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ABSTRACT
In this work, a new ensemble method for the task of category recognition in different environments is presented.
The focus is on service robotic perception in an open environment, where the robot’s task is to recognize pre-
viously unseen objects of predefined categories, based on training on a public dataset. We propose an ensemble
learning approach to be able to flexibly combine complementary sources of information (different state-of-the-
art descriptors computed on color and depth images), based on a Markov Random Field (MRF). By exploiting
its specific characteristics, the MRF ensemble method can also be executed as a Dynamic Classifier Selection
(DCS) system. In the experiments, the committee- and topology-dependent performance boost of our ensemble
is shown. Despite reduced computational costs and using less information, our strategy performs on the same
level as common ensemble approaches. Finally, the impact of large differences between datasets is analyzed.
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1. INTRODUCTION
Over the last two decades, a plethora of image and shape descriptors and classification techniques, each with
many variants, has been proposed. Different settings were shown to stand out depending on data and problem
considered. In order to overcome the lack of a universally superior recognition system, one strategy is to com-
bine several classifiers, the so-called experts, into an ensemble or committee. While some of these approaches
aim to exploit the strength of the individual experts task-wise, others fuse all or several experts to generate a
final prediction. Individual expert predictions are typically combined either by some voting procedure or by an-
other classifier trained on the experts’ outputs, i.e. classifier stacking. Another line of work is the concatenation
of several image descriptors to higher-dimensional vectors. In this variant, only one classifier is utilized, rather
than one expert for each individual descriptor type. This descriptor combination is conceptually simple but in-
flexible, as any change induces a complete re-training of the classifier, which can be very slow for large numbers
of dimensions. Nevertheless, the concatenation shows very good performance and is widely used [1, 2].

The present work considers object category recognition from segmented RGB-D data by combining differ-
ent global descriptors, both shape- and texture-based, and different classifiers. Our main contribution is a new
ensemble approach which utilizes a MRF at the combination layer, called MRF ensemble method (as illustrated
in Figure 1). While more common combination techniques often use the experts’ estimated class posterior prob-
abilities, our approach fuses only their predicted class labels. Although this leads to some loss of information,
the performance thus obtained is still comparable to diverse state-of-the-art combination methods we evaluate
here. Offering the benefits of an undirected graphical model, our MRF ensemble method is implementing two
inference types on a single network. The MRF ensemble method is able to execute with the same trained model
the fusion of all ensemble experts as well as a dynamic expert selection. Thus, the next used experts can be
selected based on expected benefit for each individual prediction. We show that this strategy not only results in
an increased performance of the overall classifier, but also greatly reduces the average computational effort, due
to waiving descriptor computation for some experts.

The performance of trained classifiers on test data critically depends on how well the training data resem-
ble the testing domain. For a robot operating in a largely unconstrained environment, such as human homes or

Figure 1: General pipeline of the MRF ensemble method (im-
ages of cup from [1]), where the line thicknesses at the switch
indicate how often an expert is triggered during DCS.



public places, off-line training data will likely have some characteristic and distribution different from the target
domain. Here we address this issue by using two sets of RGB-D data in our study, one taken from [1], the other
from [3]. Although both sets are acquired with the same kind of sensor under similar conditions, classifier accu-
racy drops significantly when one is used for training and the other for testing [3]. However, the main relations
between observed performances of ensemble types turn out consistent across all experiments.

2. RELATED WORK
The effect of ensemble methods was investigated in various fields [4, 5], finding an empirical boost in the
recognition rate. Even greater performance increase can be obtained by combining information derived from
different sensors and modalities (e.g. RGB and depth) [1, 2, 6, 7].

Since a large number of discriminative classifying systems exist, each of them having different competences,
one could also dynamically select the classifier based on the application. The selection of the most suitable
classifier should rely on a competence measurement on the current setup. In the literature, a large amount of
different selection criteria for this purpose can be found [8, 9, 10]. A good overview of such approaches is given
by the survey of Britto et al. [11]. An issue of combining a large amount of classifiers is the higher risk of
redundant information. Fusing of different classifiers is only gainful, if the committee shows a high diversity
among themselves [12, 13, 14, 15]. Hence, when given a large committee, not all predictions are necessary. In
order to overcome this issue, several DCS systems were proposed [4, 11, 15]. Similar to ours is the one by Gao
and Koller [16]. A benefit of our MRF ensemble method is the possibility to generate a lookup table for the
selection process offline, leading to a more efficient DCS.

