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Abstract

Cochlear implants (CIs) use electrode arrays that are surgically inserted into the cochlea to 

stimulate nerve endings to replace the natural electro-mechanical transduction mechanism and 

restore hearing for patients with profound hearing loss. Post-operatively, the CI needs to be 

programmed. Traditionally, this is done by an audiologist who is blind to the positions of the 

electrodes relative to the cochlea and relies on the patient’s subjective response to stimuli. This is a 

trial-and-error process that can be frustratingly long (dozens of programming sessions are not 

unusual). To assist audiologists, we have proposed what we call IGCIP for image-guided cochlear 

implant programming. In IGCIP, we use image processing algorithms to segment the intra-

cochlear anatomy in pre-operative CT images and to localize the electrode arrays in post-operative 

CTs. We have shown that programming strategies informed by image-derived information 

significantly improve hearing outcomes for both adults and pediatric populations. We are now 

aiming at deploying these techniques clinically, which requires full automation. One challenge we 

face is the lack of standard image acquisition protocols. The content of the image volumes we 

need to process thus varies greatly and visual inspection and labelling is currently required to 

initialize processing pipelines. In this work we propose a deep learning-based approach to 

automatically detect if a head CT volume contains two ears, one ear, or no ear. Our approach has 

been tested on a data set that contains over 2,000 CT volumes from 153 patients and we achieve an 

overall 95.97% classification accuracy.
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PURPOSE:

Cochlear implants (CIs) have been one of the most successful prosthetics in the past decades 

[1]. With a CI, an array of electrodes that is surgically inserted into the cochlea is used to 

stimulate auditory nerve endings, thus replacing the natural electro-mechanical transduction 

mechanism and restoring hearing for patients with profound hearing loss. Postoperatively, 

CIs need to be programmed to tune the implant for each recipient, e.g., to assign a frequency 

range to individual contacts such that they are activated when a frequency within that range 

is detected in the input signal and to adjust activation levels. In clinical practice, this is done 

by an audiologist who is blind to the positions of the electrodes relative to the cochlea and 
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relies on the subjective patients’ response to stimuli, e.g., whether they can hear a signal or 

rank pitches. This is a trial-and-error process that has remained essentially unchanged since 

the mid-80s and can be frustratingly long (dozens of programming sessions are not unusual). 

In recent years, we have introduced what we call IGCIP for image-guided cochlear implant 

programming [2]. In IGCIP, we use image processing algorithms to segment the intra-

cochlear anatomy in pre-operative CT images and to localize the electrode array in post-

operative CTs [3–8]. Using this information, we have designed techniques to recommend CI 

processor settings to assist audiologists in programming the implants. We have shown that 

this leads to improvement in patient outcomes [9–11].

Our long term objective is to automate the series of image processing steps that support 

IGCIP to permit its clinical deployment. One barrier to full automation is the lack of 

standardized image acquisition protocols. This results in datasets which contain images that 

include very different portions of the head. They can include both inner ears, one inner ear 

(left or right), or sometimes neither. Figure 1 shows 4 examples to illustrate the range of 

images we need to be able to process. CT #1 includes the whole head so both ears are 

visible. In CT #2, although both the full right half and a fairly large portion of the left half of 

the head are included, only the right inner ear is visible. CT #3 includes only a very narrow 

portion of the head, but the whole right inner ear is visible. CT #4 includes only an anterior 

portion of the head and neither inner ear is visible.

In our current IGCIP process, when a new volume is received, it is visually inspected and 

assigned a label to document its content for proper processing in subsequent steps. In this 

work, we aim to replace this visual inspection step.

METHODS:

In recent years, convolutional neural networks (CNN or ConvNets) have been proposed as a 

solution for a wide range of problems such as image classification, object detection, 

semantic segmentation and other high-level computer vision tasks. The impressive 

performance they have achieved makes them the preferred solution for an increasing number 

of applications (see [12–15] for representative examples). CNN designed specifically for 

detection tasks include R-CNN [16], fast R-CNN [17], SPP-net [18], faster R-CNN [19] and 

YOLO [20]. These networks permit detecting the presence of a set of pre-defined objects 

and localizing each of them with a bounding box in 2D images. Extending these algorithms 

to 3D data sets requires substantially more resources in terms of hardware, model 

complexity, training data and training time but solutions to this problem have been proposed. 

