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Abstract

Developing reconstruction methods for diffuse optical imaging requires accurate modeling of 

photon propagation, including boundary conditions arising due to refractive index mismatch as 

photons propagate from the tissue to air. For this purpose, we developed an analytical Neumann-

series radiative transport equation (RTE)-based approach. Each Neumann series term models 

different scattering, absorption, and boundary-reflection events. The reflection is modeled using 

the Fresnel equation. We use this approach to design a gradient-descent-based analytical 

reconstruction algorithm for a three-dimensional (3D) setup of a diffuse optical imaging (DOI) 

system. The algorithm was implemented for a three-dimensional DOI system consisting of a laser 

source, cuboidal scattering medium (refractive index > 1), and a pixelated detector at one cuboid 

face. In simulation experiments, the refractive index of the scattering medium was varied to test 

the robustness of the reconstruction algorithm over a wide range of refractive index mismatches. 

The experiments were repeated over multiple noise realizations. Results showed that by using the 

proposed algorithm, the photon propagation was modeled more accurately. These results 

demonstrated the importance of modeling boundary conditions in the photon-propagation model.
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1. INTRODUCTION

In optical imaging modalities such as diffuse optical imaging (DOI),1–3 fluorescence 

imaging4 and fluorescence tomography,5,6 using the boundary measurements to estimate the 

optical coefficients of the imaged tissue typically requires a model for photon propagation. 

The radiative transport equation (RTE) is a well-known method for modeling this light 

propagation.7 However, executing the RTE is computationally intensive. To overcome this 

issue, an approximation to this equation, known as the diffusion approximation,8–11 is 

commonly used. This approximation assumes that light propagates diffusely in tissues. 
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However, this assumption is inaccurate near tissue surface, in anisotropic tissues, and in 

regions of high absorption or low scatter.1,3,12,13 Consequently, the diffusion approximation 

cannot accurately describe light propagation in highly absorbing regions such as 

haematomas, void-like spaces such as ventricles and the subarachnoid-space,13–17 and for 

small tissue geometries, such as whole-body imaging of small animals.12 For more accurate 

modeling, higher-order approximations to the RTE, such as the discrete ordinates method 

(SN)13,16,18–20 and spherical harmonic equations (PN)21,22 have been developed. These 

methods require solving systems of coupled equations. However, the number of equations to 

solve can be very high, so that these methods are still computationally expensive.

While the above methods focus on solving the differential form of the RTE, more recently, 

there has been research on solving the RTE in the integral form for optical imaging.23,24 The 

advantage of the integral-based methods in comparison to the differential methods is that 

they do not require solving many coupled equations. Also, the emission source in DOI are 

typically collimated, and it is easier to model such sources using the integral-based methods. 

A Neumann-series-based RTE to model photon propagation has been developed for both 

homogeneous23 and heterogeneous scattering media.24 We have shown that the Neumann-

series RTE provides accurate modeling of photons in scenarios where the diffusion 

approximation methods fail. However, an issue with the existing Neumann-series method is 

that it does not account for the reflection of photons when there is a refractive-index 

mismatch. This refractive index mismatch could be especially pronounced as light 

propagates from the tissue to the air. Due to the reflection occurring at these interfaces, 

photons are reflected back into the medium. It has been observed previously that not 

modeling boundary conditions in photon transport can lead erroneous measurements of 

scattered light.25 Further 50% or more errors in estimation of the optical coefficients of the 

underlying tissue.26

The current integral version of the RTE is not able to accurately account for boundary 

effects. To overcome this issue, we had initially proposed an improved version of the 

Neumann-series approach.27,28 We continue to improve the approach. In this manuscript, the 

improved Neumann-series RTE that accounts for the boundary conditions arising due to 

refractive index mismatch for a DOI setup is first described. We then use this Neumann-

series approach to design a method to reconstruct the absorption and scattering coefficients 

of a scattering medium in a DOI setup. Validation of the improved Neumann-series RTE 

using digital-phantom experiments is also presented.