3. MARKOV RANDOM FIELD ENSEMBLE METHOD
The main idea of the MRF ensemble method is to model the joint probabilities between the expert predictions
and the category of queried object. Therefore the predictions of the experts and the ground truth label are treated
as random variables in a MRF. The extracted sets of features are classified by pre-trained classifiers, employed
at the base level. In the next stage, the combinational level, the resulting predictions are forwarded into the
MRF. In the MRF network we defined two types of nodes: the expert nodes (Xe

i ) represent the predictions of
the associated classifier, while the ensemble node(s) (Xc

j ) contain the information about the final prediction.

3.1 Network Topology
Based on the presented theory, two basic architectures were investigated, which are appropriate in terms of
computational complexity. While both architectures consist of one vertex for each expert, they differ in the
representation of the final class prediction. The first structure (here denoted as Label *) contains one single en-
semble node. The domain of each node is equal to the predictable classes of the associated expert, respectively
the ground truth classes. In the other basic structure (here denoted as Binary *), each target category is repre-
sented as a binary node with the domain LXc

j
= {yes, no}. Inspired by the Multi Labeling approach presented

by Shahbandi and Lucidarme [17], the advantage of this structure is the individual prediction of every class.
Besides the essential connection between each expert node and the ensemble node(s), the topology evaluation
showed a positive influence by connecting the expert nodes among themselves. To include these combinational
dependencies a so-called pairwise MRF is used. Several works [18, 19] utilize the pairwise MRFs for reasons
of lower complexity. These networks simply consider cliques involving a single or a pair of nodes. Although, a
pairwise MRF does not strictly satisfy the Hammersley-Clifford theorem, it is a good approximation in order to
shrink the complexity. At the end we decided to use the best performing topologies for both basic architectures
in the experiments below. For both structures this have been the pairwise MRF connecting also the expert nodes
among themselves (here denoted as * pairCliques).

3.2 Inference Techniques
With all utilized topologies presented, another main part of the MRF ensemble method is the inference. Firstly
the common inference is presented. This type of inference does not exploit the whole power of an undirected
graphical model. Since the characteristic of undirected edges leads to a higher computational complexity, for
such inferences normally a Conditional Random Field (CRF) is utilized. This sub-group of MRFs is directly
modeling the standard prediction problem p

(
Xc

j |mb
(
Xc

j

))
. This inference restriction leads to more accurate

probabilities. Secondly, an active classification approach is described, which presents several benefits.



3.2.1 Forward Inference
For the Forward Inference (FwInf ) technique, all expert nodes Xe

i are set to their associated class prediction.
For the topologies Label pairCliques the probabilities of each label ∈ LXe

1
are computed. Inferring the Bi-

nary pairCliques graphs, requires the computation of the probabilities of each ensemble node being exclusively
”yes”. Both cases result in a Probability Density Function (PDF) which is then used to determine the highest
class probability pfinal and the final class prediction classfinal.

3.2.2 Active Classification
A main component of the MRF is the property of undirected edges which allows the implementation of a DCS.
The two main ideas behind this inference are the reduction of processing costs and the generation of a more ac-
curate PDF. Although the ensemble of classifiers empirically shows a performance gain in most of the literature,
a general theory is still missing [11]. There does not exist a general rule for how many experts should be fused
nor for which applications combining experts leads to a boost [20]. It might be the case that the prediction of one
expert is already enough to obtain the right prediction with a sufficiently high likelihood. But, on the other hand,
the committee could be confronted with a queried instance for which the class probabilities of only one classifier
are not enough. Thus, the DCS procedure leads to a final prediction which is based on the highest expertise –
fused or single – available. The other main advantage is the reduced computation of only required classifiers,
because the selection is applied right in the classification phase. This can lead to reduced processing costs, if the
selection process is less expensive than generating the expert predictions. The decrease of processing effort is
especially important for autonomous and mobile robotic platforms.