Work that is particularly relevant to or own work is presented in [21, 22] in which authors 

use a 2D CNN to detect whether the anatomical structure of interest is present using slices 

extracted from axial, coronal and sagittal views of the 3D CT volumes. The algorithm is 

validated in three different CT datasets [22]. Similarly, Mamani et al. [23] used 2D multi-

label convolutional neural networks for each orthogonal view of the thorax-abdomen CT 

scans for the detection of four human organs. In the work described herein, we propose to 

use axial slices of the head CTs to train a CNN to determine whether a new head CT volume 

includes one or both inner ears, to facilitate automating our IGCIP pipeline.
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The dataset that we use in this study consists of 1,593 CT volumes obtained from 322 

patients. We have more volumes than patients because it is common that multiple 

acquisitions are performed and that multiple reconstructions, and thus volumes, are 

produced from the same acquisition. For each patient, both the pre-operative CT and post-

operative CT are included. The CTs are acquired on several scanners. The volumes in our 

dataset also include regions of very different sizes, ranging from 10 mm to 256 mm in the 

left-right and anterior-posterior dimensions, and from 52 mm to 195 mm in the superior-

inferior dimension. The voxel dimensions range from 0.14 mm to 2 mm in left-right and 

anterior-posterior directions and from 0.14 mm to 2.5 mm in superior-inferior direction. We 

use CTs of half of the patients to train the CNN and to select parameters for 3D volume 

classification and CTs of the other half of the patients to do testing. Specifically the first half 

is split into a training set and a validation set, for training the CNN model and for optimizing 

parameters of volume-wise classification, respectively.

We first resample all CT volumes to isotropic 0.8 × 0.8 × 0.8 mm3 voxels using trilinear 

interpolation. All CT volumes are visually checked and are assigned to one of four 

categories: category 1, no ear; category 2, both ears; category 3, only the right ear; and 

category 4, only the left ear. As we have mentioned, we split the image volumes into (1) a 

training set, (2) a validation set and (3) a test set. The number of patients and number of CT 

volumes in each set are shown in the second and third rows of Table 1. Unfortunately, the 

data set we currently have at our disposal is very unbalanced in terms of the content. About 

80% of the image volumes include both ears and about 20% include a single left or right ear. 

Image volumes which do not include any ear do exist but are very rare. If we build a 

machine learning system and search for the best parameters to maximize the overall 

accuracy using unbalanced training set and validation sets, the optimal setting will tend to 

classify all images into the majority class. To tackle this problem, we need to balance the 

number of samples in the four categories. To do so, we cropped the original CT volumes in 

the validation set to make more image volumes that include a single left ear, or right ear, or 

no ear and add them back to make the validation set have roughly equal numbers of volumes 

from each category. The same balancing operation is done for the test set. Since we use 2D 

slices to train the network, in the training set, we only need to make sure the number of 

slices that we sampled, instead of the number of CT volumes is the same for each of the four 

categories. No artificial data thus needs to be added to balance the training set. After adding 

the artificial CT volumes, the total numbers of CT volumes in each set are shown in the 

fourth row of Table 1. For each image volume in the training set, we manually localize the 

inner ears. This is done by selecting one point around the cochlea, as shown in Figure 2. As 

we have mentioned, the images are obtained with different protocols. This results in 

different intensity ranges. We normalize each image’s intensity to a uniform range, i.e., [0, 

1].

At the current stage of the work, we assume that we know the orientation of the volume and 

we base our approach on axial images. To train the network, we use slices in the training 

volumes and we assign each slice to one of the four previously mentioned categories, i.e., 

category 1, no ear; category 2, both ears; category 3, only the right ear; and category 4, only 

the left ear. A slice is assigned to category 1 if either the CT volume it belongs to is in 

category 1, or if the CT volume belongs to categories 2–4 but the distances between the ears 
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and the slice are larger than a threshold dt. Here, we empirically choose dt = 10 mm. A slice 

is assigned to category 2 if it comes from a CT volume in category 2 and the distances 

between its ears and the slice are less than dt. A slice is assigned to category 3 if it comes 

from a CT volume in category 3 and the distance between its ear’s distance and the slice is 

less than dt. Finally, a slice is assigned to category 4 if it comes from a volume in category 4 

and the distance between its ear and the slice is less than dt. We augment the training 

volumes by applying reasonable translations, scaling and rotations to existing CT volumes 

and extract additional slices from them. By doing data augmentation, we have generated 

100,000 slices from the training CT volumes to train the network. Because the size of the 

regions covered by the images varies from volume to volume, resampling to isotropic pixels 

leads to slices with different number of pixels, which cannot be accommodated by the 

network we use. To address this issue we symmetrically crop or pad the slices to make them 

224 × 224 pixels which is the size of the network’s input layer.

