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Abstract

The effect of subconcussive head impact exposure during contact sports, including American 

football, on brain health is poorly understood particularly in young and adolescent players, who 

may be more vulnerable to brain injury during periods of rapid brain maturation. This study aims 

to quantify the association between cumulative effects of head impact exposure from a single 

season of football on white matter (WM) integrity as measured with diffusion MRI. The study 

targets football players aged 9–18 years old. All players were imaged pre- and post-season with 

structural MRI and diffusion tensor MRI (DTI). Fractional Anisotropy (FA) maps, shown to be 

closely correlated with WM integrity, were computed for each subject, co-registered and 

subtracted to compute the change in FA per subject. Biomechanical metrics were collected at 

every practice and game using helmet mounted accelerometers. Each head impact was converted 

into a risk of concussion, and the risk of concussion-weighted cumulative exposure (RWE) was 

computed for each player for the season. Athletes with high and low RWE were selected for a two-

category classification task. This task was addressed by developing a 3D Convolutional Neural 

Network (CNN) to automatically classify players into high and low impact exposure groups from 

the change in FA maps. Using the proposed model, high classification performance, including 

ROC Area Under Curve score of 85.71% and F1 score of 83.33% was achieved. This work adds to 

the growing body of evidence for the presence of detectable neuroimaging brain changes in white 

matter integrity from a single season of contact sports play, even in the absence of a clinically 

diagnosed concussion.

1. INTRODUCTION

Organized Football is played by 5 million athletes in the United States, with 96% of those 

players at the youth and high school level.1 Its popularity is underscored by the National 

Federation of State High School Associations (NFHS), who found football to be one of the 

most frequently played sport among high school students.2 Despite the large number of 
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adolescent players, most research on the effect of football head impacts have focused on the 

collegiate and professional levels. Given that the adolescent brain is still undergoing rapid 

development this omission could have significant consequences. Additionally, the majority 

of football studies have focused on changes induced from concussions while relatively little 

attention has been paid to study the impact of repetitive subconcussive impacts, though these 

are much more common in the sport. This study aims to alleviate these gaps by studying the 

effects of repetitive subconcussive head impact exposure in the youth and high school level. 

Specifically the goal is to quantify the association between changes in white matter integrity 

and exposure to cumulative subconcussive head impacts during a single season of football.

2. MATERIALS AND METHODS

This work is part of an ongoing IRB-approved study called Imaging Telemetry And 

Kinematic modeLing in football (iTAKL) [3, 4]. The players range in age from 9 to 18 years 

old. Each player was instrumented with the Head Impact Telemetry System (HITS)3 in 

which accelerometers are mounted inside each players helmet to measure linear and 

rotational accelerations. The accelerometers are spring mounted, keeping them in constant 

contact with the skull during head impacts. The biomechanical metrics collected from HITS 

over the season were used to compute the risk of concussion-weighted cumulative exposure 

(RWE)4 from both linear and rotational head impact accelerations.

Diffusion-weighted as well as T1-weighted structural MRI scans were collected from all 

players pre- and post-season using a 3.0 Tesla Siemens Skyra MRI scanner. Diffusion-

weighted images were acquired with spatial resolution of 2.2×2.2×2.2 mm3. Diffusion-

weighting (DW) was applied along 15 directions with b = 1000 s/mm2. In addition, ten B0 

images were obtained and the DW images were eddy current corrected by normalizing each 

image to the B0 image via mutual information using the FSL package.5 Fractional 

Anisotropy (FA) maps were computed for each image using the DTI-TK library.6 The B0 

images were co-registered to T1-weighted images using an affine transformation. Then T1-

weighted images were normalized to MNI space using the DARTEL non-linear transform7 

computed via the VBM8 toolbox*. These transforms were used to spatially normalize the 

FA maps into MNI space.

The imaging data were quality checked and any data with prominent imaging artifact or 

severe head motion was not used. Subjects with a history of concussion or clinically 

significant imaging findings were excluded. This yielded 122 players.

ΔFA volumetric maps were computed by subtracting the pre-season FA map from the post-

season FA map. The ΔFA maps were cropped to encompass the brain volume only and 

downsampled to resolution of 3 × 3 × 3 mm3 using cubic interpolation. This yielded image 

volumes with dimensions of 48 × 60 × 52 voxels.

Each player’s level of head impact exposure for the season was summarized with a single 

measure known as the cumulative Risk of concussion-Weighted Exposure (RWE) score, by 

*http://dbm.neuro.uni-jena.de/vbm.html
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converting the accelerometer measures for each hit into a risk of concussion and summing 

these impact risks for the season.4 Players were then dichotomized based on this seasonal 

head impact exposure level, RWE. The 24 players with RWE>1.11 were labeled as high 

impact exposure players, while the 36 players with RWE<0.13 were labeled as the low 

impact exposure players. To perform machine learning model selection, 48 of the total 60 

players were randomly selected to be used as the aggregate training set while the remaining 

12 subjects were held out as the test set and not used during model selection.