2. METHODS

2.1 Neumann-series RTE

The fundamental radiometric quantity that we will describe the RTE is the photon 

distribution function, a quantity that is analogous to the radiance and quantifies the density 

of photons at a particular location and in a particular direction. Denote the photon 

distribution function at location r in direction ŝ and frequency v by w(r, ŝ, v). Let the 

absorption and scattering coefficients at location r be denoted by μa(r) and μsc(r) 

respectively and let cm denote the speed of light in the medium. Let Ξ(r, ŝ, v) denote a 
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mono-energetic source of emission of radiation, and let f (ŝ, ŝ′, r) denote the scattering 

phase function. The RTE can be written in the frequency domain as23

(1)

where j is the imaginary unit. This equation can also be represented in an integral form in 

terms of a Neumann series. Let  and  denote the attenuation and scattering operators, 

respectively. A schematic illustrating the definition of these operators is shown in Fig. 1 The 

mathematical expression of these operators for NIR imaging have been derived 

previously.23,24 In steady state, the integral form of the RTE is given by

(2)

This equation can be alternatively written in a Neumann-series form as follows:

(3)

An intuitive way of interpreting this equation is that successive terms in this series represent 

successive scattering events; in fact photons that have scattered n times contribute to the 

term  in this series. This is as shown in Fig. 2.

To incorporate the boundary conditions into this Neumann series, we begin with a first 

principles treatment of light propagation in tissue. Similar to Schweigher et al.,29 we define 

the boundary of the phantom to be an infinitesimally small thin layer just outside the 

phantom such that in this layer, only the reflection event occurs. This thin boundary layer is 

illustrated in Fig. 3. As a consequence of the boundary conditions, there will be reflection at 

the boundary. Therefore, the boundary acts as a source of photon emission given by the 

expression  as:

(4)

where ŝ and ŝ′ are the vectors of incident and reflection direction,  is the vector of normal 

direction of the boundary surface, and R is reflectivity given by Fresnel’s law as:

(5)
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where ni, nt denote refractive index of incident medium and transmitted medium, 

respectively, and θi, θt denote incident and transmitted angle, respectively. An alternative 

way to think about the boundary reflection is to consider it analogous to a scattering 

operation, except that the scattering phase function is given by the laws of reflection. Either 

of these two interpretations, when modeled in Eq. (2) leads to the following form for the 

RTE:

(6)

A formal solution to this equation is given by the Neumann series:

(7)

where  is the identity operator. Each of these terms involving the reflection operator in the 

RTE has a physical interpretation. The term  represent the photons that are 

reflected at the boundary and subsequently transmitted back into the phantom. The radiance 

that is reflected back into the phantom, and subsequently gets scattered is given by the term 

 The term,  is the radiance that is scattered in the medium and 

after subsequently, is reflected back into the medium. We could add more terms if the 

refractive index mismatch between the tissue and external interface is very high.

2.2 Designing the Neumann-series-based reconstruction algorithm accounting for 
boundary conditions

Consider the scattering media to be discretized into N voxels, where the scattering/

absorption coefficient of the nth voxel is denoted by μn, and let the N-dimensional vector of 

these coefficients be denoted by μ. Denote the image acquired by the pixelated detector in 

the DOI setup by the M-dimensional vector g. Our objective is to estimate μ given g. For 

this purpose, we derive a gradient-based approach. To begin with, let the mean noiseless 

image as a function of the scattering and absorption coefficient be given by . Then, the 

objective is to estimate that value of μ that minimizes the L2 norm of the error between the 

measured data g and the . Mathematically

(8)

where ‖x‖2 denotes the L2 norm of the vector x. The above can be solved by obtaining the 

gradient (also referred to as the Jacobian) of  with respect to μa and μs Let hm(r, ŝ) 

denote the detector response function of the mth detector pixel. Then, the mth component of 

, denoted by , is given by

(9)
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where (,) denotes the inner product of two vectors. Taking the derivative on both sides yields

(10)

It can be shown, by taking an approach similar to that proposed in Jha et al.,30 that the 

derivative of the gradient of w with respect to μ is given by:

(11)

where

(12)

where ϕn is a spatial basis function for the nth voxel, ε = 1 for μ=μa and ε = 0 for μ = μs, and 

the effect of operator  is:

(13)

By comparing Eq. 11 to Eq. 1, we note that the expression for the gradient is the same as the 

original RTE, but with a different source term.