In this work, we use the AlexNet [12] architecture that is pre-trained on the ImageNet data 

set. Figure 3 shows the architecture of this network (more details can be found in [12]). It 

has five convolutional layers and three fully-connected layers. At each convolutional layer, 

multiple filters are used for convolution with the input raw images or feature maps. The 

output feature maps are shown in the figure as stacked squares. The number of feature maps 

obtained after each layer is shown on the left of the feature maps. The size of the feature 

maps is shown on the right. Following convolution, max pooling is applied to reduce the 

dimensionality of the feature space. Finally, a non-linear activation function, here a rectified 

linear unit (ReLU) is applied to the feature maps. The following fully-connected layers are 

the same as layers used in traditional artificial neural networks. A Softmax function is 

applied to the output of the third fully-connected layer to generate probabilities which sum 

to 1. In the AlexNet architecture, the size of the output layer is 1000.

To adapt the architecture to our needs, we change the size of the output layer from 1000 

units to 4 and we reinitialize the weights of the last fully-connected layer. Since the first 

layers of the pre-trained CNN are generic feature extractors, they do not need substantial 

update. We thus fine-tune the CNN by keeping the learning rate of the first 7 layers 1/10 of 

that of the last layer. We use the categorical cross entropy between ground truth labels and 

the output as the loss function and minimize it. The network is trained using stochastic 

gradient descent using a batch size of 256. We adopted the simplified learning rate 

adjustment strategy of the original AlexNet paper. The initial learning rate of the last layer is 

0.01 and gets 10 times smaller after each 10,000 iterations. AlexNet is designed for RGB 

images. Here we tested two strategies for generating 3-channel inputs: (1) For each position, 

we simply use three copies of the same axial slice at this position, one per channel. (2) For 

each position, besides the slice at this position, we also extracted the slice that is above it 

and the slice below it to constitute the 3-channel input. By using neighboring slices, we are 

able to capture extra spatial information.

When using the trained network to label a new volume, we preprocess it the way we do for 

image volumes in the training set, i.e., we resample it, and crop or zero-pad it as required. 

Slices at each position are then input to the CNN to obtain the probabilities that it belongs to 

each of the four categories. Suppose the number of slices in the test volume is q, the output 
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we produce is a q × 4 matrix [pn, pb, pr, pl]. Here, the four column vectors of dimensionality 

q, pn, pb, pr, and pl, represent the probabilities that the slices belong to the “no ear”, “both 

ears”, “right ear” and “left ear” categories, respectively. Each row in the matrix represents 

the probabilities of the corresponding slice in the volume. Figure 4 shows four representative 

examples. The images show coronal views of four CT volumes. The two four-curve groups 

on the right show pn, pb, pr, and pl, respectively. The group on the left is produced by the 

model using input generating strategy (1) and the group on the right is produced by the 

model using input generating strategy (2). The x−axis is the probability. The y−axis is the 

slice number. The images and the plots have been aligned to help relating the content of the 

image and the curves. In the example shown in (a), the image volume covers the right ear. 

The probability curves show that for those slices close to the inner ear, the “right ear” 

probability is nearly 1. For other slices, the “no ear” probability is nearly 1. The CT volume 

in (b) covers the whole head. The probability curves show that for those slices close to the 

inner ear, the “both ears” probability is nearly 1. For other slices, the “no ear” probability is 

nearly 1. (c) & (d) show two examples in which the probability curves are not as neat as 

those in (a) & (b). The CT volume in (c) contains only the left ear. The probabilities of the 

slices being “left ear” are higher but the values are not close to 1 and the number of 

consecutive slices having high “left ear” probabilities are fewer compared to that in (a) & 

(b). We can see a similar phenomenon in (d), in which the CT contains only the right ear. 

This could be due to the visually noticeable image noise in (c) and imaging artifact in (d). 

However, in both (c) and (d), the overall responses at the ground-truth channel produced by 

the model using input generating strategy (2) are stronger than those produced by the model 

using input generating strategy (1). This could be attributed to the incorporation of the extra 

spatial information.