Furthermore, our approach enables the system to react to already known predictions. This is a major advan-
tage over most of the state-of-the-art DCS which execute the classifier selection off-line. The basic concept of
the Active Classification (ActClass) is shown in Algorithm 1.

Algorithm 1: Active Classification (ActClass) algorithm used
by the MRF. Notations were simplified for easier readability.
Require: entropy threshold eth; state number threshold sth

1: pprior(X
c)← uniform

2: expertsrem ← Xe
1..n

3: repeat
4: initialize votes
5: inference()← possible states < sth ? Exhaustive : MCMC
6: for all labels l ∈ LXc do
7: set Xc to l
8: for all E ∈ expertsrem do
9: apply inference() on E → p(E)

10: compute HE (p(E))

11: end for
12: votes (argminE HE) += pprior(X

c = l)

13: end for
14: E∗ = argmaxE votes (E)

15: compute E∗ corresponding expert and set E∗ to sample-label
16: remove E∗ from expertsrem
17: apply inference() on Xc → p(Xc)

18: pprior(X
c) = p(Xc)

19: until H (p(Xc)) > eth or expertsrem 6= 0
Ensure: classfinal = argmaxl p(X

c = l)
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Figure 2: Flowchart of the experiments. Scans of different ob-
jects are used for the training and the testing data, in some ex-
periments even coming from independently acquired datasets.

The ActClass inference predicts the probable outcome of aggregating a specific expert to the current expert
ensemble (starting with the best performing expert during training since no information is given). For the evalu-
ation criteria the entropy H , which is a commonly used representation for the information in a PDF, is used. The
currently best expert is derived based on the entropies HE of the experts’ PDFs for each target label l. There-
fore, the ensemble node(s) is/are set to evidence and the PDF for the domain of each unset node is computed.
With each iteration an expert is selected and its computed class prediction set to evidence. Hence the selection
pool expertsrem and with it the number of possible states decreases with each iteration. Instead of setting
each expert node individually to evidence and infer the ensemble node, this direction of inference was chosen to
enable the combination of experts with different domains. Following [16] we evaluated as stopping criteria the
information gain, however, the entropy of the current PDF gave better results.

Since not all expert nodes are filled, inference in a partially filled network is required. We applied Markov
chain Monte Carlo (MCMC) which lead to reliable convergence after 5000 iterations in our experiments. How-
ever, we also observed an increasing rate of misclassifications if the number of iterations is far too high (relative
to the number of actual permutations). Since the number of possible permutations decreases with an increas-
ing number of iterations, the possibility of misclassifications due to a improper amount of iterations is given.
Therefore, if the number of permutations is too low a so-called Exhaustive Inference is executed. Hereby, ev-
ery possible permutation of the absent nodes is processed and the average over the generated PDFs results in
the final class probabilities. Besides the prevention of misclassifications, this distinction also leads to reduced



computational costs. Applying the Markov blanket property of the network, the number of iterations, hence, the
computational costs could be reduced even more, because only nodes in the Markov blanket are considered.

Since the weights are fixed after training, the expert selection ranking for all permutations can also be com-
puted off-line once. Thus, in contrast to the approach presented in [16] and other publications, the expert selec-
tion does not negatively influence the computational effort of the inference phase.

4. EXPERIMENTAL SETUP AND DATASETS
In our experiments, we focus on two goals. i) Investigate the performance of the MRF ensemble method with
regard to the different topologies and inference methods, and ii) study the effects of domain differences between
train and test data. For the latter, a comparison is made to a range of alternative ways of combining base clas-
sifiers, through variants of voting and stacking, and also to concatenation of the image descriptors. We here
describe the datasets and their usage in our study, and then turn to the results on MRF and cross-domain perfor-
mance in the following sections.

