis (PCA), and support vector machine (SVM) to distinguish regions of tumor from 

healthy tissue. However, HSI generates large amount of high dimensional data, it is 

important to learn the latent feature representation from these high dimensional data. One 

major limitation of those methods is that they used the handcrafted features, and those 

features are incapable of adapting to data at hand. Deep learning can automatically learn 

effective feature hierarchies from the existing data and thus may be able to overcome the 

limitation.

In this paper, we introduce a deep learning-based modeling framework for the analysis of 

hyperspectral images for the detection of head and neck cancer in an animal model. We use 

the convolutional neural networks (CNN) to learn the deep feature from high dimensional 

data and classify the pixels into tumor and healthy tissue.

2. METHOD

The proposed deep learning based classification method contains three parts: pre-processing, 

patch extraction, convolutional neural networks (CNN) based training, and post-processing. 

Figure 1 shows the overview of the method.

2.1 Pre-processing

Hyperspectral data preprocessing includes the normalization to eliminate the influence of the 

dark current. A standard reference white reference was placed in the scene of imaging for 

the acquisition of the white reference image. The camera shutter was closed during the 

acquisition of the dark reference image. The data were normalized using the following 

equation:
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I λ =
Iraw λ − Idark λ
Iwhite λ − Idark λ , (1)

where I(λ) is the calculated normalized reflectance value for the wavelength λ, Iraw(λ) is 

the raw image at the wavelength λ, the Iwhite(λ) and Idark(λ) are the corresponding white 

and dark reference images at the same wavelength.

2.2 Patch extraction

Hyperspectral data consist of hundreds of gray-scale images acquired at different 

wavelengths. The intensity of each pixel over each spectral band forms a spectral feature. 

We reshape the spectral feature vector into a patch as the feature of the pixel for training. 

Since we have 251 spectral bands, we combine the spectral feature vector with a zero vector 

to obtain a 256-dimension feature vector and reshape it into a 16×16 patch.

2.3 CNN classification

We adopt the convolutional neural networks (CNN) for learning the feature representation of 

each block and classify it into tumor or normal tissue. CNN is a hierarchical machine 

learning model [9]. They are made up of neurons that have learnable weights and biases. The 

input of CNN is a 16×16 patch and the output is the category: tumor or normal tissue. The 

CNN configuration is shown in Figure 2. The CNN consists of two consecutive 

convolutional layers and mean-pooling layers. The first and second convolutional layer 

consists of 12 kernels with the size of 5×5×1, 24 kernels with the size of 3×3×12, 

respectively. The two layers produce the output, 12 blocks of 12×12 (denoted as 12@12×12) 

and 24 blocks of 4×4, respectively. The mean-pooling layers are followed by the 

convolutional layers. It can output the mean values in non-overlapping windows with the 

size of 2×2 and the stride with 2. So, it cuts the patches into half. The last layer is a fully 

connected layer with 96 neurons.

2.4 Post-processing

Since our CNN based classification is a pixel based classification, the segmentation result 

contains noise and holes. We use the morphology operation for the post processing. We use 

the dilation operation to expand the segmented object and the erosion operation to shrink the 

segmented object toward a regular shape. We use the flood-fill operation to fill holes in the 

segmented binary image. Finally, we find the biggest connected component as our detected 

object.

2.5 Evaluation metrics

The performance of the algorithm is evaluated by the commonly used three measurements: 

sensitivity, specificity, and accuracy [10–13]. Sensitivity measures the proportion of tumor 

pixels which are correctly identified as the tumor. Specificity measures the proportion of 

normal pixels which are correctly identified as normal tissue. They are calculated by:
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Sensitivity = TP
TP + FN,

Speci f icity = TN
FP + TN

(2)

where TP, TN, FP, FN is the number of true positive, true negative, false positive, and false 

negative, respectively. “True positive” means that the tumor pixels are correctly classified as 

the tumor. If a tumor pixel is classified as a normal tissue incorrectly, we call it “false 

negative”. The meanings of “true negative” and “false positive” are defined similarly. The 

accuracy is an overall measurement of classification performance. It is the ratio of the 

number of correctly classified examples to the number of all examples. It is calculated by

Accuracy = TP + TN
TP + FP + TN + FN . (3)

3. EXPERIMENTS

3.1 Animal model

A head and neck tumor xenograft model was used in our hyperspectral imaging experiment 

and the HNSCC cell line M4E (doubling rate: ~ 36 hours) was used to initiate the tumor. 

The M4E cells were maintained as a monolayer culture in Dulbecco’s modified Eagle’s 

medium (DMEM)/F12 medium (1:1) supplemented with 10% fetal bovine serum (FBS). 

M4E cells with green fluorescence protein (GFP), which were generated by transfection of 

pLVTHM vector into M4E cells, were maintained in the same condition as M4E cells. 

Animal experiments were approved by the Animal Care and Use Committee of Emory 

University. Female mice aged 4–6 weeks were injected with 2 × 106 M4E cells with GFP on 

the back of the animals. Hyperspectral images were obtained about two weeks’ post cell 

injection.

