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Abstract

Cardiovascular disease is a leading cause of death in the United States. The identification of 

cardiac diseases on conventional three-dimensional (3D) CT can have many clinical applications. 

An automated method that can distinguish between healthy and diseased hearts could improve 

diagnostic speed and accuracy when the only modality available is conventional 3D CT. In this 

work, we proposed and implemented convolutional neural networks (CNNs) to identify diseased 

hears on CT images. Six patients with healthy hearts and six with previous cardiovascular disease 

events received chest CT. After the left atrium for each heart was segmented, 2D and 3D patches 

were created. A subset of the patches were then used to train separate convolutional neural 

networks using leave-one-out cross-validation of patient pairs. The results of the two neural 

networks were compared, with 3D patches producing the higher testing accuracy. The full list of 

3D patches from the left atrium was then classified using the optimal 3D CNN model, and the 

receiver operating curves (ROCs) were produced. The final average area under the curve (AUC) 

from the ROC curves was 0.840 ± 0.065 and the average accuracy was 78.9% ± 5.9%. This 

demonstrates that the CNN-based method is capable of distinguishing healthy hearts from those 

with previous cardiovascular disease.
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1. INTRODUCTION

Despite the decline in deaths related to heart disease in the 20th century, cardiovascular 

disease (CVD) continues to be a leading cause of deaths in the United States 1-3. Early 

detection is key to further reduce the mortality rate, as it increases the number of treatment 

options for patients and can prevent later stages of the disease4. Unfortunately, CVD is 

commonly diagnosed after a patient presents with symptoms, such as muscle weakness, 

fatigue, chest pain, or breathlessness. Once symptomatic, the heart is often imaged with 

coronary angiography, magnetic resonance imaging (MRI), single-photon emission 

computed tomography (SPECT), or ultrasound in order to gain more information about the 

condition 5, 6. CT has been used to diagnose certain cardiovascular diseases. Some addition 

functional information can be gained using four-dimensional (4D) CT, at the cost of 

increased radiation exposure, more imaging time, and an increased susceptibility to motion 

artifacts due to the increased acquisition time when compared to 3D CT. An automated 

method that can identify hearts with cardiovascular disease could enable cardiologists to 

quickly identify the patients at the risk of cardiovascular disease using a single 3D CT exam.

One promising option is using a convolutional neural network (CNN), which have 

previously been applied to differentiate diseased and cancer tissues 7-9. CNN, which is 

highly user-independent, once properly trained and validated, allows automated disease 

classification. In this study, we investigate the feasibility of using CNN and CT data to 

identify patients with previous cardiovascular disease from normal patients with the goal of 

early detection of CVD in the future.

2. METHODS

2.1 Data Acquisition and Processing

Twelve patients received baseline chest CT prior to radiotherapy treatment planning for a 

thoracic cancer. Six of those patients (No. 1-6) had no history of cardiovascular disease and 

did not develop any CVD following treatment. The other six patients (No. 7-12) had a CVD 

event prior to receiving a CT and were later treated for another acute CVD event following 

treatment.

The left atrium for each patient was segmented using a point-to-point mapping between an 

atlas and the patient CT to segment the heart, after which the segmented volume is verified. 

Patches centered on pixels in the left atrium were created in MATLAB (MathWorks, Inc., 

Natick, MA, USA) for both 2D and 3D (Figure 1), with a patch created for every pixel. The 

patches were allowed to overlap one another. Where necessary, zero-padding was used on 

the 3D patches. From each patient, 2500 2D patches and 500 3D patches were randomly 

selected for leave-one-out cross-validation model training in TensorFlow 10. The complete 

list of patches from each patient would be used for later evaluation of the final models.

2.2 Training of Convolutional Neural Network

Patches from healthy and diseased patients were paired for the leave-one-out cross-

validation training, with Patient 1 & 7 used to validate the first model, 2 & 8 the second, and 

so on. In total, 25,000 2D patches were used to train the 2D CNN and 5,000 3D patches 
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were used to train the 3D CNN for each model, with half of the patches representing CVD 

tissue and the other half healthy tissue. This ensured balance between classes to reduce any 

training bias.