The last step in our approach is to assign each volume to a category based on the probability 

curves. A straightforward criterion, which we currently use, is to find the class c (c = l, r or 

b) such that there exist a threshold probability pt and k consecutive indices i, i+1,…, i+k−1, 

such that, min pi
c, pi + 1

c , …, pi + k − 1
c ≥ pt. If there is no such c, we predict that the volume 

does not include any ear. If there are multiple cs, we choose the category copt for which the 

probability curve has the maximal average value. The performance of our algorithm depends 

on the value of k and pt and, to find the optimal values of them, we do a grid search in the 

validation set. The optimal values for k and pt are: k = 3 and pt = 0.56 for the model trained 

using input generating strategy (1) and k = 4 and pt = 0.63 for the model trained using input 

generating strategy (2).

RESULTS:

In the validation set, the classification error rates for models trained using strategy (1) and 

(2) are 4.64% and 3.83%, respectively. Table 2 & 3 are the results we have obtained with our 

validation set under the optimal k & pt settings, when the input generating strategy (1) and 

(2) are used, respectively. Similarly, Table 4 & 5 show the results we have obtained with our 

test set when input generating strategy (1) and (2) are used, respectively. In the test set, using 

input generating strategy (1), we have achieved an overall labelling accuracy of 94.28%. 

Using input generating strategy (2), we have achieved an overall labelling accuracy of 
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95.97%. The detection accuracy when using strategy (2) is thus slightly higher than that of 

using strategy (1).

CONCLUSIONS:

Automatic labelling of head CT images with CNNs appears achievable. So far we have 

tested our approach on 2484 image volumes and we have reached a very encouraging 

success rate. We have achieved higher accuracy when using three neighboring slices as input 

to the CNN, compared to that when we replicate a single slice twice. This improvement 

could be attributed to the consideration of extra spatial information in the additional 

dimension other than the two dimensions in a single 2D slice.

Since in this work, we only used 2D slices or a limited number of neighboring slices to train 

the CNN, the unique 3D nature of CTs is not exploited thoroughly. As our next step, to 

leverage such information, we plan to develop efficient 3D algorithms which take the whole 

volume as an input unit. Also, besides determining the presence or absence of inner ears, we 

plan to enable our algorithm to accurately localize them, which will further facilitate the 

following image processing steps in our IGCIP pipeline.
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Figure 1. 
4 examples from our dataset. Orientations of the slices are labeled in CT #1 and apply to 

other examples as well.
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Figure 2. 
The yellow marker is the landmark we use as the position of the left inner ear. From top to 

bottom, they are the axial, coronal and sagittal views, respectively.
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Figure 3. 
Architecture of AlexNet
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Figure 4. 
Four examples, (a)-(d). For each example, the image on the left is a coronal slice of the CT. 

The two plots represent the probabilities of the slice series containing no ear, both ears, right 

ear and left ear, generated by models using strategy (1) and (2).
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Table 1.

Numbers of patients and CT volumes in each group

Group Training Validation Testing

# of patients 120 49 153

# of original CTs 563 235 795

# of CTs after adding artificial CTs 563 732 2484
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Table 2.

Detection results in the validation set produced by the model using input generating strategy (1)

Predicted: no ear Predicted: both ears Predicted: right ear Predicted: left ear

Actual: no ear 171 1 4 7

Actual: both ears 0 183 0 0

Actual: right ear 6 2 167 8

Actual: left ear 2 2 2 177
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Table 3.

Detection results in the validation set produced by the model using input generating strategy (2)

Predicted: no ear Predicted: both ears Predicted: right ear Predicted: left ear

Actual: no ear 177 1 2 3

Actual: both ears 0 183 0 0

Actual: right ear 6 1 176 0

Actual: left ear 3 11 1 168
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Table 4.

Detection results in the test set produced by the model using input generating strategy (1)

Predicted: no ear Predicted: both ears Predicted: right ear Predicted: left ear

Actual: no ear 579 10 14 18

Actual: both ears 1 619 0 1

Actual: right ear 27 14 554 26

Actual: left ear 17 11 3 590
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Table 5.

Detection results in the test set produced by the model using input generating strategy (2)

Predicted: no ear Predicted: both ears Predicted: right ear Predicted: left ear

Actual: no ear 596 9 5 11

Actual: both ears 2 617 0 2

Actual: right ear 12 13 595 1

Actual: left ear 14 28 3 576
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