2.3 Implementation

The Neumann-series formalism was implemented for a 3-dimensional scattering medium 

with an experimental setup as shown in Fig. 4. The scattering medium was a cube, with each 

side of length 2 cm. Further, the scattering and absorption coefficients in the medium were 1 

cm−1 and 0.01 cm−1. For computational reasons, only three terms involving the reflection 

operator were implemented. Thus, the following form of the RTE was implemented:

(14)

The process to implement the Neumann-series without boundary conditions was similar to 

as described in detail in Jha et al.23 The output image was measured on a pixellated detector, 

as shown in the figure. The refractive index outside the medium was kept as 1. In this setup, 

the refractive index of the media was set as 1.05 and 1.1 to generate two different refractive 

index mismatches.

Jha et al. Page 5

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The output images generated using the proposed Neumann-series approach were compared 

to those obtained with the tmcimg Monte-Carlo technique. The output of the Monte-Carlo 

technique was considered as the gold standard.

3. RESULTS

A representative output image obtained with the proposed method is shown in Fig. 5. We 

observe that the image has a maxima at the center, arising primarily due to the unscattered 

component of the laser beam. This maxima gradually fades away as we approach the sides 

of the detector face. The result is on expected lines.

In Figs. 6a–d, the linear profile of the output image (as shown by the dotted line in Fig. 5), is 

plotted and overlaid on the corresponding MC output. We observe that in all cases, there is a 

good match between the outputs obtained with the MC and Neumann-series RTE 

approaches.

4. CONCLUSIONS

An analytical formalism based on integral form of radiative transport equation (RTE) was 

proposed to model photon propagation in tissue. The method accounts for reflective 

boundary conditions arising due to changes in refractive index when photons move from the 

tissue to air. The method was used to develop an algorithm to reconstruct the absorption and 

scattering coefficients of a scattering medium in a diffuse optical imaging (DOI) setup. The 

formalism was validated using a 3-D DOI setup. Results demonstrated that the proposed 

formalism provided more accurate photon propagation model in comparison to when the 

boundary conditions were not modeled. The results demonstrate the importance of modeling 

boundary conditions in the photon-propagation model.

In another effort as part of this BRAIN Initiative project, we are developing reconstruction 

methods for fluorescence molecular tomography. These methods exploit the sparsity in the 

fluorescence distribution, and additionally model the Poisson noise in the acquired image 

data. Results show that the proposed methods provide improved results in comparison to 

existing techniques for reconstruction.6
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Figure 1. 
The various mathematical operators used to describe the Neumann-series RTE
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Figure 2. 
A schematic illustrating the physical interpretation of the different terms in the Neumann 

series RTE23
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Figure 3. 
Schematic illustrating the thin boundary and the effect of reflection operator.
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Figure 4. 
The experimental setup simulated to evaluate the proposed framework
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Figure 5. 
Representative output image with the proposed method when refractive index of the medium 

was 1.3
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Figure 6. 
Comparison of the linear profiles of the images obtained with the MC and proposed 

Neumann-series RTE formalisms, when the refractive index of the scattering medium is (a) 

1.05 (b) 1.1
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Table 1

Error between MC output and Neumann-series output with and without boundary conditions

Refractive index n RTE without boundary conditions RTE with boundary conditions

1.05 1.25% 0.85%

1.1 3.23% 1.48%
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