The neural network constructed in TensorFlow is depicted in Figure 2, using the AdaDelta11 

optimizer to minimize loss. Most parameters for the 2D and 3D CNNs were each optimized 

separately. Both CNNs consisted of four convolution layers with a max pooling layer 

between the first and second convolution layers, all using the ‘VALID’ specification, as 

described in the TensorFlow documentation. These layers were followed by a pair of fully 

connected layers, after which a model was generated to classify each patch as either ‘CVD’ 

or ‘healthy’. Various filter sizes and neurons were tested for the convolution layers and fully 

connected layers, respectively. The max pool layer for the 2D CNN had a stride and kernel 

size of 2 × 2, while for the 3D CNN they were 2 × 2 × 2. Other parameters which were 

optimized include the drop out value, AdaDelta parameter ρ, AdaDelta parameter ε, kernel 

size, bias initialization constant, and learning rate. Patch sizes of 101 × 101 for 2D and 51 × 

51 × 31 for 3D were chosen in order to provide as much information to the CNN as possible. 

This also allows the method to be more easily extended to full-volume images in the future. 

Each CNN was allowed to train for 60 epochs per patient pair, producing a model after each 

epoch for validation.

2.3 Validation

Validation was separated into two parts: CNN model verification and result verification. 

First, patch classification accuracy was used to evaluate the models during optimization 

using a subset of patches from each patient. Classification accuracy was calculated as the 

number of patches correctly classified over the total number of patches for the patient, with 

the predictor threshold equal to 0.5. The optimal accuracy for each patient pair was averaged 

with that of the other patient pairs to validate the performed of the parameters used.

Secondly, result verification was performed using the CNN models created with the optimal 

parameters in three steps. In the first step, all the CNN models produced using the optimal 

parameters are selected. Next, ROC curves are produced using all of the patches from each 

pair of hearts with the corresponding models. Finally, AUCs are calculated, and the 

threshold for each ROC was used to determine the accuracy, sensitivity, and specificity for 

each patient pair. A summary of the presented method is shown in Figure 3.

3. RESULTS

3.1 Optimal 2D CNN Parameters

Kernel sizes of 3 × 3, 5 × 5, 7 × 7, and 9 × 9 were tested for the 2D CNN, with the 9 × 9 

kernel the only one that produced training results. The optimal drop-out value for 2D 

patches was 1.00, with convolutional layer filter sizes of 25, 25, 100, and 100. The optimal 

number of neurons for each fully connected layer was 128 and 64. The optimal value for ρ 
was 0.95, and for ε 1.0 × 10−9. Learning rate optimization produced a value of 0.01, and 

0.10 for the bias initialization constant. Using the optimized parameters, the average 

accuracy for the validation data was 65.4% ± 13.7%.
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3.2 Optimal 3D CNN Parameters

3D CNN kernel sizes were 3 × 3 × 3, 3 × 3 × 5, 5 × 5 × 3, and 5 × 5 × 5, with the 5 × 5 × 3 

kernel producing the optimal results. Adjusting the learning rate gave an optimal value of 

0.001. Filter sizes were set to 25 for all convolution layers, as larger sizes were found to 

reduce the classification accuracy. Fully connected layer neuron counts were 256 and 128, 

and AdaDelta parameters ε and ρ were 0.0001 and 0.89, respectively. Lower drop-out values 

increased the classification accuracy, with a maximum occurring at 0.70. Likewise, a bias 

initialization constant of 0.05 performed better than one of 0.10. Using these parameter 

values, the optimal classification accuracy on the test data was 77.6% ± 7.2%.

3.3 Final Heart Classification

The 3D CNN and associated optimal parameters were chosen for the final heart 

classification using all the 3D patches from the left atrium. The final ROC plots, using the 

optimal calculated AUC value for each patient, are shown in Figure 4. AUC, accuracy, 

sensitivity, specificity, and optimal threshold used are shown in Table I. The overall average 

AUC was 0.840 ± 0.065, with individual values ranging from 0.754 to 0.956. The average 

accuracy was 78.9% ± 5.9%, with a range of 70.4% to 89.2%. The average sensitivity and 

specificity were 80.0% ± 7.7% and 78.6% ± 6.4%, respectively.

4. DISCUSSION

Patch size was an important consideration when preparing the data for the classification. 

Depending on the type of cardiovascular disease, only certain areas of the heart might be 

affected. Therefore, even if a patch is from a diseased heart, the particular area covered by 

the patch may not be diseased. Therefore, multiple large patches should be used, even if the 

computational cost is increased. The final classification of the heart as healthy or CVD 

would then depend on the average classification of patches from that heart. Eventually, using 

the entire heart as a single volume for classification would be clinically advantageous. 

However, this would require additional preprocessing to ensure input volumes have a 

uniform shape, and a large training dataset for the model would be needed to account for the 

normal variations between patient hearts.