The MRF performance is evaluated on the RGB-D dataset from [1], here denoted by D1. As proposed by the
authors, only every 5th object view is included so as to reduce redundancy and prevent over-fitting, and 10-fold
cross-validation on the object-instance level is applied. Since two training phases are required for the two levels
of the ensemble classifiers, the training sets have to be split again, s.t. in all training and testing phases the sys-
tem is confronted with novel object instances; see Figure 2 for an illustration of the data flow. Let D1 = ∪cD

c
1

be the partitioning of D1 into subsets Dc
1 of object class c, and Dc

1(i) the subset of all views of instance i from
class c. We hence have for each fold

training data 1 = D1\[∪c(D
c
1(i

c) ∪Dc
1(j

c))] , training data 2 = ∪cD
c
1(i

c) , testing data = ∪cD
c
1(j

c) ,
(1)

where the left-out instances ic and jc are selected randomly (ic 6= jc). Moreover, only 21 object categories out
of the 51 available are included, in order to match the range covered by the other dataset taken from [3], here
denoted by D2, representing the second domain in our study.

The object images D2 were acquired with the same sensor (Microsoft Kinect [21]) and from similar distance
and viewpoints as images in D1. Nonetheless, there is a marked drop of performance when one set is used for
training, the other for testing, relative to cross-validation [3]. This setting hence mimics a training on a domain
slightly different from the target domain, as may be expected, e.g., for robots operating in unconstrained human
living environments.

For the cross-domain studies, the training data are taken from D1, the testing data from D2. We have run
experiments without domain adaptation, meaning in detail

training data 1 = D1\[∪cD
c
1(i

c)] , training data 2 = ∪cD
c
1(i

c) , testing data = D2\[∪cD
c
2(k

c)] ; (2)

with adaptation at the base level,

training data 1 = D1 ∪ [∪cD
c
2(k

c)]\[∪c(D
c
1(i

c) ∪Dc
1(j

c))] ,

training data 2 = ∪cD
c
1(j

c) , testing data = D2\[∪cD
c
2(k

c)] ; (3)

and with adaptation at the ensemble level,

training data 1 = D1\[∪cD
c
1(i

c)] , training data 2 = ∪cD
c
2(k

c) , testing data = D2\[∪cD
c
2(k

c)] . (4)

5. EVALUATION OF MRF ENSEMBLE METHOD
To arrive at more general conclusions about the MRF performance, different committees are evaluated. Some
of the experts were based on the RGB information (2D-based), trained on the Texton (539D) [22] or the EMK-
SIFT (1500D) descriptor [23]. The other experts used the depth information (3D-based), trained on Point Feature
Histogram (PFH) (125D), Viewpoint Feature Histogram (VFH), or Ensemble of Shape Functions (ESF) (640D)
[3, 24, 25]. In all experiments of this section, the extracted descriptor sets were classified by a linear Support
Vector Machine (SVM) as base classifier, for which the library presented in [26] was used. The expert commit-
tees studied were 2D-based, 3D-based, and (2D+3D)-based.

The main reason for combining various experts to a committee is an expected performance boost over the
single experts. However, as can be seen in Figure 3, the FwInf technique applied on the 3D-based committee
slightly decreases the accuracy compared to the single best expert (ESFSVM ). We obtained the same result for
the 2D-based expert pool against the single best expert (TextonSVM , not shown). Conversely, the ensemble of
all experts (2D+3D-based) with FwInf does show an increase of performance over all single experts. Further
investigation suggests that the low performance of the 2D- and 3D-based ensembles under FwInf comes from
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Figure 3: Accuracy distribution for MRF ensemble method
on 3D-based and (2D+3D)-based experts inferred by ActClass
and FwInf compared to the single experts.
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1 90.3 92.1 48.3 52.8 7.5 10.4
2 9.7 7.9 35.6 27.9 33.5 23.1
3 – – 16.1 19.3 24.1 26.4
4 – – – – 15.6 14.7
5 – – – – 19.4 25.4

Table 1: Percentage of test images (10-fold cross-
validation average) involving different numbers of experts
by ActClass; bold indicates the highest percentage value.

a low diversity of the expert pool, as quantified by the double-fault measure [27] and correlation of predictions
(not shown). In fact, these two ensembles have essentially failed, in that one of their experts performed better
than the ensemble. The 2D+3D-based ensemble, on the other hand, contained more diversity and was a success.

The other observation from Figure 3 is the performance boost of the ActClass technique over the FwInf . The
intuitive explanation is that, based on the PDF of the first selected classifier, the dynamic inference approach
queries only further experts, if the predicted distribution is not distinctive enough. This way, strong experts like
TextonSVM and ESFSVM are often the only ones queried, hence class confusion decreases. The improvement
is more evident for the sub-optimal 3D-based committee than for the better arranged 2D+3D-based committee.