3.2 Database

We acquired the hyperspectral reflectance images from 12 tumor-bearing mice using a CRI 

Maestro in-vivo imaging system. The system uses a Cermax-type, 300-Watt, Xenon light 

source. The wavelength setting was defined within the range of 450–950 nm with 2 nm 

increments. The reflectance images contain 251 spectral bands. The data cube collected is an 

array of the size 1040 × 1392 × 251. The region of interest (ROI) selected was of the 

dimension 435 × 390 × 251. The GFP fluorescence images were also acquired as the gold 

standard for the evaluation of cancer cell detection. Further details can be referred in the 

previous paper [7].

We conducted leave-one-out cross-validation experiments for the cancer detection in 

hyperspectral images. We take each hyperspectral image as the testing sample. We randomly 

select one sample from the 11 remaining samples as the validation set for parameter setting, 

and the 10 remaining samples as the training set.
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3.3 Parameter tuning

The performance of CNN learning could be affected by its different hyperparameter setting. 

The hyperparameters contain the learning rate, batch size, and number of epochs. To achieve 

efficient learning, we test the effect of these parameters on the validation set and choose the 

best ones.

Learning rate—Although a higher learning rate may decay the loss faster, it may not give 

the best optimization. We test ten numbers for the learning rate from 0.1 to 1.0 with a step 

size of 0.1 and record the accuracy in Figure 3. Note that we set the epochs to be fixed as 1 

and the batch size be fixed as 50. We then choose the best learning rates with the highest 

accuracy for different mice and use the learning rates in all the following experiments.

Batch size—The batch size is the number of samples which are fed at once to the network. 

We test ten numbers from 10 to 100 with a step size of 10. We record the accuracy under the 

condition of a fixed learning rate of 1 and one epoch. The results are shown in Figure 4. We 

identify the best batch size for different mice which contributed to the highest accuracy and 

use them in all the following experiments.

Number of epochs—The parameter epochs measure how many times every sample has 

been used during the training process. For example, one epoch means that each sample has 

been used once. We test ten numbers from 1 to 10 with a step size of 1, and record the 

accuracy, as shown in Figure 5. To evaluate the effect of epochs, we fix the learning rate to 

be 1 and the batch size to be 50. Similarly, we choose the best epochs that produce the 

highest accuracy.

3.4 Qualitative results

We show the qualitative results of cancer detection on three mice in Figure 6. Our method 

can detect the location of the tumor and achieve satisfactory results.

3.5 Quantitative results

Table 1 provides the quantitative evaluation results of our proposed method for 12 mice. Our 

method can obtain an average sensitivity of 86.05%, specificity of 93.36%, and accuracy of 

91.36%.

4. CONCLUSION

In this paper, we proposed a deep learning classification method for hyperspectral images 

for the detection of head and neck cancer in an animal model. The method uses CNN to 

learn the deep feature from hyperspectral images. As a supervised layerwise training 

method, the deep neural network can use the 2D structure of an input image to improve the 

classification performance. The proposed method was able to distinguish between tumor and 

normal tissue with satisfactory results in this initial experiment. The experimental results 

demonstrated that our deep learning method is effective for tumor detection in an animal 

model. Our future work is to test the method in large samples.
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Figure 1. 
Overview of the proposed deep learning method for cancer detection with hyperspectral 

imaging.
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Figure 2. 
The configuration of the convolutional neural networks (CNN).
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Figure 3. 
The accuracy in the leave-one-out experiment with different learning rates (from 0.1 to 1), a 

fixed batch size of 50, and a fixed epoch. Twelve mouse data (#1–12) was used in this 

experiment.
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Figure 4. 
The accuracy in the leave-one-out experiment with different batch sizes (from 10 to 100), a 

fixed learning rate of 1, and a fixed epoch. Twelve mouse data (#1–12) was used in this 

experiment.
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Figure 5. 
The accuracy in the leave-one-out experiment with different epochs (from 1 to 10), a fixed 

learning rate of 1, and a fixed batch size of 50. Twelve mouse data (#1–12) was used in this 

experiment.
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Figure 6. 
Qualitative evaluation for the detection of head and neck cancer in three mice. (a) RGB 

composite images generated from the tumor hypercube, (b) The detection results by the 

CNN based classification, (c) The final results refined by post-processing, and (d) the pair 

overlap between our detected result and the gold standard from the GFP images, where the 

white, black, pink, and green regions mean the true positive, true negative, false positive, and 

false negative regions, respectively.
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Table. 1.

The performance of the cancer detection in 12 tumor-bearing mice.

Mouse ID Sensitivity (%) Specificity (%) Accuracy (%)

1 94.61 97.16 96.63

2 99.40 85.63 90.98

3 92.37 97.01 96.13

4 96.69 91.02 93.08

5 64.53 90.79 81.42

6 99.71 93.39 94.99

7 90.28 97.48 95.58

8 71.01 96.75 91.19

9 97.89 94.19 94.77

10 44.51 92.94 80.07

11 82.14 97.18 90.99

12 99.41 86.76 90.54

Mean 86.05 93.36 91.36

Std 17.47 4.12 5.42
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