In this study, the validation results for the 3D patches outperformed those of the 2D patches 

by more than 10%. This suggests the need to include a collection of slices to identify the 

optimal features to identify CVD. The low convolutional filter sizes required for the 3D 

patches also indicate that the number of useful features separating CVD and healthy hearts 

could be small. However, this could also be a product of having a small sample size. Finally, 

only using a small subset of patches to train the models did not seem to limit the model.

The ROC curves for the patient pairs in Figure 4 all quickly approach the top left corner, 

with the pairing of Patients 4 and 10 showing the best performance. This is represented by 

the classification accuracy of 89.2% for that pair, the highest among all the patients. 

Threshold values varied greatly between the ROC curves, from 0.0036 to nearly 1.0. This 

made choosing a single threshold value to use for all patients impractical. Therefore, each 

patient was evaluated at their individual optimal threshold values.
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As indicated early, a limitation of the study was the small sample size of patients available. 

Since the training datasets consisted of patches from five healthy and five diseased hearts, 

even small variations between hearts can have large impacts on the result. Therefore, a 

greater number of subjects are needed to make a truly generalized CNN model. In addition, 

only 500 3D patches and 2500 2D from each patient were used to train and validate the 

models. The impact of this limitation was most likely mitigated by the large size of each 

patch, especially in the case of the 3D patches. This can be seen by comparing the average 

accuracy when classifying all of the left atrium 3D patches to that of the sub-sample used to 

test the CNN model (78.9% vs. 77.6%).

5. CONCLUSION

In this work we tested whether it was feasible to classify healthy and diseased hearts using 

2D or 3D patches and a convolutional neural network. This deep learning approach can be 

useful for rapidly screening patients at the risk of cardiovascular disease using CT images. 

Future work will explore using a single volume containing the entire heart for classification. 

Furthermore, classification of patients who later had a CVD event will be compared to 

healthy patients in an effort to identify patients at risk of serious cardiovascular 

complications. A final possible extension of the work would be identifying and monitoring 

early stages of congenital heart conditions of pediatric patients.
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Figure 1: 
Overlay of a 3D left atrium segmentation rendering (red) with the corresponding CT 

volume. The patches were centered on the segmented left atrium ROI, with both 2D and 3D 

patches being generated. The pixels of each patch were allowed to extend beyond the 

boundaries of the heart, with zero-padding used in the z-direction of the 3D patches if 

necessary.
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Figure 2: 
Diagram of the convolutional neural network used for the classification. The input data was 

in the form of either 2D or 3D patches and fed into four convolutional layers followed by 

two fully connected layers. After the fully connected layers, a soft-max layer produced 

probabilities to assign a classification label to the left atrium patch.
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Figure 3. 
Flowchart for classifying heart condition using left atrium-centered patches from CT images. 

From CT images, the left atrium is segmented and patches are created. A subset of these 

patches is used to train and validate CNN models. The optimal models are selected and used 

to classify all the patches from the left atrium for each patient, giving a final label of ‘CVD’ 

or ‘Healthy’ to each heart.
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Figure 4: 
ROC curves when classifying all 3D patches from the left atrium for each patient pair. The 

AUC was calculated from each of these curves, with an average value of 0.840 ± 0.065. 

Each curve was produced using the optimal model for each patient pair. Values are shown in 

Table I. The dashed red line indicates what the result would be if random guessing was used 

to assign a class.
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Table 1:

Results when using all of the 3D patches from the left atrium. The parameters used are located below the 

chart.

Patient
Pairing AUC  Accuracy (%)  Sensitivity (%)  Specificity (%)  Threshold

1 & 7 0.867 81.3 84.6 80.0 0.3616

2 & 8 0.890 83.6 88.8 77.4 0.4514

3 & 9 0.792 70.4 80.0 67.6 0.9999

4 & 10 0.956 89.2 88.2 89.5 0.0638

5 & 11 0.784 73.5 72.0 73.9 0.0036

6 & 12 0.754 75.5 66.6 83.4 0.1348

Average 0.840 ± 0.065 78.9 ± 5.9 80.0 ± 7.7 78.6 ± 6.4 -

Learning Rate: 0.0010, Kernel size: 5 × 5 × 3, ε: 0.0001, ρ: 0.89, Drop Value: 0.70, Convolution Filter Sizes: 25, 25, 25, 25, Fully Connected 
Layer Neurons: 256 & 128
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