The aggregate training set was further divided into a training set and validation set via 5-fold 

stratified cross-validation. In each fold, ∼38 subjects were used for training and ∼10 subjects 

for validation. In order to distinguish the high and low impact exposure players using the 

ΔFA maps, a 3D Convolutional Neural Network (3D-CNN) classifier was developed. This 

model automatically learns the best hierarchy of features from 3D image intensities (ΔFA 

maps) using convolutional layers and then learns to combine them for classification using 

dense fully-connected layers. Like VGGNet, our network uses small filters of size 3 × 3 × 3 

voxels. Innovation occurs through the development and optimization of a problem specific 

architecture. The number of filters was increased in each successive hidden layer and the 

number of filters and number of layers were chosen experimentally using the training set 

(not the test set). Dropout8 was employed in the dense fully-connected layer to improve the 

generalization. Compared to other non-linear activation functions (ReLU, hyperbolic 

tangent, sigmoid), the Parametric Rectified Linear Unit (PReLU)9 was found to work best. It 

is applied as the activation function for all the hidden layers. PReLU is defined as, where α 
is learned from the data. A categorical output layer consisting of a single neuron per 

category was implemented via the softmax activation function defined as f x = αx x < 0
x x ≥ 0, 

where α is learned from the data. A categorical output layer consisting of a single neuron 

per category was implemented via the softmax activation function defined as 

S j z = ez j

∑k = 1
2 ezk

; j = 1, 2. Categorical cross-entropy was used as the loss function. Each 

class was proportionally weighted in the loss function to handle the unbalanced class sample 

ratios. The ADAM optimization method10 was used with β1 = 0.7, β2 = 0.999, and ϵ = 

1×10−8 and weights were initialized to small random values near zero. A batch size of 10 

and initial learning rate of 1 × 10−4 was chosen based on empirical evidence. An adaptive 

learning rate was devised. In each validation test, the learning rate was reduced by 50% if 

the ROC Area Under Curve (AUC) did not improve for 10 epochs. An early stopping 

schedule with look ahead was developed. Training stops when the network shows no 

improvement in AUC score for 50 epochs. The winning 3D-CNN architecture that combines 

all of these strategies is illustrated in figure 1. The model contains 3 stages of convolution, 

with max pooling used in the end of each stage. Each stage contain 2 convolution layers with 

the same number of filters. 8 filters is used in the 1st and 2nd layers, 16 filters in the 3rd and 

4th layers and 32 filters in the 5th and 6th layers. The convolution stages are followed by 2 

dense fully-connected layers with sizes of 32 and 8 respectively and then the output layer 

computes the probability of the input belonging to each class. Table 1 summarizes the 

parameters of the proposed architecture.
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To perform model selection, the AUC score was computed from 5-fold cross-validation on 

the training data, and the model that achieved the best (highest) AUC score, 77.50%

(±3.33%), was selected. After selecting the proposed architecture, it was trained on the full 

training set and evaluated on the unseen held-out test set.

3. RESULTS

The proposed model, when trained on the full training set (not test) achieves an AUC score 

of 85.71% and an F1 score of 83.33% with a sensitivity of 100% and specificity of 71.43% 

on the held-out test set (Table 2). This held-out test set was not used for model selection or 

model fitting.

The statistical significance of the proposed model was further tested by performing 

permutation analysis. The null hypothesis is that the CNN model cannot learn to predict the 

RWE score level based on the training set. The test statistics chosen were the AUC ROC 

score as well as F1-score on the unseen test set of 12 samples. The permutation testing 

procedure is as follows:

1. Repeat R = 400 times:

a. Randomly permute the N classification labels over the N subjects.

b. Compute the value of the test statistic for the current permutation.

2. Construct an empirical probability distribution function (PDF) of the test 

statistic.

3. Compute the p-value of the test static without permutation.

The PDF for the accuracy test statistics are shown in figure 2. Upon evaluation the proposed 

model achieved statistically significant reliability; the probability of observing a classifier 

with higher accuracy than the proposed model is < 1% (p = 0.0025). Thus with a 

significance level of α = 0.01, we reject the null hypothesis in favor of the alternative 

hypothesis that the model has learned to predict the high and low impact exposure 

categories.