Importantly, the MRF ensemble method inferred by the ActClass performs at least as good as the single best
expert in all committees. This particular ensemble method hence provides a kind of robustness to the choice of
experts in the committee, making a failure less likely to occur even with sub-optimal expert combination. Since
the effect of a particular combination can hardly be predicted without thorough evaluation, the MRF ensemble
method with ActClass is highly relevant for applications where a prior evaluation on the target domain is not
reliably possible, e.g., for robots deployed in largely unconstrained environments.

Another advantage of MRF inference by ActClass over inference by FwInf , and over most other ensemble
methods, is the reduction of computational costs, as image descriptors needed by non-queried experts are not
computed. Table 1 shows the percentage of test images involving different numbers of experts for inference in
the 2D-, 3D-, and 2D+3D-based ensembles. The low percentage for predicting the queried object based on only
one expert in the 2D+3D case is due to the fact that a bigger and more complex network is generated. Since
during training in the considered topologies the MRF is always confronted with all experts, the influence of
a single expert aggregated with more experts changes. Still, in all three expert pools, the ActClass inference
method leads to shorter computations through reduced expert recruitment.

6. DATASETS WITH DIFFERING CHARACTERISTICS
Robotic applications are commonly challenged with the issue of varying environmental circumstances during
training and testing. Furthermore, the instances a classifier is trained on necessarily represent just a small subset
of an indefinite amount of instances for each category. In order to simulate such conditions, in the following
we utilize the additional dataset D2 as a substantially differing test domain. Unfortunately, this dataset does not
include RGB information, so only a reduced committee with the 3D experts can be used.

We compared our method to various common ensemble methods, with different complexities. First, so-called
naive ensemble methods. While the maxProb strategy predicts the category with the highest class probability of
all experts, maxSumProb derives its final prediction by summing up the probabilities class-wise over all experts
and selecting the highest sum value. The simple voting considers each expert as equal class-voter achieving
the final prediction by taking the most voted class. Similarly, the precision weighted voting rates the voter by
the class-wise precision evaluated on a training data. The second ensemble group is the stacking approach [28]
which processes the concatenated PDFs of the experts.

In order to analyze the ensemble behavior more precisely, two additional classifiers, namely k-Nearest
Neighbor (k-NN) and Random Forrest (RF), are applied as base and combinational classifier (i.e. base level
and combinational level, or expert and ensemble classifier), based on their implementation in Mathematica. All
possible combinations of ensemble method and classifiers were applied. However, due to shortage of space, only
the best performing methods from each of the three mentioned ensemble groups for all three base-classifiers are
presented. Concerning the naive strategies, for all three base-classifiers the maxSumProb showed the highest



Figure 4: Averaged accuracies [%] of stacking approaches
with different classifiers/fusion methods for base-level and
combinational-level adaptation.
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accuracy values. In the second ensemble group, the stacking approaches, the RF as combinational-classifier per-
formed best. As could be already seen in the previous experiments the best performing MRF topology is the
more complex Binary pairCliques inferred by the ActClass technique.

Our first experiment in this section refers to the data according to eq. 2. As Figure 4 (no adaptation cases)
shows, testing on the different dataset results in unsatisfying low performances. Thus, the slight differences in
the recording setup already leads to a measurable negative effect on the accuracy. Another observable trend is
the higher recognition rate of the maxSumProb over the stacking and MRF ensemble methods. This supports
the theory proposed by Lam and Suen [29] that simpler fusion rules perform better on unknown datasets, since
the complexity of a fusion method is correlated to the adaptation to the training data which results in worse re-
sults on new data. However, the MRF ensemble method still shows acceptable results compared to the common
stacking approach for each base-classifier.