To reveal the regions the proposed classifier found important to distinguish head impact 

exposure, occlusion maps were computed for the trained CNN.11 In particular this is 

achieved by computing, for a given correctly classified subject, the regions important for 

making that correct classification. This is achieved by computing the decrease in the 

predicted probability of the correct class when each cuboidal region in the input volume is 

individually replaced with new random values. A disjoint set of cuboidal regions spanning 

the entire volume is tested. When a region important for making the prediction is replaced 

with random intensities, the probability of the high impact exposure prediction will drop 

substantially. Thus feature importance is directly proportional to this decrease. Such feature 

importance maps have been created for each 6mm × 6mm × 6mm cuboidal region.

Shown in figure 3, are the occlusion maps for two, correctly classified high impact exposure 

players with highest predicted class probability. The background shows the FA map for the 

player, post-season, using a gray scale color map. The overlay shows the importance of the 
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cuboidal regions using a black to green colormap with brighter green indicating more 

importance. These are the regions with greater decrease in the probability of the prediction 

of the correct impact exposure class. In the axial view regions on opposite sizes of the head 

are selected, while the sagittal view shows the preferences for using the change in deep, 

centrally located structures. Such structures near the brain’s center of gravity, have been 

shown to receive the highest strain forces in head impact exposure.12 The patterns of regions 

used to make the correct high impact exposure prediction are similar but not identical for 

these players. Further investigation will be useful to reveal the association of these features 

with the player’s specific spatial profile of head impact exposure.

4. CONCLUSION

This paper quantifies the association between head impact exposure and changes in diffusion 

MRI in a single season of football. Since each player was imaged immediately before and 

after the 3-month season, each player served as its own control and this greatly decreases the 

influence of potential confounders. While further research with age and BMI matched 

groups may prove additionally insightful, the results confirm the presence of detectable 

changes in white matter integrity, as estimated by FA from diffusion MRI, between low and 

high impact exposure groups of adolescent football players. A 3D convolutional neural 

network is proposed that classifies players into high and low impact exposure categories. 

This deep learning approach achieves significant reliability and high classification 

performance with ROC AUC of 85.71%. This work adds to the growing body of evidence 

for neuroimaging measurable brain changes to the white matter arise during a single season 

of contact sports play, even in the absence of a clinically diagnosed concussion.
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Figure 1. 
Our proposed deep 3D convolutional neural network for the classification of ΔFA maps into 

high and light head impact exposures. The cubes represent the 3D convolution filters and the 

circles represent dense fully-connected neurons. * indicates the convolution operation.
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Figure 2. 
Probability distribution function (PDF) for ROC AUC score and F1-score from permutation 

analysis for the proposed 3D CNN model. The red lines indicate the scores obtained by the 

model.
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Figure 3. 
Relative importance of regions used by the 3D CNN for the two most confident and correct 

high impact exposure player predictions. Row 1 is the most confident (94%) high impact 

exposure prediction and row 2 is the second most confident (86%). Overlay (green) shows 

the region importance in green, while the underlay, the FA map at post-season, provides 

anatomical contrast. The model uses a preponderance of regions near the center of mass of 

the head as well as regions on opposite sides of the brain.
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Table 1.

Architecture of the proposed 3DCNN

Layer Name Layer Type Filter Size Filter Number Feature Map Size Padding Activation

In Input 48×60×52

B11 Batch Normalization - - 48×60×52 - -

C11 3D Convolution 3×3×3 8 48×60×52×8 Stride 1×1×1 PReLU

C12 3D Convolution 3×3×3 8 48×60×52×8 Stride 1×1×1 PReLU

M1 3D Maxpooling 2×2×2 - 24×30×26×8 - -

C21 3D Convolution 3×3×3 16 24×30×26×16 Stride 1×1×1 PReLU

C22 3D Convolution 3×3×3 16 24×30×26×16 Stride 1×1×1 PReLU

M2 3D Maxpooling 2×2×2 - 12×15×13×16 - -

C31 3D Convolution 3×3×3 32 12×15×13×32 Stride 1×1×1 PReLU

C32 3D Convolution 3×3×3 32 12×15×13×32 Stride 1×1×1 PReLU

M3 3D Maxpooling 2×2×2 6×6×7× 32

F1 Flatten - - 8,064 - -

F2 Dense - - 32 - PReLU

D1 Dropout(0.3) - - 32 - -

F3 Dense - - 8 - PReLU

Out Dense (Output) - - 2 - Softmax
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Table 2.

Performance of the proposed 3DCNN on the train and held out test set. The model is trained on 48 subjects 

and tested on 12 subjects.

Sensitivity(%) Specificity(%) ROC AUC(%) F1-score(%)

Train Scores 100.00 100.00 100.00 100.00

Test Scores 100.00 71.43 85.71 83.33
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