The low results obtained by the previous experiment lead to the requirement of an adaptation process. In
[3], similarly to [30], this was achieved by including in the training phase the left out objects (one instance per
category) of D2. Because of the two training phases, the trained ensembles have two different ways of data
adaptation, both using the same overall amount of training instances. The first adaptation (eq. 3) is applied on
base level, by replacing one instance per category the training data 1 with one instance of the D2 dataset. In
theory, this step leads to a higher generalizability with the consequence of better single experts. The second
approach (eq. 4) switches in the D2 instances at the combination level. This approach addresses the adaptation
ability of the fusion method. By utilizing one instance per category of the D2 data for the training data 2, the
combinational classifier is directly confronted with the target domain and can analyze the expected prediction
behavior of the single experts.

The results in Figure 4 show that the combination-level adaptation performs better for all common stacking
approaches, the opposite is valid for the naive and MRF ensemble methods. This can be mainly attributed to the
different fusing concepts. The MRF (and naive) approaches determine the final prediction based on the fusion
of the separated outcomes of experts. The class-specific expertise of each classifier is weighted based on its
correlation to the associated ground truth. Thus, a higher quality of the experts leads to an increasing distinc-
tiveness of the weights. In contrast, the common stacking methods generate one new feature vector by merging
the classifiers’ predictions. Thus, the combinational classifier does not reason based on the relations between
the experts, but rather on the correlation among all obtained values from the concatenated PDFs. As a result,
the influence of the individual expert performances is less important than the correlation between training and
testing predictions (at the combinational level stage).

For the MRF ensemble, a higher quality of the experts (base-level adapt.) leads to a greater reinforcement
of the weights for the individual predictions during training. Since the ActClass is based on the entropy of the
final PDF, the stopping criteria are met earlier and fewer experts have to be inferred, as seen in Table 2. One
disadvantage which occurs for the base-level adaptation, is the need to retrain all experts, if the system should be
adapted to another target domain. Hence, the modularity of the MRF ensemble method decreases, the runtime
reduction for three quarters of objects on average is of benefit for mobile robotic applications.

Focusing on the better performing ensemble methods, one can see the maxSumProb outperforming the oth-
ers both before and after adaptation (Figure 5). This leads to the conclusion that the adaptation with one instance
per category is not enough. The testing dataset still shows too much disparity against the training dataset. This
is also implied by the large variance of the stacking and MRF, possibly caused by how informative the instances
used for adaptation happen to be. Initial tests with two objects per category used for adaptation showed that the
difference between maxSumProb and the MRF (and other stacking methods) is diminishing quickly.



Label pairCliques [%] Binary pairCliques [%]
Number of experts: 1 2 3 1 2 3

no adaptation 15.1 49.3 35.6 15.7 42.3 42
Adaptation type: base-level 36.1 36.3 27.6 40.4 36.3 23.3

combinational-level 6.3 43.9 49.8 6.8 38.6 54.6
Table 2: Percentage of test images (ten fold average) involving different numbers of experts by ActClass for no, base-level
and combinational-level adaptation; bold indicates the highest percentage value.

Comparing the MRF ensemble method and the best stacking combinations, a significant difference cannot
be observed (based on the notches, and more formally Mood’s median tests, p > 30%), although the MRF uti-
lizes less information w.r.t. computed experts and the input information (a label instead of a PDF over the labels
signifying confidences). In future work, the experts’ prediction confidences should be included in the MRF by
considering it as a node potential. A further increase in ensemble accuracy can thus be expected.

7. CONCLUSION
In this paper we have presented a new ensemble method for object category recognition. The proposed approach
can be seen as a type of stacking in which the combinational classifier is replaced by a Markov Random Field.
Therefore, the experts as well as the final prediction are defined as random variables and represent vertices in the
graph, while dependencies between the experts and/or the final prediction are represented as undirected edges.
This unique characteristic of the probabilistic graphical model is then used to develop a dynamic inference
method besides the normal inference, leading to Dynamic Classifier Selection in the ensemble. The dynamic or
Active Classification inference outperforms the usual Forward Inference.

The main advantage of Dynamic Classifier Selection during the Active Classification mode of inference
over other ensemble methods and descriptor concatenation is the much lower execution time, due to fewer
data descriptors being required. This is achieved without sacrificing performance, as shown in a large set of
experiments with same and different characteristics of train and test data. Markov Random Field ensemble
method with Active Classification has also shown a kind of robustness to sub-optimal experts in the ensemble.
Moreover, a natural way of dealing with missing expert predictions is offered by the architecture.
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